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Fractal dimensions of strange attractors obtained
from the Taylor-Couette experiment
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Laser—DOppler velocimetry, strange attractors are Teconstru
coordinates. To obtain an estimata of the fractal dimensions o
we calculate the correlati
fractal dimension a3 a fun

f these structures jn phase space
on dimension from the teconstructed attractors. We discuss the
ction of Reynolds number and geometry of the experiment.

States of g Taylor-Couette flow. Calculations of fractal
the properties of this dissj
well

Space. The so-called Strange attrac-
tors show sensitive dependence on the initial conditions, j.e. initially adjacent

volumes in phase space shripk and therefore lengths cann
directions, Because of 3 finite boundary of the attractiv
elements are folded at the same time. Thig Stretching,
Process leads to g self-similar structure of the attractor,
Unfortunately, in most experimental situations only one observable is avail-
able (in the Taylor-Couette eXperiment, e.g., the axjal velocity component
v.(1), so the phase space must be reconstructed from the scalar time
series. Takens's delay time coordinates rmethod [2] is the one commoni
used. A vector in the reconstructed space is given by x(4) = (v,{1), v, (t +
o v+ T*(dimg - 1)), where the embedding parameters,
and embedding dimension dimg, must be chosen carefully [3].
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To estimate the fractal dimension of the reconstructed strange attractors in
phase space we calculate the correlation dimension D, [4],

) oo C(R
)= R"> b= i o T )

R is the scaling radius and C(R) is the correlation integral

N N

1 rel 1 dat
(R)=~ — o(R—|lx, —x,||). 2
(R) Nre,.g, N, 2_:1 ( l, = =]} (2)

where o is the Heaviside function, N,,, is the number of points in phase space
and N a sufficiently large number of reference points.

The attractors presented below were obtained from a Taylor—Couette
system, a flow of a viscous fluid between two coaxial cylinders. The inner
cylinder {r, = 12.5 mm) is rotating; the outer cylinder (r, = 25.0 mm) as well as
bottom and top are at rest. The gap length # can be adjusted continuously from
I'=hid=0to I'=48 {(d=r, —r,). The control parameter is the Reynolds
number Re = £2r,d/v, where {2 is the rotation frequency and » the kinematic
viscosity.

2. Experimental results

(a) Period doubling cascade

For very small geometries (0.3 = I' < 0.6) one finds a symmetric two-vortex
flow showing a Hopf bifurcation. In fig. 1 the extrema of this period-one mode
P, are plotted for I'=0.374. At Re =663 a period doubling bifurcation
appears, leading to a period-two mode P,. At Re, = 691 the transition to chaos
occurs. The envelope of the bifurcation diagram grows monotonously when the
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Fig. 1. Bifurcation diagram obtained from plotting consecutive extrema of the time series, while
the Reynolds number is continuously ramped from Re =620 to 730.
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Fig. 2. () Two-dimensional projection of a reconstructed
Re =718, (n) Double-logarithmic plot of the correlation
embedding dimension dim; =1 to 12, The slope of the d
dimension.

strange attractor for Reynolds number
integral versus scaling radius R from
ashed line shows the estimated fractal

Reynolds number s increased up to Re=730, At this point the symmetric
two-vortex flow becomes unstable and an oscillatory asymmetric one-vortex
flow is established [5], which wili not be discussed here. Fig. 2a shows g
feconstructed strange attractor representing the chaotic state for Re =~ 718. The
self-similar structyre is hidden in this plot, because it js g projection from g
high-dimensiona] embedding and the trajectories are covered with noise. Fig.
2b shows the double-logarithmic piot of the correlation integral C(R) versus
radius R for embedding dimensions up to dim_ = 12, For dim; > 7 the slopes
of the curves gre constant for the relevant scaling intervaj yielding a correlation
dimension Dy=472

Calculating the dimensions for the measured control parameter range Re
found a transition to chaos following D, = (Re - Re, )% Very similar to a

continuous phase transition. In fig. 3 the estimates of the correlation dimensjon
and the corresponding

660 5

Re
Fig. 3. Estimates of fractal dimensions of the strange attractors versus Reynolds number.
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Fig. 4. Projection of reconstructed attractors from the quasiperiodic scenario showing a break-up
of a two-torus for Re: 1370, 1443, 1507 and 1553.

(b) Quasiperiodic transition

For larger geometries (I"=7.47) one finds a two-mode state in an eight-
vortex flow that depends on the stabilization of a local GroBe-Jet mode, which
is a local oscillation of the outward flow between two vortices with a very large
amplitude, and an Anti-Jet mode, an oscillation of the inward flow. This
two-mode state shows a transition to chaos at Re, = 1400 illustrated in fig. 4 by
four reconstructed attractors. In fig. 5 the linear increase of the fractal
dimension is given by D, « Re — Re,. Due to noise the calculated values of the
correlation dimeasion for the laminar regime are larger than expected (indi-
cated by the dashed line in fig. 5). This break-up of a two-torus is very similar
to the results of Brandstater and Swinney [6], though we must state that there
is no unique Taylor—Couette attractor but many scenarios have been found [7].

6
| / ’
£ I" I ;
=) ; e
3t a°
olﬁ
2 2 oo to ¢
1 M PR

340 1380 1420 1460 1500
Re

Fig. 5. Estimates of fractal dimensions of the strange attractors versus Reynolds number for the

break-up of a two-torus.
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3. Conclusion
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