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Abstract. We develop a boundary element method to calculate Van der Waals interactions for systems
composed of domains of spatially constant dielectric response of a general boundary shape. We achieve
this by rewriting the interaction energy expression presented in Phys. Rev. B, 62 (2000) 6997 exclusively
in terms of surface integrals of surface operators. We validate this approach in the Lifshitz case and give
numerical results for the interaction of two spheres as well as the van der Waals self-interaction of a uniaxial
ellipsoid. Our method is simple to implement and is particularly suitable for a full, non-perturbative
numerical evaluation of non-retarded van der Waals interactions between objects of a completely general
shape.

PACS. 77.22.Ch Permittivity (dielectric function) – 02.70.Pt Boundary-integral methods – 71.45.-d Col-
lective effects

1 Introduction

Van der Waals interactions are universal and pervade all
of physics, being essential for understanding of, e.g., sur-
face melting of ice [1] as well as osmotic equilibria of bio-
matter [2]. Their formulation in the case of interacting
bodies with highly symmetric shapes is relatively straight-
forward but the problem of van der Waals interactions
between objects of general, low symmetry, shapes is dif-
ficult [3,4] and is related to the problem of shape depen-
dence of eigenvalues of the wave (or, in the nonretarded
limit, Laplace) equation in finite domains that has been
consistently formulated and solved only for very restric-
tive conditions [5]. For general geometries the van der
Waals interaction energy has been obtained mostly either
in terms of a perturbation expansion in geometric devia-
tions from the case of high symmetry or a perturbation
expansion in the dielectric constant (see [6,7] and refer-
ences therein). The result of Golestanian [7] is particularly
germane for our point of departure since it deals with van
der Waals interactions in general geometries. It is based on
a path integral field formulation and expresses the van der
Waals interaction as a perturbation series in the spatial
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contrast of the polarizability profile ǫ − 1. Another ap-
proach based on the path integral formulation that leads
to an effective action is given in [8] A different approach,
based on the correlation effect of the density functional
theory, is proposed in [9] and leads to an approximate re-
sult for van der Waals interaction for general geometries
in terms of an expansion in terms of 1 − ǫ−1. Both these
perturbation results lead to trace-log formulas that con-
tain volume integrals across the whole space and are in
general difficult to implement numerically.

Below we will give an easily implementable universal
numerical method for calculating non-retarded Van der
Waals interactions for systems that are comprised of
general-shape domains of spatially constant dielectric
response. The expression we derive for van der Waals
interactions is applicable to a wide class of geometries and
is based on a surface trace reformulation of the interaction
energy [10]. It is not based on any series expansion and
can inherently treat problems of strong interactions that
go beyond the pairwise summation approximation. We
use this new expression for the van der Waals interaction
energy first to rederive the standard Lifshitz result
for plane parallel geometry as well as the interaction
between two spheres, and then, to show its strength and
versatility, we treat the problem of self-interaction of a
uni-axial ellipsoid.
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2 Reduction of dimensionality

In [10], the nonretarded zero temperature form of the Van
der Waals energy of a dielectric medium is given as

F =

∫

∞

0

du

2π
Tr
(

ln
(

1 + ǫ−1[∇, ǫ] · ∇G
))

=

∫

∞

0

du

2π
f(u),

(1)
where ǫ(r, r′) = ǫ(r)δ(r − r

′) is the local dielectric re-
sponse function, G(r, r′) = −1/4π|r − r

′| is the scalar
Green function of the Laplace operator and u is the imag-
inary frequency that ǫ depends on. In what follows we will
always state out results in terms of a dimensionless single
imaginary frequency contribution f(u) to the interaction
energy defined above. The expression [, ] is a commutator
and the trace is to be understood as setting the initial
and final point r of the operator to be the same and then
integrating over the space r.

Let us furthermore assume that the space is parti-
tioned into domains of constant ǫ. Let S denote the two-
dimensional manifold that is the union of all the bound-
aries between the domains of different ǫ. For a local dielec-
tric function [∇, ǫ(r, r′)] = (∇ǫ(r)) holds true and there-
fore

f(u) = Tr
(

ln
(

1 + ǫ−1(∇ǫ) · ∇G
))

. (2)

If we introduce the implicit function that defines the
boundary S as Σ(r) = 0, then the gradient of the dielec-
tric function is ∇ǫ(r) = δǫ δ(Σ(r)) ∇Σ(r) = δǫ DS(r) nr,
where δǫ is the jump in the dielectric constant going from
the region of negative Σ to positive, nr is the surface nor-
mal and DS is the surface delta function such that

∫

d3
r DS(r)g(r) =

∮

dS g(r) (3)

for any function g. While all the operators defined thus far
act on the full three-dimensional space, we will now show,
that under the above assumptions they can be reduced
to two-dimensional expressions that only operate on the
boundaries between dielectrically homogeneous regions of
space. Let us first write the trace

Tr(ln(1 + T )) =

∞
∑

n=1

(−1)(n+1) Tr(Tn)

n
(4)

as a series, where

Tr,r′ = DS(r) 2∆r nr · ∇Gr,r′ , (5)

and ∆ = 1
2ǫ−1δǫ. While ∆ is a function of the coordinate,

it is by assumption a constant along any single bound-
ary between two dielectrics. In a system with more than
a single boundary we may have ∆’s that are different for
different boundaries. The expression for ∆ depends also
on ǫ−1, which is however ill defined on the boundary it-
self. As will be shown below, in order to have agreement
with the Lifshitz case, one needs to set ∆ = ǫ2−ǫ1

ǫ1+ǫ2
, if ǫ2

is the dielectric constant of the material on the side of
the boundary to which the normal nr is pointing, and ǫ1
is the dielectric constant of the material on the opposite

side. While it gives the correct result also for the case of
two spheres, there is as yet, however, no exact proof that
this choice of ∆, plausible as it might be, is applicable to
geometries of all curvatures.

The expression for the trace of a power of T is

Tr(Tn) =

∫

d3
r
(1)

∫

d3
r
(2) . . .

∫

d3
r
(n)

T
r
(1),r(2) T

r
(2),r(3) . . . T

r
(n),r(1) . (6)

By inserting the definition (5) and taking into account
equation (3) we derive straightforwardly

Tr(Tn) = 2n

∮

dS(1)

∮

dS(2) . . .

∮

dS(n) (7)

[

∆
r
(1)n

r
(1) · ∇G

r
(1),r(2)

] [

∆
r
(2)n

r
(2) · ∇G

r
(2),r(3)

]

. . .

. . .
[

∆
r
(n)n

r
(n) · ∇G

r
(n),r(1)

]

.

The expressions for Tr(Tn) are thus evidently reduced to
surface integrals. The relevant operators can be therefore
considered to act only on the surface S and not on the
whole three-dimensional space. If we now define the main
operator that acts between two points r, r

′ on the surface
as

Kr,r′ = 2∆r nr · ∇Gr,r′ , (8)

defining at the same time the surface trace as

TrS Ar,r′ =

∮

dS Ar,r, (9)

we then see that Tr Tn = TrS Kn. This allows us to
re-sum the equation (4) as

Tr(ln(1 + T )) = TrS(ln(1 + K)) (10)

and therefore formulate the interaction energy expression
succinctly as

f(u) = TrS ln (1 + 2∆r nr · ∇Gr,r′) =
∑

i

ln |1+κi|, (11)

where the trace TrS now stands for an integral over the
surface S rather than the whole space. In the last line
we introduced the eigenvalues of the operator K, denoted
by ki, and evaluated the trace as a sum over these eigen-
values. Alternatively, instead of computing the eigenvalues
one might consider the expansion of the logarithm in terms
of the traces of the power of K as given in equation (7).
This might be considered as an expansion in multiple in-
ductions, possibly leading to alternative numerical imple-
mentations. The second-order term, for example, corre-
sponds to the pairwise summation approximation of the
dispersion interaction.

3 The Lifshitz case

To test the above approach, let us consider the Lifshitz
case of a planar slab of thickness ℓ composed of one di-
electric, surrounded by different semi-infinite dielectrics
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on either side. Let us define the normal n to point out-
wards on the surface of the slab. The operator K does not
have any contributions arising from the interaction of the
elements of one wall with other elements of the same wall,
since the gradient of the Green function between such two
elements is perpendicular to the boundary normal.

Let the coordinates x, y lie in the plane of the slab and
the z coordinate perpendicular to it. Let the eigenvector

components be denoted as ξ
(j)
i (x, y) with j = 1, 2 for the

two boundaries. Due to the symmetry of the problem we
may expect the solutions to take the form

ξ
(Q,j)
i (x, y) = exp(iQx)β(j). (12)

We choose the x-direction to be along the wave vector Q
without loss of generality. Explicitly inserting the Green
function expression into the eigenvalue equation

κiξi = Kξi, (13)

we obtain for j 6= j′

κiβ(j) = −2∆j′

∫

∞

−∞

∫

∞

−∞

dx1dy1 ℓ exp(iQx1)β(j′)

4π (x2
1 + y2

1 + ℓ2)
3
2

.

Integration over y1 gives

κiβ(j) = −2∆j′

∫

∞

−∞

dx1
ℓ exp(iQx1)β(j′)

2π (x2
1 + ℓ2)

. (14)

The integration over x1 requires contour integration de-
pending on the sign of Q and yields the system of equa-
tions

κiβ(1) = −∆2 exp(−|Q|ℓ)β(2),

κiβ(2) = −∆1 exp(−|Q|ℓ)β(1), (15)

as we explicitly insert the two possibilities for j, j′. For a
given Q this system has two eigenvalues, namely

κi = ±
√

∆1∆2 exp(−|Q|ℓ). (16)

We can therefore write the f(u) (11) as

f(u) =
∑

Q

ln (1 − ∆1∆2 exp(−2|Q|ℓ)) , (17)

or equivalently, if Qs are assumed to fulfill periodic con-
ditions on a flat plate of an area A, then taking this area
to infinity, we get for the interaction energy

F/A =

∫

∞

0

du

2π

∫

d2Q

(2π)2
ln (1 − ∆1∆2 exp(−2|Q|ℓ)) ,

(18)
which is exactly the non-retarded Lifshitz result [11].

4 Discretisation and numerical examples

In a general case, the equation (11) cannot be solved ana-
lytically but rather requires a proper discretization scheme

Fig. 1. The triangulation representation of a sphere as used
in calculations. We start with an icosahedron and on each step
subdivide each face into 4 smaller triangles. This triangulation
is essential and allows us to use an explicit form for the solid
angle ΩSi

(r′).

for the operator (8) on the surface. Let us assume that the
surface is split into a set of discrete boundary elements Si,
along which the eigenvectors of the operator K are con-
stant. Higher-order schemes may of course be employed,
but for clarity we will deal with this simplest example. It
is worth noting that

hSi,r′ =

∫

Si

dSr nr · ∇Gr,r′ =
1

4π
ΩSi

(r′), (19)

where ΩSi
(r′) is the solid angle of the surface Si as seen

from the point r
′. To obtain the matrix elements of K, we

also average above result over the surface Sj such that

Ki,j =
2∆Si

Sj

∫

Sj

dSr
′ hSi,r′ . (20)

The operators introduced thus far are not well defined
for very short distances and lead to divergences that are
due to the local dielectric response assumption [12]. These
divergences can be regularized by a simple ansatz

K̃i,j = Ki,j

[

1 − exp

(

−
d2

ij

2σ2

)]

, (21)

where dij is the distance between the centers of the bound-
ary elements i and j and σ gives the estimate of the non-
local response distance. By calculating the eigenvalues for
a discrete matrix of this type, the interaction energy can
then be calculated according to equation (11) using the

approximate eigenvalues of K̃.
We test this method of calculation in two cases, namely

the interaction between two dielectric spheres and the self-
interaction of an uniaxial ellipsoid. In both cases we rep-
resent the spherical surfaces via a recursive subdivision of
an icosahedron that limits towards a sphere, as shown in
Figure 1. This triangulation procedure is extremely useful
since in this case a closed expression exists for the solid
angle ΩSi

(r′) [13], which, for a triangle Ti with the vertices
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Fig. 2. The van der Waals interaction energy calculation for
a pair of spheres of radius 1 with σ = 0.2R and ∆ = 1/2 as a
function of the separation d between the spheres as compared
to the energy of two well-separated spheres. The inset shows
the raw energy computation. The dotted lines represents the
single, the dot-dashed line the double, the dashed line the triple
and the full line the quadruple icosahedron subdivision of the
two spheres.

ri, reads as

ΩTi
(r′) = 2 tan−1 [R1 · (R2 × R3)

/ (R1R2R3 + R1 R2 · R3 + R2 R3 · R1 + R3 R1 · R2)] ,

(22)

where Ri = ri − r
′. Our reformulation of the van der

Waals interaction energy was obtained exactly in terms of
these solid angles, equation (11). The same triangulation
procedure can be used for any other bounding surface.

The interaction energy calculation for a pair of spheres
of radius R is given in Figure 2. In all calculations we use
the value of ∆ = 1/2. We may see that the energy at
large separation, that obviously corresponds to twice the
self-interaction of individual spheres, is a relatively poorly
convergent function of the degree of discretization. The
convergence can be much improved by simply subtract-
ing the self-interaction energy from the total energy with
the result that the difference now converges a lot faster.
The short-range kink in the interaction energy is a con-
sequence of the short-range cutoff σ that represents the
nonlocal dielectric response. The van der Waals interac-
tion energy of two spheres can be also calculated analyt-
ically via the secular determinant of the field modes [12],
yielding a closed-form expression with an error estimate
of O(d−12), where d is the distance between the sphere
centers. In Figure 3 we validate our result by comparing
it to this expression. Obviously the large-distance behav-
ior does not depend on the short-range cutoff, as indeed
one would expect, and agrees pleasingly with the analyti-
cal result [12]. The short-range kink is displaced towards
progressively smaller values of the separation as the short
range cutoff is diminished, see Figure 3.

van der Waals self-interaction of a uniaxial ellipsoid is
given in Figure 4 to illustrate the power of our approach.
Again, convergence of the raw value of the energy as a
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Fig. 3. The van der Waals energy as a function of the sep-
aration for the same system as in Figure 2 but with varying
the cutoff σ = 0.2R (full), σ = 0.4R (dashed) and σ = 0.8R
(dot-dashed). All the results are given for the third subsequent
icosahedron subdivision. The dotted line represents the ana-
lytical result [12].
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Fig. 4. The van der Waals energy contribution for a uniaxial
ellipsoid of constant volume as a function of the main semi-axis
half length relative to the energy of a sphere. The inset shows
the raw free-energy computation. The dotted lines represents
the single, the dot-dashed line the double, the dashed line the
triple and the full line the quadruple icosahedron subdivision
of the sphere used to obtain the ellipsoid.

function of the density of triangulation is slow, but if we
subtract the energy of the spherical configuration the con-
vergence is again much faster. We see that the spherical
configuration has the highest van der Waals energy and
is thus unstable. This shape instability is driven purely
by shape-dependent van der Waals interactions under the
assumption of a negligible surface energy contribution. In
general, the exact location of the point of instability would
depend on the dielectric discontinuity at the surface of
the ellipsoid as well as on the surface tension and possibly
on the elastic deformation energy [14]. Van der Waals in-
teraction stabilization or destabilization of various shapes
should be particularly important for systems of low or
vanishing surface tension, such as complicated shapes of
closed lipid vesicles, where good numerical estimates of
these interactions for various non-trivial shapes arising in
the shape phase diagram are extremely hard to get [15].
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5 Conclusion

In this work we presented a general numerical method
to calculate non-retarded zero-temperature van der Waals
interactions for a class of systems that are composed of
spatial domains of constant dielectric response. This was
achieved by reformulating the interaction energy expres-
sion that contains volume traces in such a way that now it
contains only surface ones. This reformulation yields itself
to a straightforward numerical implementation based on
multiple triangulation of the shapes of interacting bodies.
We showed that the proposed method reduces to standard
results for two plane parallel semi spaces and two spheres
and that it can be used to shed light onto cases which
have heretofore eluded an exact or even an approximate
analysis.

Though our approach has been formulated in the
framework of non-retarded zero-temperature van der
Waals interactions, it appears to us that it should be quite
straightforward to extend it also across the complete do-
main of spacings between interacting bodies as well as to
the case of finite temperatures, where the frequency inte-
gral is simply turned into a Matsubara frequency summa-
tion.

This work has been supported by the European Commission
under Contract No. NMP3-CT-2005-013862 (INCEMS), by the
Slovenian Research Agency under Contract No. P1-0055. and

by the Intramural Research Program of the NIH, National In-
stitute of Child Health and Human Development.

References

1. M. Elbaum, M. Schick, Phys. Rev. Lett. 66, 1713 (1999).
2. S. Tristram-Nagle, J.F. Nagle, Chem. Phys. Lipids 127, 3

(2004).
3. V.A. Parsegian, Van der Waals Forces (Cambridge Uni-

versity Press, Cambridge, 2005).
4. M. Kardar, R. Golestanian, Rev. Mod. Phys. 71, 1233

(1999).
5. R. Balian, B. Duplantier, Ann. Phys. (N.Y.) 104, 300

(1977); 112, 165 (1978).
6. D.S. Dean, R.R. Horgan, Phys. Rev. E 73, 011906 (2006).
7. R. Golestanian, Phys. Rev. Lett. 95, 230601 (2005).
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