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The resistive (Coulter) method of counting and sizing particles in a conducting fluid has been extended to poly-
styrene spheres 900 A in diameter, with a present detection limit near 600 A, through the uge of individual sub-
micron pares etched in irradiated plastic sheet. The use of a nonionic surfactant and ultrasonic cleaning effectively
relieves the problem of plugging. The particles may be driven through the pore by the electric field, without the use
of pressure, to yield the vector sum of the electrophoretic and electro-osmotic velocities. A new theory, yielding an
upper limit to the resistive pulse on passage of a sphere, agrees well with data for spheres with diameters d <0.4D,
where I is the pore diameter, and complements a previous theory that gives a lower limit, valid for 4>0.90. We
estimate that a detection limit near 250 A will be attainable with the further development of current techniques.

INTRODUCTION

HE need to count and size individual microscopic
particles exists in a wide variety of flelds, The
Coulter counter (Coulter Electronics, Incorporated,
Hialeah, Florida) is a device that performs this function
automatically for particles suspended in an electrolyte.!
{Kubitschek? has recently reviewed the theory and use of
this apparatus.) In this instrument the particles are caused
to fiow, by pressure difference, through a small current
carrying aperture. The momentary changes of voltage that
ocecur as the particles pass one by one through the aperture
are counted and classified according to magnitude, These
small pulses arise from the momentary displacement of the
electrolyte by the relatively insulating particle and are
closely proportional to the volume of each particle. The
constart of proportionality depends somewhat on the
shape, aspect, and size of the particle.?

The present lower particle size limit for the commercial
counter is about 0.5 y in diameter. On a laboratory basis,
Kubitschek! has detected particles as small as 0.2 u. We
report here the routine detection of 0.09 » particles. Since
the signal is proportional to the cube of the diameter, this
represents an order of magnitude increase in sensitivity,
and further increases appear feasible. Thus, the way
appears to be open, for example, for automatically sizing
and -counting medium sized viruses, or for analvzing con-
taminants too small to be resolved individually by light
scattering devices,
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An important new feature that adds another dimension
for characterizing particles is that they may be driven
through the aperture electrophoretically, without the use
of any pressure difference. The time of passage constitutes
the added parameter. In the present paper we merely note
the occurrence of this effect and reserve complete des-
cription and discussion for a later communication.

The increased sensitivity has been made possible through
the development of Nuclepore fitfter material at our Labora-
tory.® Uniform pores of any diameter from about 0.010 4
on up may be etched through nonconducting materials,
such as Lexan poiycarbonate plastic sheets, where high
energy nuclear particles have left damage tracks. In-
dividual pores of submicron diameter are isolated and used
as apertures.

THEORY

The central theoretical problem is that of determining
the increase in resistance of a conducting circular cylinder
caused by the insertion of &n insulating sphere far from the
ends. There is no exact solution for this problem. Two
approximate solutions have been proposed. We shall review
these and introduce a third solution that appears to have a
wider range of application than the earlier approximations.

Maxwell,® using an exceptionally ingenious argument,
obtained an expression [or the effective resistivity, per, of a
dilute suspension of insulating spheres in a solution of
resistivity p. Put in terms of the volume fraction f of the
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Fi16. 1. D(Z) shows the axial cross section of an electric field stream-
line tube of length L, as distorted bv insertion of a nencondugting
sphere of diameter d, placed in a conducting fluid with an originally
uniform field along the Z axis, D), represents the cross section of a
uniform tube with a diameter equal to that of the distorted tube at its
maximum bulge,

spheres in suspension, Maxwell’s approximation is
peti=p(1+3//24 ). (1)

Later, Lord Rayleigh” obtained the same expression in an
explicit calculation for a dilute cubic lattice of spheres.

If we consider a tube of diameter D and length  filled
with a fluid of resistivity p, then the resistance for I>»D

approaches
Ry=4dpL/wD?, (2)

[For L comparable to D, one should substitute (L+0.8D)
for L to make an approximate correction for end effects.¥]
If a sphere of diameter d is introduced, then the volume
fraction of this sphere to the total tube volume is

JF=2d/3DL, (3)
By Egs. {1)-(3), we obtain for the resistance R, of a tube
with a small sphere within it
Ro=4dpopel /nD?

= 4oL /xD*) (1+d*/ DL+ . ). (4)
Thus, the increase in resistance, AR, is given by
AR=R2—R1= 4:,Clda/'i'l'.D"l (5)

in the limit that the diameter of the sphere is much smaller
than the diameter of the tube or pore. This expression
shows that the resistive pulse is proportional to the cube
of the diameter and inversely proportional to the fourth
power of the pore diameter. Thus this effect can be used
either to size particles or to measure pore diameters. We
shall give examples of both uses later. The expression for
the resistive pulse is seen to be independent of pore length
for a long pore, as is obvious on physical grounds,

While Eq. (5) is correct for a sphere small in comparison
to the tube diameter, we need an expression that is valid
over a broader range. A complete solution of this problem
requires a solution of Laplace’s equation for the potential
subject to insulating boundary conditions at both the
sphere and cylinder boundaries. Barring this solution, one
must use approximations. One of the most useful approxi-
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mations for the resistance of a tube of varving cross
section is
de
R=p | — y (6}
A(z)
where A(z) is the cross sectional area perpendicular te 2
length coordinate z. As Maxwell notes,® this gives a lower
bound to the resistance owing to the fact that while the
total current is conserved, the distribution is assumed uni-
form across a cross section. Any nonuniformity of current
density will give a larger resistance. As to its applicability,
in Maxwell’s words, “This method in the case of wires
whose section varies slowly with length gives a result very
near the truth.” Kubitschek! and, later, Gregg and
Steidley® have used this approximation in deriving R,, the
resistance of the cylinder containing a sphere, The elements
of area in Eq. (6) are the annular rings of solution between
the surfaces of the sphere and the cylinder. The complete
solution by Gregg and Steidlev gives, in our notation,
4,3[ sin—t{d. D} d]
L

AR=— (7)

D

[1-(d Dy} D

or, through expansion in powers of the sphere’s diameter,

8pd?® d7d\? 247d\¢ 1697d\°

AR= [1+:(—) () () + e
37 D4 S\D/  35\D/ 280\D
[In this last expression, the terms in (d/D)y and (4/D)¢
correct slight numerical errors in the expressions of
Kubitschek and Gregg and Steidley.] The limiting behavior
gives a resistance less than the Maxwellian value [(Eq. {3)]
by a factor of two thirds. Thus it is, as expected, an under-
estimate. Recognizing this fact, Gregg and Steidley pro-
posed muitiplying their solution by three halves. Thev
obtained some justification for this procedure in a moderate
agreement between the expression so amended and model
experiments. As will be seen below, we have some reserva-
tions concerning this approximation. On the other hand,
when the diameter of the sphere is very nearly equal to that
of the pore, the extra resistance is localized in the small
annular region between the sphere surface and cvlinder
wall. This section changes slowly with distance in
Maxwell’s sense, and, hence, Gregg and Steidley’s un-
corrected solution should be asymptotically valid for large
spheres. We shall present experimental evidence for this
point of view later.

To attack the problem in another way, we can consider a
sphere in a uniform field. A solution of Laplace’s equation
that permits satisfaction of spherical boundary conditions
is that of the first odd zonal harmonics, i.e.,

V(r,8)= (47 B/r*)coss. {9

The coordinates are shown in Fig, 1, where 8 is measured
from the 7 axis of the pore, The condition of an insulating
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sphere requires that the field normal to the sphere vanish
at its surface, ie., —9V/8r|,—qp=0. Thus B=d%4/16
and Eq. (9) becomes

Vir@)=A(r+d*/16r%)coss. (10)

This petential, as is well known, will have tubular current
streamlines that slightly bulge around the sphere. An out-
line of one such surface is shown in the figure. (We caiculate
these surfaces below.) The point is that Eq. (10) is an exact
solution for a pore of this more or less bulged shape. For
the case illustrated, where the maximum diameter D,, is
twice the sphere diameter d, the bulge is only 79. With
this a5 an exact solution for Ry, we may find a lower limit
for R, by use of Eq. (6). This use is more accurate than
the earlier use since for d<<D, the cross sectional area
changes slowly with distance. The resistance difference
AR then represents an upper limit for this geornetry and is
also an upper limit for that of a ¢ylindrical pore of diameter
D, since the constrictions are absent in the latter case,

To proceed to the calculations of the streamlines, we note
that the total current 7 through any cross section of dja-
meter I¥ and distance z along the axis from the center of the
sphere is, by Ohm’s law,

dr pPiz
I=—
p

E.xdx, (11)

where E. is the axial component of the electric field
defined by

—aV ia8v
cosf+— —sind (12)
ar r df

E,=

and « is the distance from the central axis, while the lower
limit of integration is either the surface of the sphere or
zero, depending on whether |z| is smaller or larger than
/2, respectively. The result of this calculation gives

I(z)= (—rAD’/4p){1—[d“/(D2+4zz)i]}. {13)
In particular, for =0, at the bulge,
I{0)= (—wAD.2/40)[1— (d/Dwm)]. (14)

Thus we may calculate the diameter of a tube that carries
Constant current, ie., a streamline, by equating the last
two equations to obtain an implicit expression for D(z), L.e.,

DTL—d/ (D442 )= D,2[ 1— (d/Dw)"]. (18)

This expression is plotted in Fig. 1 for 4/Dn=0.5. The re-
resistance of the pore containing the sphere is obtained by
use of Ohm’s law with Eqs, (10} and (14), viz.,

Ro=[V(-L/2)—-V(L/ D/ 1

o D -GT e

Tasre 1. Values of the correction factor F to be applied to the
Maxwellian limit as a function of the ratio of particle to pore diameter
on the basis of the upper limit theary.
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By use of the approximation [Eq. {6},
8p pLi? gz

1=

™ Jo Dg

(7

Substituting for 1?2 from Eq. (13), we obtain

4 d \*! e g
T 5] o
T D2 D, o (DP4ah)E

The change of resistance, as hefore, is given by

dp [1 (d e
Tsz Dm) ]

a Lt gy
Xl: =42 f :I (19
2Lt Sy (Drpandd

This equation, when sclved in conjunction with Eq. (15)
for D, gives the required upper limit. For 4<&D,,, D=D,,
and we may immediately integrate Eq. (19) to obtain

dod*  3/Dmt
ARG D) €1, (Dt Ly1 — I:H-—(——) +:l (20)
TR 8\ L

TLlim

AR=K:—R =

This expression has the Mazwellian value [Eq. (5)] as
its limit. In addition, it is to be noted that the result is
extraordinarily insensitive to the distance L over which the
potential is measured. Tkus the AR will measure quite local
values of D,... For finite values of d/D,,, we may numerically
evaluate a correction term F{#?/D,?) defined by

AR 10y 1= (4pd*/mDn®) - F(d*/D3). 21)

The results of such a calculation are shown in Table I,
The initial phase of F(d®/D®) may be approximated as

P/ D) =1+1.26s0/ D, 1.1:d%/D,t, (22)

This result, that an overestimate for the pore resistance
has only terms in d%/D® and higher in its corrections to the
Maxwellian limit, shows that the arbitrarily corrected
Gregg and Steidley form, with its terms in ¢%/D?, cannot be
correct. '
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I16. 2. (a) Double exposure of osciiloscope screen showing the
signals frem two polystryene spheres, each with a diameter of ahout
0.337 p, on passing at zero pressure difference through a tapered pore,
with end diameters of 0.49 and 0.45 s, in a 2.9 u thick plastic mem-
brane. The ditference in signal amplitudes represents a difference in
diameters of 40 3. The parallel wiggles reveal local undulations of
about 50 1 in the pore diameter. (b} Oscilloscope trace showing the
signals from two polystyrene spheres, each with a_diameter of about
0.091 y, on passing through the same pore as in Fig. 2(a), but in the
opposite direction,

Lastly, we note without proof that for a sphere of finite
resistance the limiting expression for the resistance in-
crement [Eq. (3)] is modified by a factor (2—2k)/(2+%),
where k is the ratio of solution resistivity to sphere
resistivity. This agrees with the results of Maxwell and
Lord Rayleigh.

In summarv, this calculation complements that of
Kubitschek and Gregg and Steidley in giving an upper
bound for the resistive pulse and one which agrees with the
Maxwellian limit. In addition, this calculation allows
specific consideration of the effects of pore length and finite
resistivity of the sphere.

EXPERIMENTAL PROCEDURES

Pores are produced by etching 104 thick sheets of
Lexan or Makrofol that have been irradiated with colli-
mated fission fragments from #2C{ to a density of about
5% 108/cm?. (The range of the fragments in the plastic
is about 18 ¢.) The etching is typically performed at 70°C
in & salution of 3.12% NaOH with 3vol%, of Benax 2Al
solution (Dow Chemical Company, Midland, Michigan)
added.’ The latter is an anionic surfactant used to insure
even wetting of the pores. Under the conditions outlined
above, the pore increases in diameter at a rate of approxi-
mately 100 A/min. After a suitable time to give the desired
pore size, the sample is rinsed in water and 5%, acetic acid.
One can ohserve individual pores as small as 0.1g in
diameter in a 10 g thick sheet under a 200 power stereo-
microscope with dark field llumination. A small square is
cut out and mounted with epoxy over a hole about § mm in
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diameter in a plastic disk that forms the partition between
the two chambers containing the electrolyte. There will
generally be several pores in this area. These are observed
under the stereomicroscope and the plastic square is moved
around on the epoxy-cozted surface of the disk with a
tweezer tip while the epoxy is still fluid until all but one
pore are sealed. The pore may be thinned by stripping off
several layers of the plastic with fine pointed tweezers
after it is bonded to the plastic disk. The manufacturing
process for Makrofol gives it a directional, lavered struc-
ture. Microtoming might also work. Shortening the pore
significantly reduces the intrinsic noise level if its resist-
ance is many megohms.

The disk is mounted with O-rings between two Plexiglas
chambers, each about 1 ¢cm?® in volume, fitted with silver-
silver chloride electrodes. A solution of 0.1 KCI is pre-
pared with a few drops per 100 m] of Tween 6, a nonionic
surfactant, to prevent later particle coagulation and pore
plugging (Atlas Chemical Industries, Incorporated,
Wilmington, Delaware). In addition, this solution is
Altered on injection into the cell through a filter membrare,
e.g., MF-Millipore, tvpe VS, nominal pore size, 230 A
(Millipore Corporation, Bedford, Massachusetts). The
resistance across the membrane is then measured. Ultra-
sonic agitation of the cell may be needed to establish
electrical continuity through the pore. If the cell resistance
R, is several megohms or tens of megohms, the measuring
circuit may conveniently consist of Rn in series with the
1 M9 (or if modified, several megohm} internal resistance
R; of an oscilloscope and with a battery, perhaps with
rheostatic control, to provide a voltage gradient across the
pore of several thousand volts per centimeter. All units are
contained in shielding boxes. An ammeter and a voltmeter,
e.g., Keithlev 610C electrometers, are added as needed.
The noise level of the oscilloscope trace and the particle
content of the filtered solution are checked before the test
particles are added (or checked by fiow from the chamber
not containing the test particles). These particles are
polystyrene latex spheres of closely uniform size (Dow
Chemical Company, Midland, Michigan). We report here
measurements on six particle sizes ranging from 0.091 to
0.357 u. To charge the cell we add approximately 1] of
the original 109, suspension of spheres in water.

Plugging of the aperture is & chronic problem with
particle counters. We have observed the aperture of an
operating cell under a microscope and find that plugging
with polystyrene spheres may occur owing to interactions,
presumably both electrostatic and kinetic, between the
particles and the edge of the aperture, and between the
incoming particles and those already stuck to the aperture,
even though all particles are smaller than the aperture.
We have relieved the plugging problem for polystyrene
latex particles in KCI solution by the use of the nonionic
surfactant and by the application of ultrasound to the cell
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when, on occasion, it is needed. The data below were
gathered over a period of three weeks before ultrasonic
cleaning finally split the plastic membrane.

EXPERIMENTAL RESULTS

Figure 2(a) is a double exposure of the oscilloscope
signals from two consecutive polystyrene spheres, of
nominal diameter 0.357 u, passing through a tapered pore
calculated to have an effective length of 3.3 x and end
diameters of 0.49 and 0.45 . The voltage across the cell
was 0.343 V and the current was 0.236X10~7 A. The
pressure difference was less than 0.2 mm H,0. The particles
moved, as they do in all experiments reported here, as if
they had a negative charge. It is interesting to note that,
while these particles give closely identical voltage traces,
one is on the average about 4%, higher than the other.
Employing our empirical formuia for the dependence of
signal on particle size [Eq, (23)], we find that this differ-
ence corresponds to a difference of only 40 A in particle
size. (The stated standard deviation of these spheres in
56 A.) It is apparent from the low noise level that this
difference could be determined more accurately by further
amplification of the signals. In addition, the parallel wiggles
in the traces show small undulations in the pore diameter
superimposed on the general taper of 0.02u over the
length,

Figure 2(b) is a single trace showing the consecutive
passage through the same pore [in the opposite direction
from Fig. 2(a}] of two 0.091 4 spheres. In this case, the
voltage across the ceil is 1,28 V, the current is 0.920% 10~
A, and the pressure difference is about zero,

The time of passage is seen to be approximately one
third of that in Fig, 2(a), which corresponds roughly to the
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d& FIG.t 3. Particle size distribution for a sample of 134 spheres of mean
ﬁme er 910 A, The vertical axis plots the number of spheres whose
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The 9Q‘]1ilval?nt particle diameter (1) ic shown on the upper abcissa.
e solid line is a standard deviation curve (Ad=54A) for the
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F1c. 4. Plot of resistive pulse AR vs sphere volume for six sizes
of polystyrene spheres. The diameters are shown at the tap. The
solid line is the theoretical upper Limit curve, for pore diameter
D=0454¢p, that best matches the data at small volumes. The
sensitivity of AR to changes in pore diameter is indicated by the
dashed curves calculated for J=0.40 and 0.50 x.

fact that the electrophoretic and electro-osmotic velocities
are about three times greater, owing to the increased
voltage for this case,

Figure 3 is a plot for 134 pulses from nominallv 0.091 x
spheres of the number & with peak heights equal to or
greater than H microvolts, vs H, The solid line shows a
theoretical standard deviation curve drawn to fit the data
for 124 pulses up to =360 V. The upper 10 pulses are
presumed to be double particles. (There were eight further
pulses with H>480uV that were not recorded.) The
claimed standard deviation for the particles is 0.0059 x.
If the mean diameter is taken to be 0.091 4 from the Dow
standardization, our results give a standard deviation of
0.0054 u. The abscissa at the top shows the particle diam-
eters in angstroms. The smallest observed particle is 690
A. We judge that particles 600 A (0.060 z) in diameter
would still be distinguishable from background noise. [The
noise level in Fig. 3 is higher than in Fig. 2(b) because an
amplifier with higher impedance was used.] One may also
note from the upper abscissa, plotted from Eq. (5), that
the semsitivity to changes in diameter increases with
increasing diameter, specifically, as the square of the diam-
eter, or even more rapidly as the diameter of the sphere
approaches that of the pore.

The average pulse heights for monodisperse polystyrene
spheres of six different sizes at a pressure difference near
zero have been converted to changes of resistance AR and
plotted vs sphere volume in Fig. 4, The diameters of the
particles are shown at the top.” The three curves are plots
of Eq. (21) for pore diameters of (.40, 0.454, and 0.50 g, re-
spectively, and for electrolyte resistivity p= 75 ©-cm., The
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Fi6. 5. Dimensionless plot of the resistive pulses as a function of
particle size, The resistive pulse it normalized in terms of the resist-
anceof a circular cylinder of diameter and length 2, where D is the pore
diameter. The particle diameter {s normalized to the pore diameter.
The data are those of Fig, 4 (filled circles) and for model experiments
by Gregg and Steidley (open circles). The upper theoretical curve is
that of Eq. (21) while the lower is that of Gregg and Steidley, As
expected, the data approach these limits in the extremes of small and
large particles, respectively. #—Present data, c—model experiments
by Gregg and Steidley.

value 0.454 u was determined as the best fit for the data,
As expected, the data points to the right fall below the
theoretical curve for the upper limit of AR, The data best
fit a sermiempirical equation

AR= (4pd*/mD")[1+0.73(d%/ D% ]. (23)

In the introduction to this section we gave numbers for
the pore geometry. We derived these from the data shown
previously. The ratio of pulse heights for 0.091  spheres
at the narrow and wide ends of the pore is about 1.37.
Since AR varies inversely as the fourth power of the pore
diameter for small volumes, the pore diameter at the wide
end is 0.49 . The smaller diameter is on the original sur-
face of the stripped sheet, With a pore resistance of
14.35 M@ and an electrolyte resistivity p of 75 £-cm, this
yields, with the use of Eq. (6), an effective pore length L
of 3.3 1, or a corrected geometrical length of 2.9 u. Attempts
tolocate and measure the diameters of the pore by electron
and scanning electron microscopy were unsuccessful.

In Fig. 5 we plot the experimental data of Fig. 4 in
dimensionless form, along with Eqgs. (21) and (15), as cast
in the same dimensionless coordinates. We also include
data from model measurements by Gregg and Steidley.®
The data, as previously noted, are expected to lie on the
upper curve for small relative volumes and to approach
the Kubitschek-Gregg and Steidley limit or lower curve

for large relative volumes. This trend is clearly seen and,
further, both sets of data are consistent with one another.

DISCUSSION

The data and considerations presented here give further
evidence for the power of the resistive pulse method for
characterizing particles in solution and, in addition, move
the capabilities well into the colloidal size range. The
striking sensitivities of response on particle size sugges:
that this technique can be used to study the adsorption of
large molecules, such as proteins, on solid surfaces. There
is also the possibility of tracing the detailed internal
geometry of a pore by virtue of the D—* dependence of the
signal. As far as we are aware, there is no other technique of
comparable power and sensitivity, As mentioned in the
introduction, the particles are transported by a sum of
electrophoretic and electro-osmotic effects. The effective
mebilities are about 2X10~% cm?/V-sec for the data re-
ported here. It is clear, on general grounds, that the electro-
osmotic effects can be independently measured (by
streaming potential, for instance), and, hence, an absclute
value for electrophoretic mobility ohtained. As indicated
earlier, we propose to make this point the subject of a later
communication.

The question presents itself, what is the ultimate sensi-
tivity of a detector of this type? To approach this problem,
we consider a simple series circuit consisting of a voltage
source, a membrane with a single pore of diameter D and
resistance Ry, and a load resistance R;. If AR, is the
change of resistance of the pore on insertion of a particle of
diameter d<<D, then

ARy = — AE;=F AR,/ (14+a)K,, (24,

where AE,, and AE; are the corresponding voltage changes
across the membrane and load resistance, respectively, £,
is the voltage across the membrane, and ¢=R,,/R;. With
Eqgs. (2) and (5) we obtain

1 En d
(14a) L D

where L is the length of the pore. This voltage is maximized
by malking the load resistance large, i.e., going towards a
condition of constant current where a<<1. The ultimate
limit in resclution is determined by Johnson noise in the
source resistance, which in the case assumed is essentially
equal to the membrane resistance R,. This noise, for the
general case, is given in rms volts by

Ex=2(kTRAfN, (26)

where k is Boltzmann’s constant, T' the absolute tempera-
ture, R the source resistance, and Af the bandwidth of the
measurement. For R=15 M@, Af=10kHz, and T=300 K,
we obtain Ey=47 xV. In practice, the amplifier also adds

AL, =—AE = {23
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noise, which should be added in quadrature to the Johnson
noise.

As an example of what would appear to be feasible in the
near future by current techniques, let us assume R,=15
MQ (corresponding to D=2500 A, L=100004, and
p=73.50-cm), a1 (constant current approximation),
a field gradient of 10* V/cm, and a total noise level of 250
uV from a high impedance amplifier over the membrane.
Then Eq. (25) gives a minimum detectable particle diam-
eter of 250 A, By further developments in technique one
might possibly go to about 150 A by letting D=1000 A,
L=2000 &, reducing p, and increasing the field gradient.
For the short particle transit times implied by this small
thickness and high voltage gradient, the capacitance of the
membrane can become a problem in limiting the effective
bandwidth of the detector. In this instance a negative
capacitance electrometer (e.g., Keithley model 605) would
be helpful.

In addition to the Johnson noise and amplifier noise,
there is 4 noise that depends on the voltage level across the
membrane whose origin we do not understand. From Eq.
(25}, the signal would be increased by increasing the volt-
age across the membrane. One limit, of course, is that of
dielectric breakdown of either the membrane material or
the aqueous channel. This limit is rather high in that the
dielectric strength of polycarbonate,® for instance, is on
the order of 1.4X10° V/cm, while that for pure water
is about 10® V/cm. Another limit, generally lower, is that
occasioned by heating of the liquid column. While this
heating is difficult to calculate exactly, it is simple to
calculate an upper limit by assuming that the membrane
material is perfectly insulating. The problem becomes that
of calculating the temperature distribution along a current
carrying wire under the condition that the surface is
impervious to heat. This problem was solved many years
ago by Kohlrausch!® and results in a parabolic distribution
of temperature with a maxireum at the middle of the pore

AT o= 0.239E,2/8K, (27)

where AT is the temperature increment in degrees centi-
grade over that of the ends, E,, is the voltage across the
membrare, p is the resistivity of the solution, and X is the
thermal conductivity of the solution. It is interesting to
note that this result does not depend on the length of the
pore. If we use® K=1.4,X10"* cal/cm-sec-deg and
p=15 (I-em together with the condition of the experiment
shown in Fig, 2(h) (BEm=1.28 V), the ATy is approxi-
mately 0.35°C. Hence, heating is not presumed to be
“mportant in this case, although small increases in mem-
brane potential gave significant increases in noise level. It
Seems probable that this noise bears some analogy to the
cxcess noise of current carrying semiconductors,’? hut

the unraveling of its cause and possible cure must await
further experimentation,
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Since this manuscript has been completed, an interesting
pair of papers on ‘‘Electrical Sizing of Particles in Suspens-
ions” has been published [N, B. Grover, J. Naaman, S.
Ben-Sasson, F. Doljanksi, and E. Nadav, Biophys. J. 9,
1398, 1415 (1969)]. These workers give careful considera-
tion of the hydrodynamic and electrical conditions at the
entrances to orifices and report measurements on large
{~3u) polystyrene spheres as well as pollen passing
through large apertures (D >100 p). The results of the
measurernents on the artificial spheres verified the Max-
wellian factor of § to better than 29,. For estimation of the
effect of finite particle size, however, the authors use an
adaptation of Maxwell’'s formula which in our notation
becomes

AR= (4pd/wD¥) (14 26%/3D° L+ (24 /3D2L)+ - - ),

where L is the effective length of the pore. This expression
differs from those we propose in the inclusion of I. It
indicates, therefore, that any correction will disappear for a
sufficiently long pore. This point of view is at variance with
ours. Fortunately, in their applications, the correction
amounts to less than 297 and so is not important.
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Generating Cold Gas for Photomuitiplier Cooling

JerRY GERBER
RCA Laborateries, Princeton, New Jersey 48540
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The somewhat obvicus but relatively unused technique for generating cold gas by bubbling room temperature
N directly into liquid nitrogen offers twice the cooling time of the conventional immersed heater or continuous
gas Howthrough systems. An apparatus for implementing the technique is {/lustrated.

ECAUSE of several temperature dependent factors.! TasiE I. LN efficiencies of cold-gas generating systems. mr = Mass
R N .. . L. ? of liquid nitrogen, p=density of N; gas at —195°C, H,p=heat of
including thermionic emission, photosensitivity, and vaporization of LN =47.6 cal/g, Cp=specific heat of N, gas=0.25

. . . . 1, o PP

spectral response, many photomultipliers sensitive in the calig/°C, 220=room temperature— LN temperature (°C).

near infrared give best’ over-all performance at some

g Relative
temperature between 0 and —-30°C. Cold gas, about Generated volume of operating time
—195°C at the generating point to allow for losses, is a System Nrgasat ~195°C or volume
suitable refrigerant for this range: it is commonly generated gnm_ersed h%aterh . /) :':1/;,02 0C (1] g

. : } . s : ontinuous flowthrou n/p) (H mp/ ) k
by a heater immersed in a Dewar of liquid nitrogen (LN}, Bubbling gas g bo /z) 1 +f¥“p/22‘(’)C,,jJ 19

or by flowing dry Ns gas through a coil immersed in LN.
A method of cold gas generation which extracts greater

cooling power from the LN is to bubble N, gas directly

into LN, The thermodyramic calculations summarized in
EXCESS-PRESSURE -RELIEF SPRINGS

R SPRING Table I suggest that the volume of cold gas obtained using
this technique is about twice that of the other methods for
50T a given mass of LN. Thus, the nuisances of too frequent
N, — PRESSURE PLATE : : :
"U" SHAPED LN replenishment and condensables blocking the cooling
,,Wf:':.: ], Foam coil in the continuous flowthrough syvstem are overcome.
Drw s " bred The arrangement shown in the diagram has proven very
S | S convenient in laboratory use. Photomultiplier temperature
is easily adjusted by controlling input gas flow rate, We
|| [ 2LreRLy obtain about 7h continuous operation at —25°C from a

single 2 liter charge of LN: Cold gas flow is through
0.75m of Styrofoam insulated tubing to a large end-on
type photomultiplier (RCA C31000F) housed in 1.5 cm

thick Styrofoam with a 3 mm thick glass window. About
iJ 1000 liters (35 cu ft) of N gas are used per 2 liters of LN. °
C = As with any photomultiplier cooling technique, care should .
v) be taken to insure uniform gradual refrigeration of the
entire tube. ‘
L S e m—— % DEWAR
\-E ———————————————— SHEATH

Fia, 1. T}'Eica.l apparatus for utilizing bubbling gas 1A.T. Young, Appl. Opt., 2, 51 (1963),
technique for generating cold N, gas. *H. Krall (private communication).




