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Alla mia famiglia e a Carla,

perchè anche quando non era facile,

loro c’erano. . .





”Che hai fatto in questi anni, Noodles?”

”Sono andato a letto presto!”

Tratto dal film ”C’era una volta in America”,
regia di Sergio Leone, 1984.

”La vera autenticità non sta nell’essere

come si è, ma nel riuscire a somigliare

il più possibile al sogno che ognuno ha

di se stesso.”

Tratto dal film ”Tutto su mia madre”,
regia di Pedro Almodovar, 1999.





Contents

Introduction 1

1 Elements of radiofrequency current drive theory 5

1.1 Kinetic description of wave-particle interaction . . . . . . . . . . 6
1.1.1 Linearized Vlasov equation . . . . . . . . . . . . . . . . . 9
1.1.2 Bounce averaged kinetic equation . . . . . . . . . . . . . 10

1.2 RF Waves Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Weak damping approximation . . . . . . . . . . . . . . . 13
1.2.2 Ray equations . . . . . . . . . . . . . . . . . . . . . . . . 16

2 A general model for describing fluctuations effects on RF cur-

rent drive 19

2.1 Basic assumptions and limitations . . . . . . . . . . . . . . . . . 20
2.2 Toroidal coordinates systems . . . . . . . . . . . . . . . . . . . . 21
2.3 Perturbed magnetic equilibrium . . . . . . . . . . . . . . . . . . 25
2.4 Ray tracing in a perturbed magnetic equilibrium . . . . . . . . . 26

2.4.1 Ray equations . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Parallel index of refraction . . . . . . . . . . . . . . . . . 28
2.4.3 Perpendicular index of refraction . . . . . . . . . . . . . 29
2.4.4 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Current drive calculations in a perturbed magnetic equilibrium . 30

3 Fluctuations processes 33

3.1 Stochastic fluctuations . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.1 Physical characteristics . . . . . . . . . . . . . . . . . . . 33
3.1.2 Non-local description . . . . . . . . . . . . . . . . . . . . 35
3.1.3 Local description . . . . . . . . . . . . . . . . . . . . . . 41
3.1.4 Electron density fluctuations . . . . . . . . . . . . . . . . 45
3.1.5 Magnetic field fluctuations . . . . . . . . . . . . . . . . . 51
3.1.6 Statistical analysis . . . . . . . . . . . . . . . . . . . . . 53

3.2 Magnetic ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.1 Magnetic field ripple in tokamaks . . . . . . . . . . . . . 68

iii



CONTENTS

3.2.2 Circular magnetic field coils . . . . . . . . . . . . . . . . 70

4 Current drive simulations in presence of fluctuations 73

4.1 Cold plasma dispersion model . . . . . . . . . . . . . . . . . . . 73
4.1.1 Dielectric tensor . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.2 Dispersion relation . . . . . . . . . . . . . . . . . . . . . 75
4.1.3 Electrostatic approximation . . . . . . . . . . . . . . . . 76

4.2 Lower Hybrid waves . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 Accessibility condition . . . . . . . . . . . . . . . . . . . 78
4.2.2 Lower Hybrid Current Drive . . . . . . . . . . . . . . . . 79

4.3 Electron Cyclotron waves . . . . . . . . . . . . . . . . . . . . . . 80
4.3.1 Electron Cyclotron Current Drive . . . . . . . . . . . . . 81
4.3.2 Accessibility of the electron cyclotron resonance . . . . . 83

4.4 Effects of equilibrium perturbations on rays trajectories . . . . . 83
4.4.1 JET-like plasma . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.2 Ray trajectories in presence of fluctuations . . . . . . . . 85
4.4.3 Ray trajectories in presence of magnetic ripple . . . . . . 94

4.5 LHCD in an ITER scenario with perturbed equilibrium . . . . . 100
4.6 ECCD in an ITER scenario with perturbed equilibrium . . . . . 108

5 Conclusions and future perspectives 119

A Coordinates systems 123

A.1 System (R,Z, φ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.2 System (r, θ, φ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.3 System (ψ, s, φ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.4 System (ψ, θ, φ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B Derivatives of the equilibrium 133

Bibliography 135

Acknowledgements 139

iv



Introduction

In magnetically confined plasma devices and expecially in tokamak experiments
fluctuations of several equilibrium quantities (density of the species, tempera-
ture, magnetic field) have been detected and measured with various techniques
[1, 2, 3, 4, 5]. The effects of these fluctuations on high frequencies electromag-
netic waves propagation has been extensively studied, principally with the
purpose to develop active diagnostics with laser and microwaves (reflectrome-
try, Thomson scattering) [6, 7, 8]. However, fluctuations of the medium may
affect strongly also the propagation and the absorption of radiofrequency (rf)
waves used to generate toroidal current in non-inductive way (non-inductive
current drive). The effects of plasmas fluctuations on Lower Hybrid waves have
been investigated in several studies [9, 10, 11, 12]. The wave vector of lower hy-
brid waves has been identified to be potentially very sensitive to fluctuations,
consequently the cumulative effects of these small equilibrium perturbations
may affects strongly the wave damping and modify significantly the profiles
of the current generated. More recently, it has been shown that plasma edge
fluctuations in ITER tokamak scenarios can generate a spreading of the Elec-
tron Cyclotron wave beam launched for driving current enough localized for
stabilizing NTM modes in high β regimes [13, 14]. The initial spreading can
be amplified dramatically by the long distance between the mirrors where the
wave enters and the magnetic flux on which the mode is growing, and this can
compromise the stabilization procedure.
The precise estimation of fluctuations effects on propagation and absorption of
radiofrequency waves can thus have a great relevance in the interpretation and
comprehension of data from current drive experiments, which in many cases,
expecially for lower hybrid current drive, are in poor agreement with theo-
retical predictions [15, 16]. Furthermore, an accurate analysis of conditions
in which fluctuations effects are relevant is determinant for the project of effi-
cient rf current drive systems and for the design of operative scenarios in future
tokamak devices (ITER). Radiofrequency current drive modeling in toroidal
plasmas requires the evaluation of the equilibrium distribution function of the
particles, which is solution of the Boltzmann kinetic equation coupled with
Maxwell’s equations governing the evolution of the electromagnetic field in-
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Introduction

duced by the waves [17, 18]. The several time scales present in the plasma can
be divided into two fundamental categories [17]: the fast time scales, corre-
sponding to waves propagation and to electron gyromotion, and the slow time
scales, associated to wave damping, bounced particles motion and collisions
[19]. The equilibrium distribution function evolves in slow time scales and
in order to study the continuative effects of the radiofrequency fields on this
function an average of the Boltzmann kinetic equation on the fast time scales
is performed. The drift kinetic equation governing the evolution of the distri-
bution on the collisional timescales is derived [19]. This equation is solved by
Fokker Planck routines coupled with wave propagation codes which evaluate
the radiofrequency fields by means of fullwave techniques or various asymptotic
methods (raytracing, beamtracing, quasioptics). Fullwave simulations are per-
formed for low frequency waves (essentally ion cyclotron waves with f of the
order of 100MHz), while for high frequency waves like lower hybrid (f of the
order of few GHz) and electron cyclotron (f of the order of 100GHz) calcula-
tions become extremely long and require great computational resources, and
asymptotic methods, which conditions of applicabity are satisfied in most cases
of practical interest, provide very powerfull tools for the solution of Maxwell’s
equation. The aim of this work is to incorporate the fluctuations effects in these
sofisticated numerical tools for calculation of current drive by high frequencies
waves (lower hybrid and electron cyclotron) based on raytracing-Fokker Planck
techniques, preserving in a consistent way the conditions of validity and ap-
plicability of this approach: the WKB approximation, which makes possible
the utilization of raytracing techniques [18], the weak damping limit, which
separates the propagation problem from the absorption [20], and the quasilin-
ear description of wave-particle interaction processes [17, 18]. For this reason,
instead of modeling the interaction of the radiofrequency waves with fluctu-
ations in term of a sequence of scattering processes, as it has been proposed
in many works [9, 11, 12, 13, 14], the effects of the fluctuations are described
by introducing directly time-dependent perturbations of the magnetic equilib-
rium. The fast universal toroidal ray-tracing code C3PO [21] has been modi-
fied to incorporate the effects of equilibrium perturbations on ray trajectories.
The modified raytracing tool is then coupled with the 3-D linearized bounce-
averaged relativistic electron kinetic solver LUKE [22] in order to estimate the
modification of the generated current profiles due to the perturbations. The
approach proposed is general and can be used to describe the effects on high
frequencies waves current drive of all fluctuations which properties preserve
the conditions of validity of raytracing-Fokker Planck modeling techniques of
wave-particle interaction. Fluctuations of all the equilibrium functions (den-
sity of the species, magnetic field, temperature) which satisfy this condition
can be accounted in the propagation and the absorption of waves of various
range of frequencies (lower hybrid and electron cyclotron), without any further
restriction, and preserving the overall structure of the highly benchmarked ex-
isting tools.
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This thesis is organized as follows. In chapter 1 a brief overview of radiofre-
quency current drive theory is given: the wave equation and the bounce-
averaged kinetic equation are introduced and the raytracing technique for
the calculation of the rf fields is illustrated. In chapter 2 the proposed gen-
eral model for studying the fluctuations effects is described: generic time-
dependent perturbation of the equilibrium are introduced and their inclusion
in the raytracing-Fokker Planck routine is discussed in details. In chapter 3
are illustrated two examples of fluctuations processes which can be described
in the framework of this model: drift-like stochastic fluctuations of the elec-
tronic density and of the magnetic field, and toroidal magnetic ripple field,
which can be interpreted as a static perturbation of the magnetic equilibrium.
The physical characteristics of these processes are discussed in details, and
explicit expressions for the perturbations generated by these fluctuations are
derived and explained using some simple examples. In the fourth chapter, after
a brief description of lower hybrid and electron cyclotron characteristics in a
cold plasma and a brief introduction to lower hybrid and electron cyclotron
current drive, some examples of lower hybrid (LHCD) and electron cyclotron
current drive (ECCD) calculations performed considering fluctuations are re-
ported: the perturbations of the ray trajectories are shown using a simple
analytical equilibrium with parameters typical of JET tokamak [21, 23], while
the effects on the current profiles are tested in ITER tokamak scenarios. In the
last chapter, conclusions and future perspectives regarding the thesis work are
summerized. In appendix A the several sets of curvilinear coordinates system
used for describing waves propagation and absorption in thesis work are illus-
trated in details. Finally in appendix B explicit expressions for the equilibrium
derivatives used in modified raytracing equations are reported.
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Chapter 1
Elements of radiofrequency

current drive theory

Generating and driving toroidal current in a non-inductive way is necessary
for a fusion reactor to operate in steady state conditions. Several methods for
non-inductive plasma current drive have been proposed and extensively stud-
ied, both in theory and experiments, one of the most successful is based on
the use of radiofrequency electromagnetic waves of several frequency regimes
(Ion Cyclotron, Lower Hybrid, Electron Cyclotron, Electron Bernstein). These
electromagnetic waves are excited into the plasma by external antennas or mir-
rors and exchange momentum as well as energy with the particles by means of
various wave-particle resonance mechanisms. Using rf waves both plasma heat-
ing and current drive can be obtained. If the population of resonant particles
is accelerated by the radiofrequency field along a particular direction, there is
an unidirectional change in the velocity of resonant particles which generates
a current flowing in the plasma. The equilibrium distribution function of the
particles, initially Maxwellian and determined by the Coulomb collisions, is
then modified and the new distribution function results from the competition
between the acceleration due to the wave and the collisions that tend to re-
establish a Maxwellian distribution.
In this chapter the theoretical issues for modeling this complex physical pro-
cess, known as radiofrequency current drive, are briefly introduced. In the
first section the different time scales involved in the process are illustrated and
discussed in details: the fast scales associated to the wave propagation and the
slow scales (bounce, collisional and wave damping scales) correspondent to the
electron distribution function variation. Only the wave-electron interactions
are considered, the ions dynamics is neglected. The basic evolution equations
of the system are introduced: the Maxwell’s equations coupled with the lin-
earized Vlasov equation describe the fast evolution of the radiofrequency wave
field, while the electron distribution function is given by the solution of the
bounce-averaged relativistic kinetic equation, which is the balance equation
between the diffusion term due to the radiofrequency wave effects and the col-
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1. Elements of radiofrequency current drive theory

lisional operator associated to various collisional processes [17, 18]. The current
induced into the plasma depends by the distribution function, as a consequence
the numerical solution of the kinetic equation is necessary for estimating the
radiofrequency current drive. The radiofrequency diffusion operator depends
explicitely by the electric field induced by the wave, then the bounce-averaged
kinetic equation is coupled with the linearized Maxwell-Vlasov system which
governs the evolution of this field. In the second section the raytracing method
for solving Maxwell’s equations is presented. It is based on WKB approxima-
tion, that implies the reduction of the Maxwell’s equations to a set of ordinary
differential equations, the ray equations, which numerical integration is less
expensive in terms of computational resources. Integrating the ray equations
makes possible to estimate the ray contribution to the total power flow of the
wave and then to evaluate the quasilinear diffusion operator. Once the diffu-
sion operator has been calculated, the kinetic equation can be solved and the
effects of the radiofrequency wave on the electron distribution function can be
estimated.

1.1 Kinetic description of wave-particle inter-

action

The radiofrequency electromagnetic field is damped into the plasma by means
of several Doppler resonant mechanisms and transfers energy and momentum
to the resonant particles. Considering only the damping on the electrons, the
general relativistic wave-particle resonance condition is:

ω − k‖v‖ = n
ωce
γ

n = 0,±1,±2 (1.1)

Where ω is the frequency of the wave, k‖ is the component of the wave vector
parallel to the magnetic field, v‖ is the component of electron velocity parallel
to the magnetic field, ωce = qeB/me is the electron cyclotron frequency and
n is the harmonic number, each different value of n corresponds to a different
damping mechanism, (Landau damping and magnetic pumping correspond to
n = 0, while cyclotron damping to n = 1).
The current induced by the wave is calculated using the relation:

J(X, t) = qe

∫∫∫
vf(X,p, t)d3p (1.2)

where f(X,p, t) is the electron distribution function in the phase space, X is
the position and v is the electron velocity, and p = γv. The electromagnetic
field into the plasma is solution of the Maxwell’s equations:

∇X × E = −∂B
∂t

(1.3)

∇X ×B = µ0ε0
∂E

∂t
+ µ0J (1.4)
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1.1. Kinetic description of wave-particle interaction

where ∇X is the gradient operator in the configurations space. The electron
distribution function f(r,p, t) is solution of the Boltzmann kinetic equation:

∂f

∂t
+ v · ∇Xf + qe(E+ v ×B) · ∇pf =

(
∂f

∂t

)

C

(1.5)

Where∇p is the gradient in the momentum space and (∂f/∂t)C is the Coulomb
collision operator. The Maxwell’s equations and the kinetic equation form a
system of nonlinear coupled differential equations: the distribution function is
solution of the kinetic equation, which presents a nonlinear term dependent
by the electric and magnetic field, then it is necessary to evaluate an expres-
sion for these fields solving the Maxwell’s equations. The total electric and
magnetic field are composed by the equilibrium fields E(X, t) and B(X, t) and

by the oscillating contributions due to the radiofrequency wave, Ẽ(X, t) and

B̃(X, t). Assuming that the rf fields amplitude is small compared to the total

fields amplitude, it is possible to consider Ẽ(X, t) and B̃(X, t) as first order
perturbative corrections of the equilibrium fields:

E = E+ Ẽ (1.6)

B = B+ B̃ (1.7)

(1.8)

The perturbations are assumed to be harmonic:

Ẽ(X, t) =

∫
dω

∫∫∫
d3kẼk,ωe

i(k·X−ωt)

(1.9)

B̃(X, t) =

∫
dω

∫∫∫
d3kB̃k,ωe

i(k·X−ωt) (1.10)

The distribution function and the current are respectively:

f = f + f̃

J = J+ J̃ (1.11)

Where f̃ and J̃ are the perturbations of the equilibrium distribution function
and of the current due to the wave fields. The equilibrium quantities evolve
at time scales much slower than the wave propagation times (of the order of
τω = 2π/ω), this means that during the rf field evolution E,B, f and J do not
vary in time[17, 18]. The collision frequency νc (νee ≈ 1KHz) is much smaller
than the wave frequency ω (ω/2π = 1GHz for LH and ω/2π ≈ 100GHz for
EC), and the gyro-frequency ωce (ωce/2π ≈ 10GHz for γ ≈ 1 ). This means
that the collisions are not enough frequent to affect the rf fields evolution and
the electron gyromotion, and if the equations are referred to the wave or to
the gyromotion time scales, the collisional effects can be neglected.
In tokamak devices the electrons moving in slowly varying magnetic field have
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1. Elements of radiofrequency current drive theory

an adiabatic invariant: their magnetic moment µ. The electrons perpendicular
gyro-motion presents a magnetic potential energy given by the relation:

W⊥ = µB (1.12)

If the magnetic field intensity B varies along the field lines, the electron energy
conservation law, defined as follows:

me

2
v2‖ + µB = E (1.13)

Where v‖ is the electron velocity parallel to the magnetic field, leads to elec-
trons trapping in the field well created by the potential µB: the electrons which
have not enough kinetic energy to escape from the well generated by the mag-
netic potential start to move in closed trapped orbits known as ”banana orbits”,
while the electrons having sufficient velocity to escape from the well (passing
electrons) continue to circulate along their originary trajectories of motion.
The frequency of the electron motion in the closed orbits is the bounce fre-
quency ωb and is small compared to ω and to ωce. The Coulomb collisions
deviate the electrons from their original orbits, but the collision frequency νc
is much smaller than bounce frequency (νee ≈ 1KHz), so the time required by
the collisions to deflect the motion is too long respect to the bouncing period
and the electrons trapped or escaping are able to complete their orbits [17, 22].
In practice:

νc ≪ ωb/2π ≪ ω/2π, ωce/2π (1.14)

Using the periods:
τω, τce ≪ τb ≪ τc (1.15)

As a consequence, four different time scales, corresponding to different physical
processes, are involved in the problem:

• The wave time scale, correspondent to the rf wave dynamics, with char-
acteristic time length τω = 2π/ω;

• The gyromotion time scale, associated with the electron gyromotion,
with characteristic time length τce = 2π/Ωe

• The bounce time scale, associated to the trapped or passing electron
motion along the field lines, with characteristic time length τb = 2π/ωb;

• The collisional time scale with characteristic time length τc = 1/νc;

The wave dynamics can be studied specializing the Maxwell-Boltzmann system
to the wave time scales and deriving the orders zero and one of the perturbative
developing using the expressions (1.8) and (1.11), this procedure is illustrated
in the next subsection and makes possible the linearization of the kinetic equa-
tion. The solution of this equation gives an expression for f̃ in function of f
and of the rf fields, and using this expression into the Faraday’s law is possible

8



1.1. Kinetic description of wave-particle interaction

to obtain a linear constitutive relation depending by the equilibrium distribu-
tion function, which is stationary respect to the fast time scales [17, 18]. The
estimation of the equilibrium distribution function is necessary for calculating
the current coupled to the plasma, as a consequence the low time scales modi-
fication of f due to the rf fields must be considered. These effects are described
by the quasilinear term of the Bounce-averaged Fokker-Planck equation, illus-
trated in subsection 1.1.2, which governs the evolution of f on the slow time
scales. The numerical solution of this equation is essential for all current drive
calculations [17, 18, 22].

1.1.1 Linearized Vlasov equation

Considering the dynamics at the fast time scales, correspondent to the wave
and to the gyromotion, as just discussed, the collisions can be neglected.
The Boltzmann kinetic equation (1.5) in the non-collisional limit becomes the
Vlasov equation:

∂f

∂t
+ v · ∇Xf + qe(E+ v ×B) · ∇pf = 0 (1.16)

The system constituted by the Vlasov and the Maxwell’s equations describes in
a self-consistent way the rf wave dynamics. Using the perturbative expressions
(1.8) and (1.11) the equation (1.16) can be linearized. The solution of the
zero-order Vlasov equation gives the equilibrium distribution function, which
is stationary respect to this fast time scales, in function of the equilibrium
fields:

v · ∇Xf + qe(E+ v ×B) · ∇pf = 0 (1.17)

While the zero-order Ampere’s law is:

∇X ×B = µ0J (1.18)

Where J is the first order moment of the equilibrium distribution function:

J = qe

∫∫∫
vf(X,p, t)d3p (1.19)

The first order kinetic equation is known as the linearized Vlasov equation:

∂f̃

∂t
+ v · ∇pf̃ + qe(E+ v ×B) · ∇pf̃ = −qe(Ẽ+ v × B̃) · ∇pf (1.20)

This equation describes the evolution of the perturbation of the distribution
function f̃ generated by the rf fields Ẽ and B̃, which are solution of the first
order Maxwell’s equations:

∇X × Ẽ = −∂B̃
∂t

(1.21)
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1. Elements of radiofrequency current drive theory

∇X × B̃ = µ0ε0
∂Ẽ

∂t
+ µ0J̃ (1.22)

The linearized Vlasov equation can be solved with the method of the charac-
teristics, integrating along the unperturbed particle orbits, this procedure is
illustrated and discussed in details in several manuals of plasma waves kinetic
theory [17, 18], and it gives an expression of f̃ in function of ∇pf̃ and of the
equilibrium fields:

f̃(X,p, t) = −qe
∫ t

−∞

dt′[E(X′, t′) + v ×B(X′, t′)] · ∇pf (1.23)

Injecting this expression in the general definition of current, and assuming
that the response of the plasma to the wave fields is linear (J ∝ E) [17], the
following linear constitutive relation is derived:

J̃ = qe

∫∫∫
vf̃(X,p, t)d3p ≡ S(f) · Ẽ (1.24)

Where S(f) is the conductivity tensor, related to the dielectric tensor by the
relation:

K(f) = I+
i

ε0ω
S(f) (1.25)

The integration along the unperturbed orbits gives an explicit expression for
the conductivity tensor or for the diectric tensor in function of the equilibrium
distribution function f , these tensors describe the response of the plasma to
the sollecitations due to the rf waves electromagnetic fields. Inserting the
constitutive relation (1.24) into the Ampere’s law (1.21) and injecting this
equation in the Faraday’s law (1.22), yields to the wave equation:

∇X ×∇X × Ẽ+ µ0S(f) ·
∂Ẽ

∂t
+ ε0µ0

∂2Ẽ

∂t2
= 0 (1.26)

Solving this equation makes possible to calculate the electric field induced by
the rf wave. The rf wave dynamics is completely described by the linearized
Maxwell-Vlasov system, which solution in closed form gives explicit expressions
for the rf waves fields and for the perturbations of the current and of the
distribution function associated with the wave. This system is referred to the
waves and to the gyromotion time scales, the equilibrium distribution function
is stationary respect to these scales, and infact it is obtained in function of the
equilibrium fields as solution of the zero-order steady state Vlasov equation
1.17, but considering the effects of the wave fields on the slow time scales,
correspondent to the bounce and collisional periods, is necessary for evaluating
f in a correct and consistent way.

1.1.2 Bounce averaged kinetic equation

In order to derive an equation adequate for describing the evolution of the
equilibrium distribution function on the slow time scales, which correspond
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1.1. Kinetic description of wave-particle interaction

to the bounce and the collisional times, the Boltzmann kinetic equation (1.5)
must be averaged over the wave and the gyromotion time scales. This implies
an averaging operation over a period τ = 2π/ω with ω rf waves frequency, and
over the azimuthal angle in the momentum space ϕ (in the momentum space
the cylindrical coordinates system (p‖, p⊥, ϕ) where p‖ is the component of the
momentum parallel to the equilibrium magnetic field and p⊥ is used). The av-
erage over ϕ is performed because a dependence of the equilibrium distribution
function by the gyro-angle would imply a time variation on scales tipical of the
gyromotion, of the order τce = 2π/ωce. Introducing the perturbative expres-
sions for the total fields (1.8) and for the total distribution function (1.11) into
the equation (1.5) and performing the wave- and gyro-averaging, the resulting
equation is:

∂f

∂t
+ vgc · ∇Xf = ε(f) + C(f) +Q(f) (1.27)

Where vgc is the electron guiding center velocity, the operator ε(f) describes
the action of the ohmic electric field on the distribution function, C(f) is the
Coulomb collision operator averaged over the fast time scales and Q(f) is the
quasilinear operator which describes the time-averaged effects of the nonlinear
term of the kinetic equation on f ; in other words, it represents the effects of
the radiofrequency wave fields on the distribution function averaged on the
wave and on the gyromotion time scale [17, 18, 22]:

C(f) =

∫ 2π/ω

0

dt

∫ 2π

0

dϕ

(
∂f

∂t

)

C

(1.28)

Q(f) = −
∫ 2π/ω

0

dt

∫ 2π

0

dϕ
[
qe

(
Ẽ+ v × B̃

)
· ∇pf̃

]
(1.29)

ε(f) = −
∫ 2π/ω

0

dt

∫ 2π

0

dϕqeE · ∇pf (1.30)

The quasilinear operator can be expressed in the flux conservative form as a
diffusion operator in the momentum space[17, 22]:

Q(f) = −∇p · (DQL · ∇pf) (1.31)

The diffusion tensor DQL is function of
∥∥∥Ẽ

∥∥∥
2

, then the wave- and gyro-averaged

kinetic equation (1.27) is nonlinearly coupled with the wave equation (1.26)
and the estimation of the rf electric field is necessary to evaluate the quasilin-
ear operator. The gyro-averaged equilibrium distribution function f(r,p, t) in
plasmas with axisymmetric configuration is function of four coordinates: two
in the momentum space (p‖, p⊥), and two in the configuration space, which
using the flux coordinates system described in section 2.2 are (ψ, θ), while the
dependence by the toroidal angle φ is dropped for effect of the axisymmetry.
The time dependence is referred to the bounce and the collisional time scales.
Remembering the discussion at the beginning of the section, in the low col-
lisional limit the collisions frequency is much less than the bounce frequency,

11



1. Elements of radiofrequency current drive theory

then the time required by the collisions to deflect the electrons orbits is too
long respect to the bounce period and the electrons trajectories along the mag-
netic field lines are not perturbed significantly, as a consequence it is possible
to perform the averaging of the kinetic equation over a bounce period, the
result is the bounce averaged kinetic equation:

∂
{
f
}

∂t
=

{
ε(f)

}
+

{
C(f)

}
+

{
Q(f)

}
(1.32)

The bounce average of the drift term present in the gyro-averaged vanishes
and the bounce averaged distribution function is uniform along the field line
and independent by the poloidal angle θ, then

{
f
}
=

{
f
}
(ψ, p‖, p⊥, t) and the

equation 1.32 is a 3-D partial differential equation which time dependence is
referred to the collisions time scale. The numerical solution of this equation
makes possible the estimation of the continuative effects of the rf induced fields
on the equilibrium distribution function.

1.2 RF Waves Dynamics

Since the quasilinear diffusion tensor DQL is function of
∥∥∥Ẽ

∥∥∥
2

, the kinetic equa-

tion (1.32) is nonlinearly coupled with the wave equation (1.26), and radiofre-
quency current drive calculations require the evaluation of the waves induced
field Ẽ. The calculation of this field using full wave methods is a complex
problem, and requires very powerful computational resources, however, if the
wavelength and the wave period are small compared to the typical time and
space variations scale length of the medium, (propagation in a slowly varying
medium), the waves propagation and absorption can be described using the
geometrical optics techniques, based on the asymptotic solution of the equa-
tion (1.26), obtained by the eikonal ansatz. Remembering that the equilibrium
varies at very slow time scales respect to the waves fields the plasma is assumed
to be stationary respect to the wave, and the general conditions of applicability
of the eikonal approximation in a slowly non-homogeneous plasma state that
the wavelength λ must be much shorter than the equilibrium scale length L:

λ≪ L (1.33)

And that the wave characteristics also varies slowly:

‖∇k‖2 ≫ ‖∇k‖ (1.34)

These two conditions imply that the wave properties valid for a uniform plasma
(Fourier analysis, group velocity, local conductivity tensor) can be applied lo-
cally also in a slowly non-homogeneous plasma, and that the wave vector k is a
slowly varying function of the space. If the transverse size of the radiofrequency
beam d satisfies the inequality:

λ≪ d (1.35)

12



1.2. RF Waves Dynamics

The beam can be represented also as a quasi-plane wave and the electric field
can be expressed as a wave packet [19]. In practice, if:

λ≪ d≪ L (1.36)

Both the eikonal approximation than the quasi-plane wave representation are
valid and the radiofrequency electric field Ẽ can be expressed as follows:

Ẽ(X, t) = Ẽk,ω(X, t)e
i(k(X)·X−ωt) (1.37)

The wave vector k is much larger than the variations of the amplitude Ẽk,ω in
the direction perpendicular to the group velocity, in this case the spectral width
in this direction is very small, diffraction effects are negligibles and raytracing
techniques can be used to study the evolution of k and Ẽk,ω.

1.2.1 Weak damping approximation

The weak damping approximation assumes that the electric field amplitude
varies slowly in space and in time in the direction of the group velocity com-
pared respectively to the wavelength and to the wave period [18], in this case
the following relations are satisfied:

∥∥∥∇XẼk,ω · vG
∥∥∥

∥∥∥Ẽk,ω · vG
∥∥∥

≪ ‖k‖ (1.38)

∥∥∥∂Ẽk,ω/∂t · vG
∥∥∥

∥∥∥Ẽk,ω · vG
∥∥∥

≪ ω (1.39)

Assuming the validity of the weak damping approximation and using the ex-
pression (1.37) for the rf field, the wave equation (1.26) becomes 1[19]:

Dk,ω · Ẽk,ω = i∇kDk,ω : ∇XẼk,ω (1.40)

Where Dk,ω is the dispersion tensor in the Fourier space, defined as follows:

Dk,ω = NN−N2
I+ i

Sk,ω(f)

ε0ω
(1.41)

Sk,ω is the Fourier transform of the conductivity tensor, and it is still a function
of the equilibrium distribution function f , while N is the wave refractive index,
given by the expression:

N ≡ c

ω
k (1.42)

1the double dot product is defined as: ∇k ·
(
Dk,ω · ∇XẼk,ω

)
= ∇kDk,ω : ∇XẼk,ω +

∇k

(
∇XẼk,ω

)
: Dk,ω = ∇kDk,ω : ∇XẼk,ω

13



1. Elements of radiofrequency current drive theory

The susceptibility tensor of the plasma Xk,ω and then the dielectric tensor Kk,ω

are defined in function of Sk,ω:

Xk,ω(f) =
i

ε0ω
Sk,ω(f) (1.43)

Kk,ω(f) = I+ Xk,ω(f) (1.44)

The dielectric tensor represents the response of the plasma to the electromag-
netic waves sollecitations, and the dispersion tensor can be rewritten as follows:

Dk,ω = NN−N2
I+Kk,ω(f) (1.45)

Considering a cylindrical symmetry respect to the magnetic field axis b =
B/B, the components of the refractive index parallel and perpendicular to b

are defined respectively:

N‖ = N · b (1.46)

N⊥ = ‖N× b‖ (1.47)

The component N‖ and the wave frequency ω are assumed to be given real
quantities (only propagative modes are considered), while the unknown quan-
tity N⊥ presents in the general case a real and an imaginary part:

N⊥ = N⊥r + iN⊥i (1.48)

As a consequence, the dispersion tensor Dk,ω may be decomposed as follows:

Dk,ω = D
H
k,ω + iDA

k,ω (1.49)

Where D
H
k,ω and D

A
k,ω are respectively the hermitian and the antihermitian

part, given by the expressions:

D
H
k,ω =

Dk,ω + D
∗
k,ω

2
(1.50)

D
A
k,ω =

Dk,ω − D
∗
k,ω

2i
(1.51)

In the weak damping limit, the condition |DA
ij| ≪ |DH

ij | must be satisfied,
where D

H
ij and D

A
ij are respectively the elements of the hermitian and of the

antihermitian part of the dispersion tensor, and this conditions implies that
|N⊥i| ≪ |N⊥r|. Taking δ ≃ |DA

ij|/|DH
ij | ≪ 1 as a small expansion parameter, the

perpendicular index of refraction, the dispersion tensor and the polarization
vectors ẽk,ω = Ẽk,ω/||Ẽk,ω|| can be expanded in powers of δ [19, 20]:

N⊥ = N⊥0 +N⊥1 + · · ·
ẽk,ω = ẽk,ω,0 + ẽk,ω,1 + · · · (1.52)

Dk,ω = Dk,ω (N⊥0) +N⊥1
∂Dk,ω

∂N⊥r

∣∣∣∣∣
N⊥=N⊥0

+ · · ·
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1.2. RF Waves Dynamics

The Taylor expansion of Dk,ω is possible because Dk,ω(N⊥) is analytical. Sub-
stituing these expressions in the (1.40), the wave equation can be ordered in
powers of δ. At the zero-order the following equation is obtained:

Dk,ω (N⊥0) · ẽk,ω,0 = 0 (1.53)

This equation possesses non-trivial solutions if and only if the determinant of
the dispersion tensor DH

k,ω is zero, this condition defines the dispersion relation:

D(N⊥0, N‖, ω) ≡ detDH
k,ω (N⊥0) = 0 (1.54)

This scalar equation gives the local electromagnetic eigenmodes that can be
excited independently in an homogeneous and stationary plasma. It can be
solved for N⊥0(N‖, ω), and considering only propagative modes N⊥0 = N⊥r0

is real, since D
H
k,ω is hermitian. At the first order the equation for the wave

amplitude in direction of the beam is derived [19]:

vG · ∇X

∥∥∥Ẽk,ω

∥∥∥+
ẽ∗k,ω,0 · DA

k,ω · ẽk,ω,0
∂
(
ẽ∗k,ω,0 · DH

k,ω · ẽk,ω,0
)
/∂ω

∥∥∥Ẽk,ω

∥∥∥ = 0 (1.55)

This equation describes the energy transfer between the wave and the resonant
particles (in this case between the wave and the electrons). The propagative
characteristics of the waves are fully described by the equation (1.53), while
the damping due to the interaction with the resonant particles is governed by
the (1.55). Since N⊥0 is real, the hermitian part of the dispersion tensor DH

k,ω

depends by the principal value of the momentum space integral which deter-
mines the conductivity tensor Sk,ω and the dielectric tensor Kk,ω, while the
contribution of the resonant particles is contained in the antihermitian part
D
A
k,ω, which depends by the antihermitian dielectric tensor K

A
k,ω. As a con-

sequence, for studying waves propagation the resonant part of the dispersion
tensor is ignored and D

H
k,ω is almost dependent by the bulk of the distribution

function, which is Maxwellian:

D
H
k,ω(f) ≃ D

H
k,ω(fM) (1.56)

The waves propagation can thus be studied under the limitative condition
(1.36) using the raytracing techniques and assuming D

H
k,ω(f) = D

H
k,ω(fM). In

the next subsection the ray equations are derived applying the characteristics
method to the general expression of the dispersion equation (1.54).
The antihermitian part of the dispersion tensor D

A
k,ω(f), instead, depends

strongly by the variations of the equilibrium distribution function f gener-
ated by the interaction between the radiofrequency waves and the resonant
electrons, consequently, for estimating the wave amplitude, the evaluation of
the equilibrium distribution function by means of the numerical solution of the
bounce-averaged kinetic equation (1.32) is required. The global consistency of
this scheme is ensured by the equivalence between the energy lost by the wave,

15



1. Elements of radiofrequency current drive theory

which damping is described by the amplitude equation (1.55), and the energy
gained by the resonant electrons, described by the quasilinear diffusion oper-
ator (1.31), equivalently, between the power dissipated by the wave, given by
the relation:

P =
ε0ω

2

∥∥∥Ẽk,ω

∥∥∥
2 (

ẽ∗k,ω · DA
k,ω · ẽk,ω

)
(1.57)

and the power gained by the electrons.

1.2.2 Ray equations

Assuming that the conditions of applicability (1.36) are satisfied, the prop-
agative characteristics of the radiofrequency waves can be studied solving the
equation (1.53) with the raytracing technique. The zero-order real perpendic-
ular refractive index can be determined in function of N‖ and ω solving the
dispersion relation (1.54). Remembering that the hermitian part of the disper-
sion tensor is mostly determined by the bulk of the distribution function, it is
assumed that DH

k,ω(f) = D
H
k,ω(fM), consequentely the susceptibility tensor XH

k,ω

and the dielectric tensor KH
k,ω can be expressed in function of the following non-

dimensional parameters: the refractive index N, the thermal velocity normal-
ized to the speed of the light βTα = vTα/c where vTα =

√
kTα/mα, the ratios

ωpα = ωpα/ω and ωcα = ωcα/ω of the plasma frequency ωpα =
√
q2αnα/ε0mα

and of the cyclotron frequency ωcα = qαB/mα to the wave frequency ω. The
dispersion tensor DH

k,ω can be rewritten as follows:

D
H
k,ω = NN−N2

I+K
H
k,ω(N, βTα, ωpα, ωcα) (1.58)

In this case, remembering that in the weak damping limit |N⊥i| ≪ |N⊥r| and
assuming the zero-order approximation N⊥r = N⊥r0, the dispersion relation
(1.54) becomes:

D(N‖, N⊥r, βTα, ωpα, ωcα) ≡ detDH
k,ω(N‖, N⊥r, βTα, ωpα, ωcα) = 0 (1.59)

From here in this subsection N and k = ωN/c will be referred to the zero-
order real solution of this dispersion relation, which components are N‖ and
N⊥ = N⊥r = N⊥r0.
The ray equations in a plasma slowly varying in space and time are defined
by the condition D(X, t,k, ω) = 0 along the ray trajectory, where D is the
dispersion relation (1.59). Therefore, at each point along the ray trajectory
the following condition must be satisfied:

δD =
∂D
∂X

· δX+
∂D
∂t
δt+

∂D
∂k

· δk+
∂D
∂ω

δω = 0 (1.60)

This condition can be rewritten as follows:

δD =
∂D
∂X

· Ẋδτ + ∂D
∂t
ṫδτ +

∂D
∂k

· k̇δτ + ∂D
∂ω

ω̇δτ = 0 (1.61)
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1.2. RF Waves Dynamics

Where τ is the curvilinear adimensional coordinate which represents the dis-
tance along the ray trajectory, and Ẋ = dX/dτ, k̇ = dk/dτ, ṫ = dt/dτ, ω̇ =
dω/dτ . If the wave vector k is expressed in coordinates that are canonically
conjugate to those of the position vector X, the following relation is verified:

{Xi, kj} = δij (1.62)

Where {· · · } is the Poisson bracket, δij is the Kronecker delta symbol, Xi and
kj the coordinates of the vectors X and k respectively. Since the frequency ω
and the time t are also canonically conjugate, the dispersion relation can be
seen as the ”hamiltonian”of the ray, infact it is a function of a set of canonically
conjugate coordinates and its value is constant along the trajectory, and the
analogy with the conservation of the mechanical energy along the particle
trajectories in classical mechanics [24] is total. Considering the Hamiltonian
nature of D, the following equations can be derived:

dX

dτ
=

∂D
∂k

dk

dτ
= −∂D

∂X
(1.63)

dt

dτ
= −∂D

∂ω
dω

dτ
=

∂D
∂t

(1.64)

(1.65)

Using these equations it is straightforward to see that the condition (1.61) is
automatically satisfied. Consequentely these four equations are the ray equa-
tions. From these system an expression for the group velocity can be defined:

dX

dt
= −∂D

∂k
/
∂D
∂ω

= vG (1.66)

The group velocity indicates the direction of the energy flow, and from this
expression it is shown that the ray is directed along vG. If the plasma equilib-
rium is constant in time or if it evolves at time scales very slow respect to the
wave propagation, the dispersion relation is independent by the time, and the
wave frequency ω is constant along the ray trajectory. In this case the time t
is considered the evolution variable of the ray dynamics and the ray equations
become:

dX

dt
= −∂D

∂k
/
∂D
∂ω

dk

dt
=

∂D
∂X

/
∂D
∂ω

(1.67)

This is the form of the ray equations commonly found in literature and de-
scribes the time evolution of the ray trajectory and of the wave vector along
this trajectory [18].

17





Chapter 2
A general model for describing

fluctuations effects on RF

current drive

In this chapter a general model for describing the effects of the fluctuations
on radiofrequency current drive in toroidal plasmas is presented. These effects
are described by introducing a time-dependent perturbation of the magnetic
equilibrium and then of the quantities dependent by the equilibrium, such
as the field B, the densities of the various species nα and the temperatures
Tα. The raytracing equations integrated by the fast 3D routine C3PO are
modified including these perturbations and the effects of the fluctuations on
ray trajectories are incorporated. Coupling the modified raytracing routine
with the Fokker-Planck 3D code LUKE makes it possible to estimate the effects
of the fluctuations on the power absorption profiles and on current drive. This
model is general and can be used to study different kinds of fluctuations and
their effects on RF waves of different ranges of frequencies (it is applicable to all
high frequency waves), the only limitation is the preservation of the conditions
of applicability of the raytracing Fokker-Planck description of the wave-particle
interactions: the WKB approximation, the weak damping assumption and
the quasilinear hypothesis. These conditions are well satisfied by fluctuations
processes relevated in several tokamak experiments [1, 2] and are discussed
in details in the first section. In the second section three alternative sets of
coordinates appropriate to describe the waves propagation and absorption in
toroidal geometry taking into account the magnetic equilibrium configuration
are introduced. In the third section the general representation of the perturbed
magnetic equilibrium is presented and in 2.4 the modified ray equations are
illustrated. In section 2.5 the inclusion of the perturbations effects into the
Fokker-Planck routine for current drive calculations is discussed, taking into
account the possible random nature of the fluctuations processes.

19



2. A general model for describing fluctuations effects on RF current drive

2.1 Basic assumptions and limitations

In chapter 1, the different time scales involved in current drive calculations have
been introduced and discussed. The radiofrequency wave period τω = 2π/ω
is much shorter than the bounce period τb = 2π/ωb which is much shorter
than the collisional time scale, τc = 1/νc, required by collisions to deflect with
cumulative effects an electron from its orbit by a significant angle:

τω ≪ τb ≪ τc (2.1)

Using the frequencies:
νc ≪ ωb/2π ≪ ω/2π (2.2)

These inequalities are well satisfied for parameters of tokamaks like JET or
Tore Supra (see chapter 1), and represent the limit of validity of the quasi-
linear theory of wave-particle interaction and of applicability of the bounce
averaging procedure to the kinetic equation. Only fluctuations with charac-
teristics that preserve the quasilinear assumptions and the bounce averaging
procedure, incorporated in the relations (2.1) and (2.2), can be described by
this model and then accounted in current drive calculations. Consequently
fluctuations which respect this constraint have frequency f̃ = ω̃/2π smaller
than both RF wave frequency and bounce frequency, and time scales much
slower than the wave field and the electron orbits. This means that the wave
evolves much more rapidly and the effects of the fluctuations can be studied as
small perturbations of the magnetic equilibrium: the wave field, represented by
the rays, propagates into a plasma with a perturbed equilibrium configuration,
but the time evolution of the fluctuations is slow and during the evolution of
the ray the perturbation does not change. In practice, respect to the wave
dynamics time scale, the perturbations have a stationary behaviour, the fluc-
tuations structure remains constant while the rays propagate, and it change
only after a time much longer than the wave period. On the other side, the
fluctuations period is much longer than the bounce period, as a consequence
trapped or circulating particles can move on their orbits and cover them several
times without being deviate in a significative way for effect of the equilibrium
perturbations, and the bounce-averaging procedure of the kinetic equation can
be performed also including the equilibrium perturbations. These conditions
may be incorporated into the relations (2.1) and (2.2):

τω ≪ τb ≪ τc, τ̃ (2.3)

νc, ω̃/2π ≪ ωb/2π ≪ ω/2π (2.4)

These inequalities include both the validity of the quasilinear bounce-averaged
formulation of kinetic wave-particle interaction and the limit to the fluctua-
tions frequency ranges that can be studied using this approach, and are well
satisfied by the characteristics of the fluctuations investigated experimentally
in many tokamak experiments, [1, 2], which frequencies are in the interval
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2.2. Toroidal coordinates systems

1KHz < f̃ < 1MHz. Most of them can then be decribed by the proposed
model, preserving the structure of the raytracing Fokker-Planck routines com-
monly used for current drive calculations. Within this framework, for study-
ing the fluctuations effects on the wave dynamics, the ray equations must be
modified by including the corrections due to the perturbations, but remain
independent by the time, since, as we have discussed, the spatial profile of this
corrections does not change in a temporal interval comparable to the propaga-
tion scales. The temporal evolution of the fluctuations, instead, must be taken
into account to estimate the effects of the perturbation on current profiles in a
consistent way: the equilibrium electron distribution function, f0, solution of
the Fokker-Planck equation, varies in slow time scales, of the order of the colli-
sional period, at these time scales the equilibrium perturbations evolve, so the
time variation of the perturbations is not negligible compared to the quasilinear
integration time step, and must be considered in the calculation of the current.

2.2 Toroidal coordinates systems

There are several sets of curvilinear coordinates appropriate for describing the
toroidal plasma configuration, the most commonly used are:

• The toroidal coordinates system (R,Z, φ), illustrated in Fig.(2.1), where
R is the distance from the axis of the torus, Z is the distance along
the axis, and φ is the toroidal angle. This is an orthogonal system of
coordinates and the basis vector (R̂, Ẑ, φ̂) is defined in appendix A.

• The poloidal coordinates system (r, θ, φ), illustrated in Fig.(2.2), where
the radial coordinate r and the poloidal angle θ are referred to a toroidal
axis of constant position Rp, Zp, which is the plasma magnetic axis, cor-
responding to the position of an extremum of the poloidal magnetic flux
ψ (we commonly choose ψ = 0). Also the coordinates (r, θ, φ) are or-
thogonal and the basis (r̂, θ̂, φ̂) is defined in appendix A.

• The flux coordinates system (ψ, s, φ), illustrated in Fig.(2.3), is the nat-
ural system for decribing the particle confined dynamics preserving the
characteristics of the toroidal geometry. Infact, it takes into account
both the properties of the toroidal symmetry than the structure of the
magnetic configuration, based on the nested flux surfaces correspondent
to different values of the poloidal magnetic flux function ψ [25]. This is
an orthogonal system of coordinates corresponding to the basis vector
(ψ̂, ŝ, φ̂) (see appendix A).The versor ψ̂ is orthogonal to the flux surface,
while ŝ is parallel and it is on the poloidal plane. The coordinate s is
the distance along the magnetic field lines, and its evolution is assumed
counter-clockwise from the horizontal midplane, the origin is taken at
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2. A general model for describing fluctuations effects on RF current drive

the position on minimum B-field amplitute within a flux surface:

B(ψ, s ≡ 0) = mins {B(ψ, s)} = B0(ψ) (2.5)

All the quantities with the subscript 0 are evaluated at the position of
minimum B-field on a given flux surface.

• The set of coordinates (ψ, θ, φ) is an alternative to (ψ, s, φ) particularly
convenient from a numerical point of view. This set decribes the equilib-
rium peculiarities and at the same time simplifies the numerical imple-
mentation, because makes possible the interpolation of the equilibrium
using techniques based on the Fourier series, starting by a (ψ, θ) grid
where θ is a periodic variable independent by ψ, on the other side, it
the versors ψ̂ and θ̂ are not orthogonal, and this makes the computa-
tion of the metric tensor more complicated (see appendix A). It is also
possible to define a monotonic flux function ρ(ψ) correspondent to the
normalized radius on the horizontal Low Field Side (LFS) mid-plane.
In an axisymmetric system using the functions R(ψ, θ) and Z(ψ, θ), ρ
becomes:

ρ(ψ) =
R(ψ, 0)−Rp

Rmax −Rp

(2.6)

With 0 < ρ < 1 and where Rmax = R(ψmax, 0) is the value of R on the
separatrix.

The system of coordinates (ρ, θ, φ) is particularly suitable for studying the ray
propagation in an axisymmetric plasma with an arbitrary equilibrium. As just
explained, ρ(ψ) is a monotonic function of the poloidal magnetic flux coordi-
nate ψ, which is defined by the following general expression for the equilibrium
magnetic field [22, 25]:

B = I(ψ)∇φ+∇φ×∇ψ (2.7)

Where I(ψ) is a function related to the toroidal magnetic field, which account
for the plasma para- or diamagnetism. Using the set of coordinates (ρ, θ, φ)
the equilibrium magnetic field becomes [21]:

B = σBBT φ̂+ σIBP ŝ (2.8)

Where σB is the sign of BP and σI is the sign of the toroidal current. The
poloidal componentBP = |I(ψ)|/R and the toroidal componentBT = ‖∇ψ‖ /R
are assumed to be positive. In this system the covariant coordinates of the ra-
dio frequency wave vector are:

ki = (kρ,m, n) (2.9)

And the contravariant basis of the system s:

ei =
(
‖∇ρ‖ ρ̂, θ̂

r
,
φ̂

R

)
(2.10)
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The expression for the wave vector is then:

k = kie
i = kρ ‖∇ρ‖ ρ̂+

m

r
θ̂ +

n

R
φ̂ (2.11)

In the next sections k is expressed in this form and all the quantities introduced
are functions of (ρ, θ, φ). It is important to say that for a magnetic equilibrium
with non-circular and concentric flux surfaces ρ̂ and r̂ are not coincident, and
the angle α between the two versors is defined such that [21]:

ρ̂ · r̂ = cosα

ρ̂ · θ̂ = − sinα

ŝ · r̂ = sinα

ŝ · θ̂ = cosα (2.12)

From these expression ρ̂ and ŝ can be expressed in function of r̂ and θ̂ or
equivalently r̂ and θ̂ in function of ρ̂ and ŝ, and the following conditions of
orthogonality are demonstrated [21]:

ρ̂ · ŝ = 0

r̂ · θ̂ = 0 (2.13)

Remembering that the toroidal versor φ̂ is perpendicular to the poloidal plane,
two different systems of orthogonal coordinates are defined: (r, θ, φ) and (ρ, s, φ),
while (ρ, θ, φ), as just discussed, are not orthogonal.

Figure 2.1: Coordinates system (R,Z, φ).
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2. A general model for describing fluctuations effects on RF current drive

Figure 2.2: Coordinates system (r, θ, φ).

Figure 2.3: Coordinates system (ψ, s, φ).
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2.3. Perturbed magnetic equilibrium

2.3 Perturbed magnetic equilibrium

The fluctuations are represented by small perturbations of the magnetic equi-
librium: any physical quantity g dependent by the equilibrium, which could be
the density of a species nα, the temperature Tα or a component of the magnetic
field B, may be expressed in the following form:

g(ρ, θ, φ, t) = g(ρ, θ) + g̃(ρ, θ, φ, t) (2.14)

Where (ρ, θ, φ) is the set of toroidal flux coordinates illustrated in details in sec-
tion (2.2) with ρ generalized radial coordinate, θ poloidal angle and φ toroidal
angle, and t is the time. The term g(ρ, θ) corresponds to the unperturbed
equilibrium while g̃(ρ, θ, φ, t) is the contribution due to the fluctuations. The
unperturbed magnetic configuration is axisymmetric, while this axisymmetry
is violated for effect of the fluctuations, as a consequence a dependence by the
toroidal angle φ is introduced into the term correspondent to the perturba-
tions, and including this correction the magnetic equilibrium becomes three-
dimensional. The total perturbation is given by the sum of the contributions
corresponding to several fluctuations mechanisms:

g̃(ρ, θ, φ, t) =
∑

i

g̃i(ρ, θ, φ, t) (2.15)

Each contribution g̃i is the sum of a finite set of oscillations with frequency ω̃
and wave vector k̃, then it can be expressed using the general harmonic form:

g̃i(ρ, θ, φ, t) =
∑

k̃

g̃0
i,k̃
(ρ, θ) cosΦ

k̃
(ρ, θ, φ, t) (2.16)

The general expression for the phase is:

Φ
k̃
= Φ

k̃0 + ΦG
k̃
(ρ, θ, φ) + ω̃(k̃)t (2.17)

Where Φ
k̃0 is the initial value, Φ

G
k̃
is the geometrical contribution to the phase,

which depends by the physical characteristics of the fluctuations, and ω(k̃) is
the perturbations dispersion relation. The explicit expression for the phase
and also for the amplitude g̃0

i,k̃
(ρ, θ) of the perturbation depends by the type

of fluctuation.
Using this general approach, the perturbations of all quantitites related to the
magnetic equilibrium can be easily expressed taking into account the contri-
bution of each fluctuation source:

ñα(ρ, θ, φ, t) =
∑

i

∑

k̃

ñ0
α,i,k̃

(ρ, θ) cosΦ
k̃
(ρ, θ, φ, t)

T̃α(ρ, θ, φ, t) =
∑

i

∑

k̃

T̃ 0
α,i,k̃

(ρ, θ) cosΦ
k̃
(ρ, θ, φ, t)

B̃ρ,s,φ(ρ, θ, φ, t) =
∑

i

∑

k̃

B̃0
ρ,s,φ,i,k̃

(ρ, θ) cosΦ
k̃
(ρ, θ, φ, t) (2.18)
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2. A general model for describing fluctuations effects on RF current drive

Considering the effects of these perturbations on the ray propagation and the
consequences of the equilibrium variations on the current deposition profiles,
it is possible to study and to quantify the effects of several types of plasma
fluctuations on radiofrequency current drive. It is important to remember that,
as just discussed in the first section of the chapter, the time dependence of the
perturbations, included in the phase, is referred only to the slow time scales,
and should be considered only in the quasilinear evaluation of the current
profiles, not in the study of the ray propagation, which evolves at fast waves
time scales.

2.4 Ray tracing in a perturbed magnetic equi-

librium

Since the fluctuations do not evolve in time scales comparable with the wave
period, the term of the phase (2.17) dependent by the time is neglected in the
integration of the ray equations, and the equilibrium perturbations introduced
in this section for studying the effects of the fluctuations on the ray trajectories
are time independent. According to that and assuming the wave frequency ω
constant into the plasma, the dispersion relation is independent by the time,
and the ray equations have the same general expression introduced in chapter
1:

dX

dt
= −∂D

∂k
/
∂D
∂ω

dk

dt
=

∂D
∂X

/
∂D
∂ω

(2.19)

Where X is the position of the ray and k is the wave vector. Remembering the
discussion about the weak damping limit in chapter 1, the wave propagation
can be studied considering only the hermitian part of the dispersion tensor,
the dispersion relation, introduced in section 1.2.1, is defined by the following
expression:

D(N, ω) = D(N‖, N⊥r, βTα, ωpα, ωcα) (2.20)

And then:

D(N‖, N⊥r, βTα, ωpα, ωcα) ≡ detDH
k,ω(N‖, N⊥r, βTα, ωpα, ωcα) (2.21)

Where N‖ and N⊥ are the components of the refractive index N = ck/ω
respect to the magnetic field and and ωcα, ωpα, βTα are the functions of the
equilibrium quantities introduced in chapter 1. From here in this section N⊥

will refer to the zero-order real solution of the dispersion relation N⊥r = N⊥r0

(see subsections 1.2.1 and 1.2.2), and the dispersion relation D to the hermitian
tensor DH

k,ω.
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2.4. Ray tracing in a perturbed magnetic equilibrium

The 8-dimensional vector Y which represents the generic phase-space is:

Y =




X

k

t
ω


 (2.22)

For solving the ray equations (2.19), it is necessary to evaluate explicitely the
derivatives of the dispersion relation (2.21) respect to the components of Y:

∂N‖

∂Y
;

∂N⊥

∂Y
;

∂Xα
ij

∂Y
; (2.23)

The derivatives of the susceptibility tensor components, since the dispersion
relation is assumed to be independent by the time, are given by the general
expression:

∂Xα
ij

∂Y
=

∂Xα
ij

∂N‖

∂N‖

∂Y
+
∂Xα

ij

∂N⊥

∂N⊥

∂Y
+

+
∂Xα

ij

∂βTα

∂βTα
∂Y

+
∂Xα

ij

∂ωpα

∂ωpα
∂Y

+
∂Xα

ij

∂ωcα

∂ωcα
∂Y

(2.24)

The explicit form of the tensor X
α
k,ω(N‖, N⊥, βTα, ωpα, ωcα) depends by the

plasma dispersion model (cold,warm,hot), but the quantitiesN‖, N⊥, βTα, ωpα, ωcα
and then their derivatives respect to Y are functions of the magnetic equilib-
rium and of the coordinates system. As a consequence, in order to study the
effects of the fluctuations on the ray propagation, the corrections due to the
equilibrium perturbations (2.18) must be included into the expressions for the
components of the refractive index and for the derivatives (2.23).

2.4.1 Ray equations

In the canonical flux coordinates system (ρ, θ, φ) and (kρ,m, n), the ray equa-
tions (2.19) becomes [21]:

dρ

dt
= − ∂D

∂kρ
/
∂D
∂ω

dθ

dt
= −∂D

∂m
/
∂D
∂ω

(2.25)

dφ

dt
= −∂D

∂n
/
∂D
∂ω

And

dkρ
dt

=
∂D
∂ρ

/
∂D
∂ω

dm

dt
=

∂D
∂θ

/
∂D
∂ω

(2.26)

dn

dt
=

∂D
∂φ

/
∂D
∂ω
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2. A general model for describing fluctuations effects on RF current drive

Without considering fluctuations, the toroidal magnetic configuration is ax-
isymmetric, the dispersion relation is independent by the toroidal angle φ and
the toroidal component of the wave vector n is constant along the ray trajec-
tory, this axisymmetry is violated introducing the equilibrium parturbations,
then taking into account the fluctuations, ∂D/∂φ 6= 0 and all the six equations
(2.25) and (2.26) must be solved.

2.4.2 Parallel index of refraction

The component of the refractive index parallel to the magnetic field is related
to the parallel wave vector of the radiofrequency wave by the relation: N‖ =
ck‖/ω. k‖ is defined by the scalar product:

k‖ = k · b (2.27)

The magnetic field versor b = B/B must be calculated taking into account the
total magnetic field, composed by the equilibrium field for a quiescent plasma
and the perturbation generated by the fluctuations, according to the general
expression (2.14), and neglecting the temporal dependence of the fluctuating
term:

B(ρ, θ, φ) = B(ρ, θ) + B̃(ρ, θ, φ) (2.28)

The perturbation may be represented in term of components using the set of
orthogonal cordinates (ρ, s, φ):

B̃ = B̃ρρ̂+ B̃sŝ+ B̃φφ̂ (2.29)

Then the total magnetic field becomes:

B = B̃ρρ̂+ (σIBP + B̃s)ŝ+ (σBBT + B̃φ)φ̂ (2.30)

And the versor b:
b = R̃ρ̂+ (P + P̃ )ŝ+ (T + T̃ )φ̂ (2.31)

Where:

P = σI
BP

B
; T = σB

BT

B
; (2.32)

And:

R̃ =
B̃ρ

B
; P̃ =

B̃s

B
; T̃ =

B̃φ

B
; (2.33)

Using this expression for the magnetic field versor and remembering the ex-
pression for the wave vector introduced in section (2.2), the parallel component
of the radiofrequency wave vector becomes:

k‖ = kρ ‖∇ρ‖ R̃ +
m

r
[(P + P̃ ) cosα− R̃ sinα] +

n

R
(T + T̃ ) (2.34)

Where α is the angle between the versors ρ̂ and r̂ (see appendix A). It is
important to note that neglecting the perturbations due to the fluctuating
magnetic field, this expression is exactly equal to the general expression for k‖
in a quiescent plasma [21].
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2.4. Ray tracing in a perturbed magnetic equilibrium

2.4.3 Perpendicular index of refraction

The perpendicular index of refraction of the wave, in total analogy with the
parallel, is given by: N⊥ = ck⊥/ω. The perpendicular component of the wave
vector may be calculated, knowing k2 and k⊥, using the relation:

k2⊥ = k2 − k2‖ (2.35)

Where the square modulus of the wave vector in our coordinates system is:

k2 = k2ρ ‖∇ρ‖2 − 2kρ ‖∇ρ‖
m

r
sinα +

m2

r2
+
n2

R2
(2.36)

Substituing the expression for k‖ into the 2.35, the result is:

k2⊥ =
(
kρ ‖∇ρ‖ −

m

r
sinα

)2

+
(
T
m

r
cosα− P

n

R

)2

−

−
[
kρ ‖∇ρ‖ R̃ +

m

r

(
P̃ cosα− R̃ sinα

)
+
n

R
T̃
]2

− (2.37)

− 2
(
P
m

r
cosα + T

n

R

)[
kρ ‖∇ρ‖ R̃ +

m

r

(
P̃ cosα− R̃ sinα

) n
R
T̃
]

Also in this case, neglecting the contributions associated with the perturba-
tions, the expression for k⊥ in the general axisymmetric geometry [21] is re-
covered.

2.4.4 Derivatives

Using the explicit expressions (2.34) and (2.37), it is possible to calculate the
derivatives of the refractive index N = ck/ω required in the ray equations (see
relation (2.24)):

∂N‖

∂Y
;
∂N⊥

∂Y
; (2.38)

Using the toroidal conjugate coordinates, the components of the phase-space
are: Y = (ρ, θ, φ, kρ,m, n, t, ω). Remembering that the wave frequency is
assumed to be constant in time and the equilibrium is independent by t, the
derivatives of N‖ are:

∂N‖

∂ω
;
∂N‖

∂ρ
;
∂N‖

∂θ
;
∂N‖

∂φ
;
∂N‖

∂kρ
;
∂N‖

∂m
;
∂N‖

∂n
; (2.39)

While the derivatives of N⊥ are:

∂N⊥

∂ω
;
∂N⊥

∂ρ
;
∂N⊥

∂θ
;
∂N⊥

∂φ
;
∂N⊥

∂kρ
;
∂N⊥

∂m
;
∂N⊥

∂n
; (2.40)

It is important to note that if the perturbations are neglected, and as a con-
sequence the equilibrium configuration is axisymmetric, the refractive index is
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2. A general model for describing fluctuations effects on RF current drive

independent by the toroidal angle, and ∂N‖/∂φ, ∂N⊥/∂φ = 0. These deriva-
tives are computed explicitely using the expressions (2.34) and (2.36) into the
definition N = kc/ω and into the relation:

∂N⊥

∂Y
=

1

N⊥

(
∂N2

∂Y
− 2N‖

∂N2
‖

∂Y

)
(2.41)

For evaluating the derivatives of βTα, ωpα and ωcα respect to Y, it is impor-
tant to remember that these functions are by definition of the equilibrium
independent by the wave vector k, such that:

∂βTα
∂k

=
ωpα
∂k

=
ωcα
∂k

= 0 (2.42)

Remembering that fluctuations time scales are much slower than the wave time
scales and that ω is constant, βTα, ωpα and ωcα can be considered independent
by t:

∂βTα
∂t

=
ωpα
∂t

=
ωcα
∂t

= 0 (2.43)

βTα is independent by the frequency, then:

∂βTα
∂ω

= 0 (2.44)

Considering the fluctuations effects the species temperature Tα, the species
density nα and the magnetic field B, become:

Tα(ρ, θ, φ) = T α(ρ) + T̃α(ρ, θ, φ) (2.45)

nα(ρ, θ, φ) = nα(ρ) + ñα(ρ, θ, φ) (2.46)

B(ρ, θ, φ) = B(ρ, θ) + B̃(ρ, θ, φ) (2.47)

Since βTα is function of Tα, ωpα of nα and ωcα of the modulus of the magnetic
field, the derivatives which must be calculated are:

∂βTα
∂ρ

;
∂βTα
∂θ

;
∂βTα
∂φ

;
∂ωpα
∂ρ

;
∂ωpα
∂θ

;
∂ωpα
∂φ

;
∂ωpα
∂ω

;
∂ωcα
∂ρ

;
∂ωcα
∂θ

;
∂ωcα
∂φ

;
∂ωcα
∂ω

; (2.48)

Explicit expressions for these equilibrium derivatives are reported in appendix
B. It is important to remark the fundamental differencies respect to the ax-
isymmetric case without fluctuations, where all derivatives respect to φ are zero
and the temperature and the density are functions only of the flux coordinate
ρ, such that ∂βTα/∂θ, ∂ωpα/∂θ = 0.

2.5 Current drive calculations in a perturbed

magnetic equilibrium

The modifications associated with the perturbations of the magnetic equilib-
rium have been introduced into the ray equations (2.25) and (2.26). The ra-
diofrequency wave is described by a set of rays, which trajectories are calculated
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2.5. Current drive calculations in a perturbed magnetic equilibrium

accounting the perturbations of the equilibrium generated by the fluctuations,
these perturbations can induce refractions of the ray trajectory and variation
of the wave vector which can affect strongly the wave damping evolution and
spatial localization of the power deposition. The evaluation of the elements of
the quasilinear diffusion tensor DQL is required for the solution of the bounce-
averaged kinetic equation and for the calculation of the current induced into

the plasma. The elements of DQL are functions of
∥∥∥Ẽk,ω

∥∥∥
2

, then they can be

calculated in function of the power dissipated by the wave, given by the ex-
pression (1.57). The damping along each ray j is estimated solving the single
ray power flow equation:

dPj(ψ)

dV (ψ)
= P abs

j (ψ) (2.49)

Where dV (ψ) is the element of volume crossed by the ray, Pj(ψ) is the power
dissipated by the ray and P abs

j is the contribution of the ray j to the total
power absorbed by the resonant electrons, the (2.49) is expression of the global
convergence condition introduced in section 1.2.1 in term of a balance equation
[19]. The power gained by the electrons P abs

j , as it can be observed by the
relation (1.57), depends by the antihermitian part of the dispersion tensor
Dk,ω, which is function of the equilibrium distribution function f , solution
of the bounce-averaged kinetic equation (1.32). In practice, the evaluation
of the quasilinear diffusion tensor requires the solution of the ray power flow
equation, but on the other side the power gained by the electrons for effect
of the quasilinear diffusion, P abs

j,QL, is function of f , which evaluation through
the solution of the kinetic equation requires the estimation of DQL. In order
to ensure the self-consistency of the scheme, the equation (??) is firstly solved
assuming f = fM and P abs

j = P abs
j,lin; starting by the linear damping calculated

with the Maxwellian distribution function, the quasilinear diffusion tensor is
estimated on each flux surface considering the contribution of each ray:

D
QL(ψ,p) =

∑

j

D
QL
j (Pj(ψ), ψ,p) (2.50)

Once this tensor is evaluated, the bounce averaged kinetic equation (1.32) is
integrated on the slow timescales of the order of the collisional period τc by
means of the 3-D Fokker-Planck solver LUKE [22], the equilibrium distribu-
tion function and the current J , connected to f by the relation (1.19), are
calculated. The power damped on the electrons P abs

j,QL is estimated using the

new f and is used in the power flow equation for the successive iteration. The
ray power flow equation (2.49) is coupled to the ray equations modified with
the equilibrium perturbations generated by the fluctuations, and then also
the quasilinear diffusion tensor is calculated considering the perturbed equi-
librium. The equilibrium perturbations generated by the fluctuations do not
evolve in fast time scales which characterize the wave propagation (τ = 2π/ω),
while they changes in the slow timescales comparable with the collisional, as
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2. A general model for describing fluctuations effects on RF current drive

it is shown by the inequality (2.3). This means that in the calculation of the
quasilinear wave damping the evolution in time of the fluctuations processes
cannot be neglected as it is in the study of the propagation. Since the time
evolution of the fluctuations is relevant only in the wave damping, the term
of the perturbations phase (2.17) dependent by the time can be expressed in
function of the quasilinear time step ∆τ used in the integration of the kinetic
equation. This time step is a constant quantity, because in the integration a
temporal uniform grid is assumed [22]. The fluctuations phase given by the
(2.17) becomes:

Φ
k̃
= Φ

k̃0 + ΦG
k̃
(ρ, θ, φ) + ω̃(k̃)∆τ (2.51)

In practice an uniform grid which point are tn = n∆τ is defined, and at each
instant tn = n∆τ the phase value evolves in time, while remains constant in
the intervals between two successive points of the grid. In section 2.1 it has
been explained that the frequencies and the period of fluctuations processes
considered must satisfy the inequalities:

τω ≪ τb ≪ τc, τ̃ (2.52)

νc, ω̃/2π ≪ ωb/2π ≪ ω/2π (2.53)

Consequently, it can be studied fluctuations processes with τ̃ and ω̃ such that:

τω ≪ τb ≪ τ̃ ≪ τc (2.54)

νc ≪ ω̃/2π ≪ ωb/2π ≪ ω/2π (2.55)

Or, alternatively:
τω ≪ τb ≪ τc ≪ τ̃ (2.56)

ω̃/2π ≪ νc ≪ ωb/2π ≪ ω/2π (2.57)

The equilibrium distribution function varies in the slow time scales of the order
of the collisional period τc, then the quasilinear integration time step used by
the Fokker-Planck solver in the integration of the kinetic equation is major
or equal to τc. Since some fluctuations processes, as it is shown by relation
(2.54), have a time scale shorter than the collisional times, the quasilinear
diffusion operator is estimated by means of an averaging procedure of the
ray, by launching N rays each one carrying the fraction of the total injected
power Pray = Prf/N in the integration time ∆τ/N , such that the total power
is conserved and the spreading of the ray in this time interval is accounted.
The effects of perturbations which time scales are slower than the collisional
times, satisfying the (2.56), can be easily estimated by choosing an integration
time step ∆τ ≈ τ̃ and evolving the value of the fluctuations phase at each
t = tn = n∆τ corresponding to a point of the temporal grid used in the
integration of the kinetic equation.
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Chapter 3
Fluctuations processes

In this chapter two examples of fluctuations which effects on radiofrequency
current drive can be described using the proposed model are introduced: ran-
dom fluctuations of the electron density and of the magnetic field which wave
vector lies on the flux surfaces (in the case of electron density these fluctuations
can be considered as a consequence of the Electron Drift Waves), and toroidal
magnetic ripple, which is described as a static perturbation of the magnetic
equilibrium. The physical characteristics of these processes are illustrated in
details, with particular attention to the random properties of the stochastic
fluctuations.

3.1 Stochastic fluctuations

Fluctuations of density, temperature, and magnetic field have been relevated
and studied experimentally in modern tokamaks experiments with several di-
agnostic techniques [1, 2, 3, 26, 27, 28]. These fluctuations, generated by
drift waves in the case of density, are of stochastical nature and can modify
the accessibility conditions of the radio frequency waves and the induced cur-
rent profiles. The fluctuations frequency f̃ = ω̃/2π belongs to the interval

10KHz < f̃ < 200KHz [2], so it satisfies perfectly the condition of applicabil-
ity of the model (2.2), and these fluctuations can be described as stochastic
perturbations of the magnetic equilibrium, using explicit expressions for the
perturbed fields (2.18) appropriate to modelize the physical characteristics of
these phenomena.

3.1.1 Physical characteristics

The modulus of the fluctuations wave vector k̃ varies from values of the order
of k̃ ≈ 0.5m−1, to values of the order of k̃ ≈ 103m−1 [2, 3, 27]. From the

experiments it has been verified the relation λ̃‖ ≃ (0.1−0.3)qRp, [26, 28], where

q is the safety factor and Rp the plasma major radius, so taking λ̃‖ ≃ 0.2qRp,
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3. Fluctuations processes

we have k̃‖ ≃ 2π/ (0.2qRp). In the table 3.1 are reported the values of k̃‖ and

λ̃‖ calculated for JET, Tore Supra, FTU and ITER tokamaks assuming q = qa
and using the following parameters:

• for JET qa = 4; Rp = 2.96m;

• for Tore Supra qa = 5; Rp = 2.46m;

• for FTU qa = 7; Rp = 0.935m;

• for ITER qa = 7; Rp = 6.2m;

JET Tore Supra FTU ITER

k̃‖ 2.7m−1 2.6m−1 4.8m−1 0.7m−1

λ̃‖ 2.4m 2.5m 1.3m 3.7m

Table 3.1: Values of k̃‖ and λ̃‖ calculated using parameters of JET, TORE
SUPRA, FTU and ITER tokamaks

The parallel wave length of the radio frequency wave λ‖ is related to the
parallel refractive index N‖ by the relation λ‖ = c/fN‖. Using typical val-
ues corresponding to rf systems used on the Tore Supra and JET tokamaks,
fLH = 3.7GHz and N‖LH ≃ 2, λ‖LH is about 4 · 10−2m for the LH wave,
while it is λ‖EC ≃ 1.3 · 10−2m for the Electron Cyclotron (EC) wave with
fEC = 110GHz and N‖EC ≃ 0.2. Considering both LH than EC waves, and
comparing the values of the parallel wave length and wave vector with the
values reported in the table, the following relation is verified:

λ̃‖ ≫ λ‖ (3.1)

And then:
k̃‖ ≪ k‖ (3.2)

As a consequence, the component k̃‖ can be neglected and k̃ can be approxi-

mated to k̃⊥:
k̃‖ ≈ 0; k̃ ≈ k̃⊥; (3.3)

Density fluctuations in tokamak plasmas are in general due to drift waves,
[9, 11, 10], the drift dynamics lies on the flux surfaces, then the nested flux
surface configuration determined by the values of ψ or ρ(ψ) is not modified by

these oscillations and the wave vector k̃ is also located on the flux surfaces.
Since k̃ ≈ k̃⊥, the oscillations direction is orthogonal to the magnetic field
lines. From here in this thesis, the drift waves are considered as the prototype
of stochastic perturbation process, and also fluctuations of the temperature
and of the magnetic field are assumed to lie on the flux surfaces.
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3.1. Stochastic fluctuations

The general expression for the equilibrium perturbations g̃i associated to this
kind of fluctuations is:

g̃i(ρ, θ, φ, t) =
∑

k̃⊥

g̃0
i,k̃⊥

(ρ, θ) cosΦk̃⊥
(ρ, θ, φ, t) (3.4)

Explicit expressions for the phase Φk̃⊥
(ρ, θ, φ, t) and for the amplitude g̃0

i,k̃⊥
(ρ, θ),

appropriate for describing the drift waves characteristics and the stochastic
nature of the fluctuations, are derived in the next subsection following two
different approaches: the first is a non-local description of the perturbation
represented by an harmonic Fourier sum which preserves the periodicity of the
oscillations, the second consists in a local approximation based on the eikonal
expression of the geometrical phase ΦG

k̃⊥
, valid for high values of k̃⊥.

3.1.2 Non-local description

The fluctuations are generated by several kind of modes which take place into
the plasma (in general MHD modes), these modes are non-local phenomena,
then the equilibrium perturbations associated are also of non-local type. The
perturbations generated by the drift waves are phenomena lying on the flux
surfaces, which direction of oscillation is orthogonal to the magnetic field lines.
The periodicity in space of these oscillations implies that the fluctuations field
lines, perpendicular to the magnetic field lines, are also closed (see Fig.(3.1)).
The magnetic field versor, remembering the expression (2.31), is:

b = P ŝ+ T φ̂ (3.5)

The perturbations are directed along the versor b⊥ = B⊥/B, which lies on the
flux surfaces and is orthogonal to b:

b⊥ = −T ŝ+ Pφ̂ (3.6)

The infinitesimal lengths dl‖ and dl⊥, calculated respectively along the mag-
netic and the fluctuations field lines are defined as:

dl‖ = dX · b (3.7)

dl⊥ = dX · b⊥ (3.8)

In the coordinates system (ρ, θ, φ) the position vector X (see Appendix A) is
given by the expression:

X = RpR̂ + ZpẐ + r(ρ, θ)r̂ (3.9)

The infinitesimal vector dX is then [22]:

dX =
∂X

∂ρ
dρ+

∂X

∂θ
dθ +

∂X

∂φ
dφ

=
∂r

∂ρ
r̂dρ+

(∂r
∂θ
r̂ + rθ̂

)
dθ +Rφ̂dφ (3.10)
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3. Fluctuations processes

Evaluating the scalar products, and neglecting the derivatives respect to the
radial flux coordinate because the lines are located on the surfaces ρ = const,
dl‖ and dl⊥ become:

dl‖ =

(
∂r

∂θ
sinα + r cosα

)
Pdθ +RTdφ (3.11)

dl⊥ = −
(
∂r

∂θ
sinα + r cosα

)
Tdθ +RPdφ (3.12)

The infinitesimal length elememts along the poloidal direction θ̂ and the toroidal
direction φ̂ are [25]:

dlθ =
r

cosα
dθ (3.13)

dlφ = Rdφ (3.14)

The ratio between these two infinitesimal distances in direction parallel and
perpendicular to the field lines, consistently with the expressions (3.5) and
(3.6) is:

(
dlθ
dlφ

)

‖

=
P

T
(3.15)

(
dlθ
dlφ

)

⊥

= −T
P

(3.16)

From these expressions it is possible to obtain the relationships between the
infinitesimal poloidal angle dθ and the infinitesimal toroidal angle dφ along b

and b⊥:

(
dφ

dθ

)

‖

=
T

P

r

R cosα
(3.17)

(
dφ

dθ

)

⊥

= −P
T

r

R cosα
(3.18)

Substituing these relations into the expressions for dl‖ and dl⊥ the final result
is:

dl‖ =

(
1

r

∂r

∂θ
sinα +

P 2 cos2 α + T 2

P 2 cos2 α

)
rPdθ (3.19)

dl⊥ = −
(
1

r

∂r

∂θ
sinα +

T 2 cos2 α + P 2

T 2 cos2 α

)
rTdθ (3.20)

The length of the magnetic field lines L‖ and of the fluctuations field lines L⊥

are constant on a given flux surface, (all the field lines have the same length at
ρ = const). Since both magnetic field lines than fluctuations lines are closed,
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3.1. Stochastic fluctuations

L‖ and L⊥ can be easily calculated by integrating dl‖ and dl⊥ between 0 and
2π:

L‖ =

∫ 2π

0

dl‖ =

∫ 2π

0

(
1

r

∂r

∂θ
sinα +

P 2 cos2 α + T 2

P 2 cos2 α

)
rPdθ (3.21)

L⊥ =

∫ 2π

0

dl⊥ = −
∫ 2π

0

(
1

r

∂r

∂θ
sinα +

T 2 cos2 α + P 2

T 2 cos2 α

)
rTdθ (3.22)

The lengths L‖ = L‖(ρ) and L‖ = L⊥(ρ) are function only of the radial flux
coordinate ρ, and the expression (3.22) makes it possible to evaluate the length
of the fluctuations field line on each flux surface. The distance l⊥ between the
origin of the fluctuation field lines posted in θ = 0 and the point on the line
correspondent to an angle θ, is given by the expression:

l⊥ =

∫ θ

0

dl⊥ = −
∫ θ

0

(
1

r

∂r

∂θ
sinα +

T 2 cos2 α + P 2

T 2 cos2 α

)
rTdθ′ (3.23)

On a given flux surface all the fluctuations field lines have the same length L⊥,
and the distance l⊥ can be calculated on each field line: the extremes of l⊥
are the intersections between a determinated fluctuations field line and the two
orthogonal magnetic field lines passing from these points, the distance between
the intersections of the same two magnetic field lines with another arbitrary
fluctuations field line is always equal to l⊥, for each fluctuations line, as it is
shown in Fig.(3.1).

Figure 3.1: Magnetic field lines and fluctuations field lines on a given flux surfaces: The
magnetic field lines are reported in black, while the oscillations direction of the fluctuations
is given by the red lines orthogonal to b. The distance l⊥ between the origin and an
arbitrary point on the fluctuations field lines can be calculated on each line, infact all the
blue path shown in the figure are equivalent. In the plot it is used a circular and concentric
equilibrium representation (ρ = r/ap) with Tore Supra tokamak parameters: plasma minor
radius ap = 0.8m, plasma major radius Rp = 2.46m, on-axis magnetic field BT0 = 3.9T. It
has been chosen the most extern flux surface correspondent to ρ = 1.
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3. Fluctuations processes

Fluctuations phase

The general expression for the equilibrium perturbation due to drift-like pro-
cesses (3.4) must be specialized in order to describe the random nature of
these fluctuations, the illustrated spatial periodic structure based on closed
field lines orthogonal to the magnetic field and the non-locality of the pertur-
bations. The perpendicular wave vector of the fluctuations k̃⊥ is assumed to be
an integer multiple of the quantity 2π/L⊥ = 2π/λ̃ where L⊥ = λ̃ is in practice
the perturbations wavelength:

k̃⊥ =
2πj

L⊥

j = 1, 2 · · · (3.24)

This choice for the expression of k̃⊥ preserves the periodicity of the oscillation
such that the fluctuations are periodic in space with a period equal to 2π/L⊥

[29]. The geometrical contribution to the phase of a determinate oscillation j
is:

ΦG
j = βj =

2πj

L⊥

l⊥ (3.25)

Where β is the angle subtended by the chord of length l⊥ along the fluctuations
field line of length L⊥, defined by the relation:

2π

L⊥

=
β

l⊥
⇒ β =

2π

L⊥

l⊥ (3.26)

It is important to remark that l⊥ and then the angle β must be defined by
preserving the possibility of calculating this distance on each equivalent fluc-
tuations field line. Since the fluctuations are processes of stochastic nature,
the initial value of the phase of the oscillation corresponding to a determinate
value of the index j is a uniformly distributed random variable, Φj0 = ϕ̃j.
The drift waves dispersion relation is given by the relation:

ω̃(k̃) = vD · k = vDk̃⊥ (3.27)

Where vD is the drift wave velocity, which direction is perpendicular to the
magnetic field. Substituing k̃⊥ = 2πj/L⊥ into this equation the result is:

ω̃j =
2πj

L⊥

vD (3.28)

Remembering that the time variation of the total phase is associated to the
slow scales characteristics of the electron distribution function evolution, it is
assumed that the time-dependent term of the phase depends by the quasi-
linear integration time step ∆τ . The expression for the total phase of the
perturbation becomes:

Φj =

(
2πj

L⊥

l⊥ + ϕ̃j −
2πj

L⊥

vD∆τ

)
(3.29)
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3.1. Stochastic fluctuations

Using this expression for the phase, the equilibrium perturbation g̃i is finally
exprimed in term of Fourier series which preserve both the periodicity than
the non-locality of the oscillations [29]:

g̃i =
N∑

j=1

g̃0i,j cos

(
2πj

L⊥

l⊥ + ϕ̃j −
2πj

L⊥

vD∆τ

)
(3.30)

It is important to note that the value of the geometrical term of the phase is
constant along the magnetic field lines, because the length l⊥ does not evolve
in direction parallel to the magnetic field (see Fig.(3.1)), the drift wave velocity
is also assumed to be constant, as a consequence a perturbation of given am-
plitude is constant along the magnetic field lines (the magnetic field lines are
iso-perturbation contours), and its value is determined by the random com-
ponent of the phase. In Fig.(3.2) an illustrative example with Tore Supra
tokamak parameters is reported: on a given flux surface, the iso-fluctuations
lines parallel to the unperturbed magnetic field lines are reported using the
blue colormap, each line corresponds to a value of the perturbation deter-
mined only by the random phase, the graduation of the color depends by the
intensity of the fluctuations, and goes from the darkest lines corresponding to
highest values, to the clearest corresponding to lowest. A single fluctuations
field line perpendicular to the iso-perturbation lines is reported in red.

Figure 3.2: Iso-pertubation lines on a given flux surface: the iso-perturbation contours of a
generic perturbation of given amplitude, coincident with the magnetic field lines, are plotted
using the blu colormap, each line corresponds to a value of the perturbation determined only
by the random phase, the graduation of the color depends by the intensity of the fluctuations,
and goes from the darkest lines correspond to highest values, to the clearest corresponding
to the lowest. A single fluctuations field line perpendicular to the iso-perturbation lines is
reported in red. In the plot is used a circular and concentric equilibrium representation
(ρ = r/ap) with Tore Supra tokamak parameters: plasma minor radius ap = 0.8m, plasma
major radius Rp = 2.46m, on-axis magnetic field BT0 = 3.9T. It has been chosen the most
extern flux surface correspondent to ρ = 1.
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3. Fluctuations processes

Fluctuations amplitude

The explicit expression for the amplitude of the drift-like fluctuations is directly
connected to the autocorrelation of the periodic perturbation represented by
the (3.30). The autocorrelation in space of the periodic signal g̃i, neglecting
the time-dependent term of the phase is calculated as follows:

R(l′⊥) =
1

L⊥

∫ L⊥/2

−L⊥/2

g̃i(l⊥)g̃i(l⊥ + l′⊥)dl⊥ =

=
1

L⊥

∫ L⊥/2

−L⊥/2

[
N∑

n=1

g̃0i,n cos

(
2πn

L⊥

l⊥ + ϕ̃n

)][
N∑

j=1

g̃0i,j cos

(
2πj

L⊥

(l⊥ + l′⊥) + ϕ̃j

)]
dl⊥ =

=
N∑

j=1

(g̃0i,j)
2

2
cos

(
2πj

L⊥

l′⊥

)
(3.31)

The autocorrelation of g̃i can be also defined as the Fourier transform of the
spectral distribution Sg(k̃⊥), in this case, there is a descrete set of possible

values for the perpendicular wave vector k̃⊥ = 2πj/L⊥, as a consequence the
spectrum can be approximated to the descrete grid of values Sg,j and R(l′⊥)
become:

R(l′⊥) =
N∑

j=1

Sg,je
i 2πj

L
⊥

l′
⊥ (3.32)

Considering only one single oscillation correnspondent to a given value of the
index j, R(l′⊥) is:

R(l′⊥) =
(g̃0i,j)

2

2
cos

(
2πj

L⊥

l′⊥

)
= Sg,je

i 2πj

L
⊥

l′
⊥ (3.33)

For l′⊥ = 0 the following equality is derived:

R(0) =
(g̃0i,j)

2

2
= Sg,j (3.34)

Then the amplitute g̃0i,j of the oscillation corresponding to a certain value of j
is given by the expression:

g̃0i,j =
√

2Sg,j (3.35)

This expression, derived from the definition of autocorrelation of a periodic
signal and from the Fourier transform of the spectrum, is absolutely general
and it can be used for describing each kind of perturbation of any equilibrium
function (nα,B, Tα) induced by a drift-like process, without any restriction or
condition regarding the fluctuations spectrum Sg.
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3.1. Stochastic fluctuations

3.1.3 Local description

The spectrum and the relative fluctuations level g̃/g have been studied and
measured locally in several tokamaks experiments [1, 2, 3, 4, 5]. In order to
incorporate into the model the local characteristics of the fluctuations, a local
description of the equilibrium perturbations based on the eikonal represen-
tation of the phase is presented. Since it is based on the eikonal approach,
this local formulation is a good approximation of the general non-local model
for high values of the fluctuations wave vector k̃⊥. It is important to note
that the local description implies the lack of the periodicity in space of the
perturbations respect to the global representation.

Fluctuations wave vector

The fluctuations wave vector in the local approximation is expressed using the
canonically conjugate coordinates (ρ, θ, φ) and (kρ,m, n). Introducing the co-

variant components (k̃ρ, m̃, ñ) and remembering the contravariant basis (2.10),

the fluctuations wave vector k̃ is given by the general expression:

k̃ = k̃ρ ‖∇ρ‖ ρ̂+
m̃

r
θ̂ +

ñ

R
φ̂ (3.36)

As just discussed, the wave vector k̃ lies on the flux surfaces, then k̃ρ = 0 and:

k̃ =
m̃

r
θ̂ +

ñ

R
φ̂ (3.37)

The parallel and the perpendicular components of the fluctuations wave vector
become:

k̃‖ = P
m̃

r
+ T

ñ

R
(3.38)

k̃⊥ = ±
√
m̃2

r2
sin2 α +

(
T
m̃

r
cosα− P

ñ

R

)2

(3.39)

Where it has been assumed that:

k̃‖ = k̃ · b = k̃ · b+ k̃ · b̃ ≈ k̃ · b (3.40)

Since the term k̃ · b̃ is a small correction. Considering that the parallel wave
vector is negligible, an expression for m̃ and ñ in function of the perpendicular
wave vector can be derived from the (3.38)-(3.39):

m̃ = ± rk̃⊥√
1 + P 2

T 2 cos2 α
(3.41)

ñ = ∓
P
T
Rk̃⊥ cosα√

1 + P 2

T 2 cos2 α
(3.42)
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3. Fluctuations processes

Fluctuations phase

Also in the local approximation, the initial value Φ
k̃0 of the phase associated

to a certain k̃ is assumed to be an uniformly distributed random variable, ϕ̃
k̃
.

Since k̃‖ = 0, the initial phase is Φk̃⊥0 = ϕ̃k̃⊥ .
The geometrical contribution is given by the following path integral calculated
along the trajectory of the oscillation:

ΦG
k̃
=

∫ X

X0

k̃(X′) · dX′ (3.43)

The scalar product between dX (see expression (3.10)) and the fluctuations
wave vector is:

k̃ · dX = k̃ρ ‖∇ρ‖
∂r

∂ρ
cosαdρ+

(
k̃ρ ‖∇ρ‖

∂r

∂θ
cosα−

−k̃ρ ‖∇ρ‖ r sinα + m̃
)
dθ + ñdφ (3.44)

Remembering that k̃ρ = 0, and k̃ = k̃⊥, it becomes:

k̃ · dX = m̃dθ + ñdφ (3.45)

Where m̃ and ñ are given in function of k̃⊥ by the expressions (3.41) and (3.42).
Substituing these expressions into the (3.45), it is obtained:

m̃dθ + ñdφ = ±
P
T
Rk̃⊥ cosα√

1 + P 2

T 2 cos2 α

[
T

P

r

R cosα
dθ − dφ

]
(3.46)

Explicit expressions for the ratio between dφ and dθ in direction parallel and
perpendicular to the magnetic field lines have been introduced in the previ-
ous subsection (equations (3.17) and (3.18)), using these expressions the scalar
product (3.45) is calculated along the magnetic field lines and along the fluc-
tuations field lines perpendicular to b:

(m̃dθ + ñdφ)‖ = 0 (3.47)

(m̃dθ + ñdφ)⊥ =
r

R cosα

dθ

PT
(3.48)

The (3.47) implies that also in the local description, as in the non-local model,
the geometrical term of the phase has constant value along the magnetic field
lines, and the oscillations phase value on these lines is determined by the
random contribution and does not evolve in time. This means that, if the
perturbations amplitude is dependent only by the radial flux coordinate ρ,
also in the local approximation on a given flux surface the fluctuations value
on the magnetic field lines is constant.
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3.1. Stochastic fluctuations

Figure 3.3: Path integral in the φ − θ variables to evaluate an explicit expression for
the drift wave phase: following the dashed path the integration is performed before in the
toroidal angle and in the second step in θ

.

The components m̃ and ñ are function of θ and φ, then the path integral (3.43)
must be evaluated on the φ − θ plane. Starting from the initial coordinates
(φ0, θ0) the integral is calculated along the dashed path reported in the φ− θ
diagram in Fig(3.3): at the first step it is performed the integration on the
toroidal angle, maintaining θ = θ0 and remembering that ñ does not depend
by φ, at the second the toroidal angle is fixed and the integral is evaluated
between θ0 and θ. Following this path, the result is:

ΦG
k̃⊥

=

∫ φ

φ0

dφ′ñ
(
ρ, θ0, k̃⊥

)
+

∫ θ

θ0

dθ′m̃
(
ρ, θ, k̃⊥

)

= ñ
(
ρ, θ0, k̃⊥

)(
φ− φ0

)
+

∫ θ

θ0

dθ′m̃
(
ρ, θ, k̃⊥

)
(3.49)

This is a general expression for the geometrical term of the drift wave phase
in the local approximation. The drift waves dispersion relation has just been
introduced in the presentation of the global approach, remembering that the
direction of the drift velocity vD is perpendicular to the magnetic field, it
becomes:

ω̃(k̃) = vD · k = vDk̃⊥ (3.50)

Since the time variation of the phase is associated to the slow scales char-
acteristics of the electron distribution function evolution, the time-dependent
term is function of the quasilinear integration time step ∆τ . The phase of an
oscillation with a given k̃⊥, in the local approximation is:

Φk̃⊥
= ϕ̃k̃⊥ + ñ

(
ρ, θ0, k̃⊥

)(
φ− φ0

)
+

∫ θ

θ0

dθ′m̃
(
ρ, θ, k̃⊥

)
− vDk̃⊥∆τ (3.51)
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3. Fluctuations processes

This expression represents a good approximation of the perturbations phase in
the general non local approach for great values of k̃⊥, but the locality implies
the lack of the periodicity in space of the oscillations.

Fluctuations amplitude

The total perturbation associated to drift-like fluctuations is the sum of a
great number of single oscillations corresponding to different values of k̃⊥,
the randomness of the process is due to the contribution ϕ̃k̃⊥ to the phase
(3.51). The mean square relative level of a generic fluctuation can be defined
as [9, 11, 12]:

σ2
gi =

〈(
g̃i
g

)2
〉

=

∫ +∞

−∞

Sgi
(
k̃⊥

)
dk̃⊥ (3.52)

Where σgi is the spatial profile of the local relative level of fluctuations and

Sgi
(
k̃⊥

)
is the fluctuations perpendicular wave vector spectrum. Also negative

values of k̃⊥ are considered. It has been shown experimentally that Sgi(k̃⊥)
for both density than magnetic field fluctuations is well approximated by a
gaussian [4, 5], then the spectral distribution is assumed to be:

Sgi
(
k̃⊥

)
=

σ2
gi√

2πk⊥c
exp

(
− k̃2⊥
2k2⊥c

)
(3.53)

Where k−1
⊥c is the correlation length of the perturbations. Since the perturba-

tion g̃i is the result of the sum a discrete set of oscillations corresponding to
different values of k̃⊥, the integral (3.52) can be approximated with a sum over

an uniform grid of k̃⊥ corresponding to a descrete set of values Sgi,k̃⊥ :

Sgi,k̃⊥ =
σ2
gi√

2πk⊥c
exp

(
− k̃2⊥
2k2⊥c

)
(3.54)

Substituing the expression (3.53) into the general definition for the perturba-
tions amplitude derived for the general non-local model (3.35), the following
expression for g̃0n

i,k̃⊥
is derived:

g̃0n
i,k̃⊥

=
√

2Sgi,k̃⊥∆k̃⊥ = σgi ·
(
2

π

) 1

4

·

√
∆k̃⊥
k⊥c

· exp
(
− k̃2⊥
4k2⊥c

)
(3.55)

Where the normalization quantity ∆k̃⊥ is the interval between two consecutive
values of the k̃⊥ grid that replaces the infinitesimal element dk̃⊥ in the passage
from the integral to the sum. In toroidal geometry the fluctuations relative
level σgi is assumed to be function of the coordinates ρ and θ, consequently:

g̃0n
i,k̃⊥

(ρ, θ) = σgi(ρ, θ) ·
(
2

π

) 1

4

·

√
∆k̃⊥
k⊥c

· exp
(
− k̃2⊥
4k2⊥c

)
(3.56)
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3.1. Stochastic fluctuations

This is the general expression for the relative amplitude of the drift-like oscil-
lation corresponding to a determinate value of k̃⊥ in the local approximation,
the absolute amplitude g̃0

i,k̃⊥
becomes:

g̃0
i,k̃⊥

(ρ, θ) = g(ρ, θ) · σgi(ρ, θ) ·
(
2

π

) 1

4

·

√
∆k̃⊥
k⊥c

· exp
(
− k̃2⊥
4k2⊥c

)
(3.57)

The following analytical spatial profile for the relative fluctuations level σgi(ρ, θ)
is assumed [12]:

σgi(ρ, θ) =

〈(
g̃i
g

)2
〉 1

2

=

= σgimax · exp
[
−1

2

(ρ− ρ0)
2

(∆ρ/
√
2 ln 2)2

]
·
(
1 + λ cos θ

1 + λ

)
(3.58)

Where σgimax is the maximum value of the relative fluctuations level, ρ0 the
radial position of the fluctuations peak, corresponding to σgi = σgimax, ∆ρ is
the radial distance between the peak and the position at which the fluctuations
relative level is halved (σgi = σgimax/2 at ρ = ρ0±∆ρ), and λ is an adimensional
parameter which represents the dependence of the profile by the poloidal angle
(for λ = there is no angular dependence and σgi is only function of ρ). The
expressions for the amplitude (3.57) and for the fluctuations mean relative level
(3.58), derived in the local approximation, can be easily adapted to describe the
local characteristics of any kind of drift-like fluctuations. In the next sections
two cases of drift fluctuations are presented and studied using the local eikonal
approach: perturbations of the electron density ñe and of the magnetic field
B̃. The typical parameters of these fluctuations are used in the expressions
for the local amplitude and for the relative spatial profile and the impact of
the parameters variation on the statistical properties of the perturbations is
investigated by means of a comparative analysis.

3.1.4 Electron density fluctuations

Fluctuations of electronic density generated by electron drift waves have been
measured with different diagnostic techniques in several tokamaks [1, 2, 26,
27, 28], expecially in the region near to the plasma edge, and their effects
on propagation and non-inductive current generation by LH and EC waves
has been estimated to be relevant both in actual current drive experiments
[9, 11, 12], than in the future ITER scenarios [13, 14]. The perturbation of ne
generated by a determinated drift-like fluctuations process can be derived by
specializing the general expression (3.4):

ñe(ρ, θ, φ, t) =
∑

k̃⊥

ñ0
ek̃⊥

(ρ, θ) cosΦk̃⊥
(ρ, θ, φ, t) (3.59)
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3. Fluctuations processes

Using the local representation, the relative amplitude of the electron density
oscillation of perpendicolar wave vector k̃⊥ is:

ñ0n
ek̃⊥

(ρ, θ) = σne(ρ, θ) ·
(
2

π

) 1

4

·

√
∆k̃⊥
k⊥c

· exp
(
− k̃2⊥
4k2⊥c

)
(3.60)

While the absolute amplitude ñ0
ek̃⊥

used in the expression (3.59) becomes:

ñ0
ek̃⊥

(ρ, θ) = ne(ρ) · ñ0n
ek̃⊥

(ρ, θ) =

= ne(ρ) · σne(ρ, θ) ·
(
2

π

) 1

4

·

√
∆k̃⊥
k⊥c

· exp
(
− k̃2⊥
4k2⊥c

)
(3.61)

Where ne(ρ) is the unperturbed electronic density. The expressions (3.59)
for the perturbation, (3.51) for the phase, and (3.61) for the amplitude are
appropriate for describing the local properties of all kinds of fluctuations of
the electronic density with k̃‖ = 0 and k̃ρ = 0. The specific characteristics of
the fluctuations processes determine the value of the correlation length k⊥c and
of the parameters σnemax, ∆ρ and ρ0 which influence the local relative level
profile:

σne(ρ, θ) =

〈(
ñe
ne

)2
〉 1

2

=

= σnemax · exp
[
−1

2

(ρ− ρ0)
2

(∆ρ/
√
2 ln 2)2

]
·
(
1 + λ cos θ

1 + λ

)
(3.62)

In several experiments the maximum level of density fluctuations is detected
at the edge of the plasma and it is estimated to be between 10% and 30%;
the fluctuations peak width is in general thin. This kinds of fluctuations are
described by σne profiles with 0.1 ≤ σne ≤ 0.3, ρ0 = 1, and small values of ∆ρ.
In Fig.(3.4)/A are compared relative level profiles peaked at the border with
σnemax = 30% and different values of ∆ρ = 0.07, 0.14, 0.21, while in Fig.(3.4)/B
are reported profiles with ρ0 = 1, ∆ρ = 0.07, but different maximum relative
levels σnemax = 10%, 30%, 50%, in both cases it has been assumed the value
λ = 0, then there is no θ-dependence. As it is shown in this figure, major values
of ∆ρ imply broad fluctuation spatial profiles, so the perturbation effects are
more distributed into the plasma respect to processes with narrow σne trend,
which domains is very localized. By choosing large values of ∆ρ, for example
∆ρ = 0.5, and low maximum level of fluctuation, σnemax = 1% it is also
possible to decribe background perturbations, while the very high and localized
fluctuations with strong poloidal dependence relevated at the border in the area
where the antennas interact with the plasma [1] can be modeled with a profile
having ∆ρ = 0.01, σnemax = 90% and λ 6= 0. The poloidal dependence of σne
is due to the factor:

σne(ρ, θ)

(σne(ρ))λ=0

=

(
1 + λ cos θ

1 + λ

)
(3.63)
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Figure 3.4: A):Comparison between σne profiles independent by θ (λ = 0) peaked at the
plasma edge (ρ0 = 1) with the same maximum relative level σnemax = 30% and different
values ∆ρ = 0.07, 0.14, 0.21; B): Comparison between σne profiles independent by θ (λ = 0)
peaked at the plasma edge (ρ0 = 1), with the same ∆ρ = 0.07 but different maximum
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3. Fluctuations processes

This factor is plotted in function of θ for different values on λ in Fig.(3.5).
The red dashed line corresponds to the reference case without poloidal de-
pendence, corresponding to λ = 0, it is important to observe that for λ > 0
the poloidal dependence factor is always major than 1, while for λ > 0 it is
always minor: in practice for positive values of the parameter λ the poloidal
dependence amplifies the local relative level of density fluctuations, for nega-
tive values it reduces the same level. In Figs.(3.6) (3.7), (3.8), (3.9) and (3.10)
are illustrated the radial and the poloidal dependence of a fluctuations relative
level profile peaked at the plasma edge with ∆ρ = 0.07 and maximum value
σnemax = 0.3 corresponding to the maximum level of ñe observed in several
experiments [1, 12]. This profile is plotted for several values of the parameter
λ (λ = −0.5,−0.3, 0.05, 0., 0.8) in function of ρ for a set of constant θ−values
and in function of θ for a set of constant radial positions, in order to study
the effects of the poloidal dependence variation and to show the differences
respect to the case without poloidal dependence reported in red. In agreement
with the previous considerations on the poloidal depencence factor, in these
figures it is shown that if λ < 0, the mean relative level of density fluctuations
is minor than the reference case with λ = 0 in any radial position, while if
λ > 0 it is everywhere major. It is easy to deduce that the effects of the
poloidal dependence increase for great values of |λ|, whereas become low for
small values, like |λ| = 0.05, as it is illustrated in Fig.(3.8).
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Figure 3.6: A): Radial dependence of σne profile with σnemax = 0.3, ρ0 = 1, ∆ρ = 0.07
and λ = −0.5, the profiles are plotted in function of ρ for constant values on θ, the reference
case without θ−dependence is reported in red; B): Poloidal dependence of σne profile with
σnemax = 0.3, ρ0 = 1, ∆ρ = 0.07 and λ = −0.5, the profiles are plotted in function of θ for
constant values on ρ.
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Figure 3.8: A): Radial dependence of σne profile with σnemax = 0.3, ρ0 = 1, ∆ρ = 0.07
and λ = 0.05, the profiles are plotted in function of ρ for constant values on θ, the reference
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Figure 3.9: A): Radial dependence of σne profile with σnemax = 0.3, ρ0 = 1, ∆ρ = 0.07
and λ = 0.3, the profiles are plotted in function of ρ for constant values on θ, the reference
case without θ−dependence is reported in red; B): Poloidal dependence of σne profile with
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constant values on ρ.
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Figure 3.10: A): Radial dependence of σne profile with σnemax = 0.3, ρ0 = 1, ∆ρ = 0.07
and λ = 0.8, the profiles are plotted in function of ρ for constant values on θ, the reference
case without θ−dependence is reported in red; B): Poloidal dependence of σne profile with
σnemax = 0.3, ρ0 = 1, ∆ρ = 0.07 and λ = 0.8, the profiles are plotted in function of θ for
constant values on ρ.
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3.1. Stochastic fluctuations

The effects of the several parameters on the local relative level of density
fluctuations have been illustrated using some simple examples. The parame-
ters of the σne profiles can be adapted on the basis of the fluctuations local
characteristics without restrictions and without conditions on the plasmas fea-
tures. The statistical properties of the presented expression for the electron
density perturbation (3.59) will be discussed in subsection 3.1.6.

3.1.5 Magnetic field fluctuations

Magnetic field fluctuations generated by several magnetohydrodynamic modes
have been detected and localized in toroidal plasmas with microwaves scatter-
ing diagnostic techniques [2, 7]. The magnetic perturbations, as the density
fluctuations induced by the drift waves, lie on the flux surfaces. This implies
that the radial components of the wavevector and of the field generated by the
fluctuations are zero (k̃ρ = 0, B̃ρ = 0). The oscillations are oriented in direc-

tion orthogonal to the magnetic field lines, then B̃ = B̃⊥ and the component
parallel to the equilibrium field versor b is zero:

B̃‖ = 0 (3.64)

The expression for the perpendicular perturbation B̃⊥ in the local representa-
tion is:

B̃⊥(ρ, θ, φ, t) =
∑

k̃⊥

B̃0
⊥k̃⊥

(ρ, θ) cosΦk̃⊥
(ρ, θ, φ, t) (3.65)

Using the local representation, the relative amplitude of the magnetic field
oscillation associated to a certain value of the perpendicular wave vector k̃⊥ is:

B̃0n
⊥k̃⊥

(ρ, θ) = σB⊥
(ρ, θ) ·

(
2

π

) 1

4

·

√
∆k̃⊥
k⊥c

· exp
(
− k̃2⊥
4k2⊥c

)
(3.66)

While the absolute amplitude B̃0
⊥k̃⊥

becomes:

B̃0
⊥k̃⊥

(ρ, θ) = B(ρ, θ) · B̃0n
⊥k̃⊥

(ρ, θ) =

= B(ρ, θ) · σB⊥
(ρ, θ) ·

(
2

π

) 1

4

·

√
∆k̃⊥
k⊥c

· exp
(
− k̃2⊥
4k2⊥c

)
(3.67)

Where B(ρ) is the unperturbed magnetic field modulus, k⊥c is the correlation
length and σB⊥ is the local relative level of magnetic fluctuations, which profile
is assumed to have the same form of the density fluctuations [12]:

σB⊥
(ρ, θ) =

〈(
B̃⊥

B

)2〉 1

2

= σB⊥max · exp
[
−1

2

(ρ− ρ0)
2

(∆ρ/
√
2 ln 2)2

]
·
(
1 + λ cos θ

1 + λ

)

(3.68)
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3. Fluctuations processes

The maximum relative level of magnetic fluctuations detected in toroidal de-
vices is tipically between the 1% and the 0.01%, and from the experimental
observations it has been extrapolated the following relation between the mag-
netic and density fluctuations relative levels [12, 7]:

〈
B̃2

⊥

〉
/B

2

〈ñ2
e〉 /n2

e

≈ 10−4 − 10−5 (3.69)

The measurements show that the magnetic fluctuations can be more peaked
in the plasma interior rather than at plasma edge [7]. In Fig.(3.11)/A), the
σB⊥

profiles independent by θ (λ = 0), peaked at ρ = 0.6, having maximum
relative level σB⊥max = 0.3% and different values of ∆ρ = 0.07, 0.14, 0.21 are
illustrated, while in Fig.(3.11)/B) the profiles corresponding to ρ0 = 0.6,∆ρ =
0.07, λ = 0 with different maximum relative levels σB⊥max = 0.3%, 0.2%, 0.1%,
0.03%, 0.01% are plotted. Since the σB⊥

profile presents the same general
analytical form of σne, the effect of the poloidal dependence on the mean
relative level of magnetic fluctuations is the same of the θ−dependence on the
mean relative level of density fluctuations, discussed in details in the previous
subsection.
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Figure 3.11: A):Comparison between σB⊥
profiles independent by θ (λ = 0) peaked at

the ρ = 0.6 with the same maximum relative level σB⊥max = 0.3% and different values
∆ρ = 0.07, 0.14, 0.21; B): Comparison between σB⊥

profiles independent by θ (λ = 0)
peaked at ρ = 0.6, with the same ∆ρ = 0.07 but different maximum relative levels σB⊥max =
0.3%, 0.2%, 0.1%, 0.03%, 0.01%.

The components of magnetic field generated by the fluctuations, B̃s and
B̃φ, can be derived in function of B̃⊥, given by the explicit expression (3.65).
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3.1. Stochastic fluctuations

Remembering that B̃ρ = 0 for construction, B̃ becomes:

B̃ = B̃sŝ+ B̃φφ̂ (3.70)

The components of the perturbation parallel and perpendicular to the equilib-
rium magnetic field lines are:

B̃‖ = B̃ · b = PB̃s + TB̃φ (3.71)

B̃⊥ = B̃ · b⊥ = TB̃s − PB̃φ (3.72)

Since B̃‖ = 0, from these two equations the poloidal and the toroidal compo-

nent of the perturbation can be derived only in function of B̃⊥:

B̃s = TB̃⊥ (3.73)

B̃φ = −PB̃⊥ (3.74)

The component of the fluctuations magnetic field in the alternative coordinates
system (r, θ, φ) can be evaluated in function of B̃⊥ and of the angle α between
the versors ρ̂ and r̂:

B̃r = B̃s sinα = TB̃⊥ sinα (3.75)

B̃θ = B̃s cosα = TB̃⊥ cosα (3.76)

From these expressions it is possible to derive the components of B̃ in the
(R,Z, φ) system, which depend directly by the poloidal angle θ:

B̃R = B̃r cos θ − B̃θ sin θ = −TB̃⊥ sin(θ − α) (3.77)

B̃Z = B̃r sin θ + B̃θ cos θ = TB̃⊥ cos(θ − α) (3.78)

Starting by the expression for the generic perpendicular magnetic field pertur-
bation (3.65) it is possible to describe locally each kind of magnetic fluctua-
tions which lies on the flux surfaces by choosing the appropriated values for
the parameters of the amplitude (3.67) and a sufficient number of oscillations

corresponding to a set of k̃⊥. The components of the magnetic field generated
by the fluctuations in all the three alternatives coordinates systems introduced
in section 2.2 can be evaluated in function of B̃⊥, then once the perpendicular
perturbation is defined, it is immediated to define the associated components
in the considered coordinates system.

3.1.6 Statistical analysis

Electron density and magnetic field fluctuations processes introduced in this
section present a stochastic nature, described by the random term of the phase
both in non-local than in eikonal-like local approach. These stochastic aspects
are investigated in the local approximation by means of a statistical analysis.
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3. Fluctuations processes

Since the time evolution of the fluctuations is very slow respect to the wave
propagation and does not affect the ray evolution, only statistical behaviour in
space is considered. The analysis is performed using as example of fluctuations
the electron density perturbations in the eikonal-like representation (3.59),
which phase is given by the expression (3.51), amplitude by the (3.61), and
mean relative spatial profile by the (3.62). The local expression of the relative
electronic density perturbation, ñre = ñe/ne, ignoring the temporal dependence
of the phase, is:

ñre(ρ, θ, φ) =
∑

k̃⊥

ñr
ek̃⊥

(ρ, θ, φ) =
∑

k̃⊥

ñ0r
ek̃⊥

(ρ, θ) cosΦk̃⊥
(ρ, θ, φ) (3.79)

Where the relative amplitude of the oscillation corresponding to a given k̃⊥ is:

ñ0r
ek̃⊥

(ρ, θ) = σne(ρ, θ) ·
(
2

π

) 1

4

·

√
∆k̃⊥
k⊥c

· exp
(
− k̃2⊥
4k2⊥c

)
(3.80)

An expression for the toroidal angle in function of θ is derived from the relation
(3.18) for the ratio between dφ and dθ:

φ(θ) = −P
T

rθ

R cosα
(3.81)

Using the (3.81), the phase Φk̃⊥
and then also the perturbation can be ex-

pressed only in fuction of ρ and θ:

ñre(ρ, θ) =
∑

k̃⊥

ñr
ek̃⊥

(ρ, θ) =
∑

k̃⊥

ñ0r
ek̃⊥

(ρ, θ) cosΦk̃⊥
(ρ, θ) (3.82)

This expression makes it possible to study the fluctuations spectrum in function
of the poloidal angle θ on a given flux surface corresponding to a determined
value of ρ, and to evaluate the statistical distribution of the perturbations
process f(ñre) = f(ñe/ne) on the same surface. Assuming ρ = const, the
perturbation is given by a sum of a large number of cosinusoidal oscillations
dependent by the poloidal angle. Each one of these presents mean value zero
(because it is cosinusoidal) and random contribution to the phase ϕ̃k̃⊥ inde-
pendent by the others. The total perturbation can be treated as the sum of
a large number of statistical variables having mean value zero and distribu-
tion independent by the others, for the central limit theorem, the distribution
f(ñre) = f(ñe/ne) of the relative fluctuations amplitude on a given flux surface
corresponding to ρ = const must be a gaussian (Maxwellian) with mean value
zero (because the mean values of each single oscillation is zero):

f (ñre) =
1√

2πσne
exp

(
(ñre)

2

2σ2
ne

)
(3.83)
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3.1. Stochastic fluctuations

Where the variance Var (ñre) is given by the mean square local relative level of
density fluctuations σ2

ne:

Var (ñre) = Var

(
ñe
ne

)
=

〈(
ñe
ne

−
〈
ñe
ne

〉)2
〉

=

〈(
ñe
ne

)2
〉

= σ2
ne (3.84)

The spectrum of the relative density perturbations on a given flux surface is
now studied in function of the angle θ, and the theoretical distribution (3.83)
is compared with the numerical distribution evaluated creating an histogram
of the fluctuations process corresponding to each set of parameters.
The fluctuations process (3.82) is evaluated numerically as the sum of a number

N of oscillations, each one corresponding to a different value of k̃⊥ (N = Nk̃⊥
),

and having a different random term of the phase ϕ̃k̃⊥ . An uniform grid of

k̃⊥ values centered in k̃⊥ = 0 is generated, and the maximum absolute value
|k̃⊥max|, satisfying the relation −|k̃⊥max| ≤ k̃⊥ ≤ |k̃⊥max|, is chosen in relation
to the correlation perpendicular wave vector k⊥c and to the minimum relative
oscillation amplitude nprec considered for the numerical interpolation, which
is performed with a technique based on the Fourier series expansion. For
k̃⊥ = k̃⊥max the amplitude of the oscillation is equal to the minimum considered
for the Fourier expansion:

exp

(
− k̃

2
⊥max

k2⊥c

)
= nprec (3.85)

From this relation, remembering that k⊥c is positive, the following expression
is derived:

|k̃⊥max| = ±2k⊥c

√
− ln(nprec) (3.86)

Then the fluctuations perpendicular wave vector values are taken in the inter-
val:

−2k⊥c

√
− ln(nprec) ≤ k̃⊥ ≤ +2k⊥c

√
− ln(nprec) (3.87)

The correlation wave vector k⊥c is assumed to be a constant parameter tipical
of the fluctuations process, and since the grid is uniform, also the normalization
interval ∆k̃⊥ present in the expression (3.80) is constant and it is given by the

difference between two consecutive values of k̃⊥ in the grid:

∆k̃⊥ = |k̃⊥j+1 − k̃⊥j| (3.88)

In the analysis here reported the minimum relative amplitude considered for
the Fourier expansion is fixed at a value nprec = 10−2; the spectrum and the
fluctuations distribution are studied varying the correlation wave vector k⊥c,
the number of k̃⊥ assumed for generating the grid and the poloidal dependence
parameter λ of the relative level spatial profile. A numerical equilibrium cal-
culated with the 2-D Grad-Shafranov solver HELENA [30] is considered, and
parameters of the Tore Supra tokamak are used:
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3. Fluctuations processes

• plasma minor radius ap = 0.8m;

• plasma major radius Rp = 2.46m;

• on-axis magnetic field BT0 = 3.9T;

• unperturbed electron density at the plasma edge: nea = 0.05 · 1019m−3;

• unperturbed electron density at the plasma core: ne0 = 3 · 1019m−3;

A spatial profile of the relative fluctuations level σne peaked at the plasma edge
(ρ0 = 1), independent by the poloidal angle (λ = 0), with maximum relative
fluctuations level σnemax = 30% and semi-amplitude parameter ∆ρ = 0.07
is initially assumed. This profile, introduced in the ref.[12], is reported in
Fig.(3.12).
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Figure 3.12: σne profile used in the statistical analysis: it is independent by the poloidal
angle θ (λ = 0) and peaked at the plasma edge (ρ0 = 1). The maximum relative level of
fluctuations is σnemax = 30% and semi-amplitude parameter is ∆ρ = 0.07

In Fig.(3.13)/A) the spectrum of a density fluctuations process having the
σne profile shown in Fig.(3.12) is reported in function of the poloidal angle θ:
the perturbation is calculated on the flux surface corresponding to ρ = 1 = ρ0,
at the plasma edge, where the relative level is maximum, and the normal-
ized correlation wave vector is assumed to be apk⊥c = 300, corresponding to
k⊥c ≃ 375m−1 and to a correlation length λ⊥c ≃ 2 · 10−2m for Tore Supra
parameters (in tokamak devices it has been detected 10−2m ≤ λ⊥c ≤ 10−3m

[12]). This perturbation is generated using a number Nk̃⊥
= 600 of k̃⊥ and then

it is given by the sum of N = 600 corresponding oscillations. Since the relative
fluctuations level profile is independent by the poloidal angle, the amplitude of
this perturbation is independent by θ. The distribution function f(ñe/ne) on
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3.1. Stochastic fluctuations

the flux surface ρ = 1 is calculated numerically evaluating the histogram of the
perturbation, and it is reported in in Fig.(3.13)/B) (blue line). The numerical
distribution is compared with the 1-D gaussian distribution (3.83), reported
in the figure (red line), and a good agreement is found. It has been shown
both numerically than theoretically that the distribution of relative density
fluctuations on a given flux surface is gaussian, this means that the density
fluctuations induced by drift waves and in general all the drift-like fluctuations
, using the expressions (3.51) for the phase and (3.56) for the amplitude, are
represented in the local limit as gaussian stochastic processes. In Fig.(3.14)/A)
the spectrums of the same fluctuations process illustrated in Fig.(3.13) calcu-
lated on different flux surfaces corresponding to ρ = ρ0, ρ0 +∆ρ, ρ0 + 2∆ρ are
compared. As it can be observed, the perturbations amplitude varies from
a flux surface to another, because it depends by the spatial profile σne, and
obviously it is maximum at ρ = ρ0, where σne = σnemax, while it is halved
at ρ = ρ0 + ∆ρ and it becomes close to zero at ρ = ρ0 + 2∆ρ. Even if the
perturbations amplitude changes with ρ, the density fluctuations distribution
function on each flux surface remains gaussian, as it is shown in Fig.(3.14)/B).
In Fig.(3.15) the effects of the variation of the normalized correlation wave
vector ak⊥c on the perturbations spectrum are illustrated: in the figure are
reported the spectrums of normalized fluctuations processes ñe/ne having the
relative level spatial profile of Fig.(3.12), calculated on the most extern flux
surface corresponding to ρ = ρ0 = 1 using Nk̃⊥

= 600 and considering different
values of apk⊥c = 600, 100, 50, 10. The numerical and theoretical distribution
functions corresponding to these fluctuations processes calculated at ρ = ρ0
are reported in Fig.(3.16). As it can be observed in figures, for great values
of the normalized correlation wave vector (for example apk⊥c = 600 reported
in Fig.(3.15)/A) or apk⊥c = 300 reported in Fig.(3.13)/A)), corresponding to
small values of the correlation length, the normalized perturbation ñe/ne varies
in function of θ very rapidly such that its values calculated for 0 ≤ θ ≤ 2π
represents a good statistical ensemble for evaluating the histogram of the fre-
quencies and estimating the numerical distribution of the process. Infact, as
it is shown in Fig.(3.16)/A) and B), for great values of apk⊥c, the numerical
distribution is in good agreement with the theoretical 1-dimensional gaussian
distribution. For small values of apk⊥c, corresponding to great correlation
lengths, the perturbation varies more slowly in function of θ and its values
calculated for 0 ≤ θ ≤ 2π do not represent a good statistical ensemble: in the
Fig.(3.15)/C) and D)), are shown the spectrums corresponding to apk⊥c = 50
and apk⊥c = 10, and it can be observed that for these small values of the cor-
relation wave vector the spectrum varies slowly respect to the cases with high
apk⊥c and becomes essentially a deterministic function. The corresponding
numerical distribution functions are no more in good agreement with the 1-D
gaussian distribution predicted by the theory. The value apk⊥c = 100 has been
individuated as minimum value to have a gaussian numerical distribution of
the process ñe/ne generated with Nk̃⊥

= 600 in good agreement with the the-
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3. Fluctuations processes

oretical distribution. The spectrums and the numerical distribution functions
corresponding to the different values of the normalized correlation wave vector
are compared in Fig.(3.17).

The effect of the variation of the number of k̃⊥ used in the generation of the
fluctuations process is also analized: perturbations with the reference spatial
profile of Fig.(3.12) are generated assuming apk⊥c = 300 and different values of
Nk̃⊥

= 400, 200, 100, 50. The spectrums and the distribution functions of these
fluctuations calculated on the flux surface ρ = ρ0 are reported in Figs.(3.18)
and (3.19). In Fig.(3.18) it is shown that as the number of oscillations used in
the generation of the fluctuations decreases, the amplitude of the perturbation
presents a modulation in θ. The perturbations created with few number of
oscillations, (Nk̃⊥

≤ 10) may become quasiperiodic (not periodic, because the
local approximation imples a lack of periodicity). Consequently for processes
resulting from the sum of a number of oscillations minor than 100, the numer-
ical distribution function is no more in good agreement with the theoretical
one (see Fig.(3.19)/C) and D)).
Finally the fluctuations spectrum and distribution function on a given flux sur-
face are studied varying the poloidal dependence parameter λ of the relative
spatial profile σne. In Fig.(3.20) the effects of λ variations on the fluctua-
tions spectrum is illustrated: perturbations having a σne profile peaked at the
plasma edge with ∆ρ = 0.07 and λ = 0.8, 0.3,−0.1,−0.3, and generated using
Nk̃⊥

= 600 with apk⊥c = 300 are plotted at ρ = ρ0. From this figure it is easy
to note that the poloidal dependence of σne influences only the amplitude of
the perturbation, generating an amplification dependent by θ for λ < 0 and an
attenuation for λ < 0. This poloidal dependence of the amplitude is summed
to the poloidal dependence of the phase which determines the frequency of the
oscillations, and it is not accounted in the 1-D gaussian theoretical distribution
function, such that the numerical distribution, even it is still gaussian and cen-
tered in zero, possesses a different maximum value, major than the theoretical
function for λ < 0, and minor for λ > 0 (see Fig.3.21).
The statistical characteristics of electronic density fluctuations on a given flux
surface and their variations in function of the correlation wave vector, of the
number of k̃⊥ considered and of the poloidal dependence of σne have been stud-
ied in the local approximation, the results can be generalized to magnetic field
fluctuations, because the expression for the pertubation B̃⊥ in the local limit is
identical to that for ñe, and consequently the statistical properties of the two
processes are the same, the only differences are represented by the values of
the σB⊥

profiles assumed for describing magnetic fluctuations according to the
experimental observations and by the vectorial nature of these fluctuations:
the total perturbation B̃ is infact the sum of three components, B̃R, B̃Z and
B̃φ.
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Figure 3.13: A): Spectrum of the perturbation having the spatial profile illustrated in
Fig.(3.12) plotted in function of θ on the most extern flux surface ρ = ρ0 = 1, the per-
turbation is generated by the sum of N = N

k̃⊥

= 600 oscillations with apk⊥c = 300; B):
Comparison between the numerical distribution and the 1-D theoretical distribution of the
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Figure 3.16: Numerical (blu lines) and theoretical (red lines) distribution of the normalized
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Figure 3.20: Spectrum of a perturbation having σne profile with ρ0 = 1 and ∆ρ = 0.07
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Figure 3.21: Numerical (blu lines) and theoretical (red lines) distribution of a normalized
fluctuations process having σne profile with ρ0 = 1 and ∆ρ = 0.07 calculated at ρ = ρ0
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3.2 Magnetic ripple

In tokamak devices, the toroidal magnetic field is generated by a discrete set
of N magnetic coils which wind the torus. The discrete structure of the mag-
netic system leads to a static modulation of the toroidal field and to a lack
of toroidal symmetry which can affect strongly the radial transport [31] and
the propagation and the absorption of radio frequency waves into the plasma
[32]. This static magnetic field perturbation can be easily described specializ-
ing the general expression (2.18) to a case with stationary non random phase
related to the number of coils N and amplitude dependent by the geometrical
properties of the windings.

3.2.1 Magnetic field ripple in tokamaks

The discreteness of the magnetic coils systems generates a static periodic per-
turbation of the equilibrium magnetic field, the total field is then:

B = B+ B̃ (3.89)

Where B is the unperturbed field and B̃ is the contribution due to the ripple.
The perturbation in toroidal direction is generated by the discrete number of
windings N , which is constant, consequently the toroidal component of the
ripple field is given by the sum of a set of harmonic stationary oscillations
having radial mode number k̃ρ = 0, poloidal mode number m̃ = 0 and toroidal
mode numbers ñ = Nl multiples of the number of coils. Specializing the
general expression (2.17) to this case, and assuming Φ0 = 0, the phase of the
perturbation becomes:

Φl = ΦG
l = Nlφ (3.90)

And the toroidal field generated to the perturbation is:

B̃φ(ρ, θ, φ) =
∑

l

B̃0
φl(ρ, θ) cos(Nlφ) (3.91)

The amplitude of this field is given by the following expression [31]:

B̃0
φl = Bφ(ρ, θ)δl(ρ, θ) (3.92)

Where Bφ ≡ BT is the unperturbed toroidal magnetic field and δl(ρ, θ) is the
l-order term of the perturbative expansion of the ripple depth δ(ρ, θ), which is
defined by the following ratio:

δ(ρ, θ) =
Bmax −Bmin

Bmax +Bmin

(3.93)

Where Bmax is the maximum magnetic field and Bmin is the minimum at given
ρ and θ. Since the magnetic field, accounting the ripple perturbation, depends
also by the toroidal angle φ, at a given poloidal position its value oscillates
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3.2. Magnetic ripple

in function of this angle, Bmax and Bmin are respectively its maximum and
its minimum. The ripple depth depends by the geometrical properties of the
coils, and it is in general calculated numerically, in the case of circular coils it is
possible to evaluate an analitical expression by solving the equation B̃ = ∇F̃
with the condition ∇2F̃ = 0, satisfied by a static magnetic field in the vacuum,
where F̃ is the perturbed magnetic potential. This procedure is illustrated in
details in ref.[31] and the expression for δ(ρ, θ) derived, valid for tokamaks with
circular magnetic bobine like Tore Supra, is introduced in the next section.
In the system (r, θ, φ), the radial and poloidal components of the magnetic
perturbation are:

B̃r(ρ, θ, φ) =
∑

l

B̃0
rl(ρ, θ) sin(Nlφ) =

∑

l

Bφ(ρ, θ)δrl(ρ, θ) sin(Nlφ) (3.94)

B̃θ(ρ, θ, φ) =
∑

l

B̃0
θl(ρ, θ) sin(Nlφ) =

∑

l

Bφ(ρ, θ)δθl(ρ, θ) sin(Nlφ) (3.95)

Where:
B̃0
rl = Bφ(ρ, θ)δrl B̃0

θl = Bφ(ρ, θ)δθl (3.96)

For coils of arbitrary shape, δrl and δθl are determined numerically, but in the
circular case they can be expressed in term of the analytical profile of δ(ρ, θ).

The component B̃ρ and B̃s respectively perpendicular and tangent to the flux

surfaces can be computed in function of B̃r, B̃θ and of the angle α between r̂

and ρ̂:
B̃ρ(ρ, θ, φ) = B̃r(ρ, θ, φ) cosα− B̃θ(ρ, θ, φ) sinα (3.97)

B̃s(ρ, θ, φ) = B̃r(ρ, θ, φ) sinα + B̃θ(ρ, θ, φ) cosα (3.98)

The ripple magnetic field, as we can observe by these expressions, presents a
component B̃ρ orthogonal to the flux surfaces, this implies that the equilibrium
flux surfaces are modified by the ripple modulation. This is a fundamental
difference between the ripple perturbations and the random drift-like magnetic
field fluctuations illustrated in the previous section, which present k̃ρ = 0 and

B̃ρ = 0 and then do not affect the surfaces of constant ψ. The radial component
of the perturbation leads to a shift of the poloidal section of the flux surfaces,
but the shape is conserved and the perturbed equilibrium, as the unperturbed,
presents a nested surfaces structure, the only difference is in the values of ψ
correspondent to the surfaces. The perturbed flux surfaces must satisfy the
relation [25]:

∇ψ ·B = 0 (3.99)

Then the radial flux coordinates, dependent only by ψ, satisfies:

∇ρ ·B = 0 (3.100)

Including the deviation from the unperturbed equilibrium, ρ is given by:

ρ(ρ, θ, φ) = ρ+ ρ̃(ρ, θ, φ) (3.101)
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3. Fluctuations processes

The relation (3.100), remembering that ∇ρ ·B = 0, becomes:

∇ρ · B̃+∇ρ̃ ·B = 0 (3.102)

Where the small second order term ∇ρ̃ · B̃ is neglected. Using the explicit
form for the magnetic field and the gradient operator in the (ρ, θ, φ) system of
coordinates:

B̃ρ ‖∇ρ‖+
(
B̃s ‖∇ρ‖+

Bs

r

∂ρ̃

∂θ

)
cosα +

Bφ

R

∂ρ̃

∂φ
= 0 (3.103)

The solution of this general equation gives the correction to the radial flux co-
ordinate calculated consistently with the definition of magnetic equilibrium, for
the case with circular coils it is possible to evaluate an analytical approximated
expression [32].

3.2.2 Circular magnetic field coils

As just anticipated, in the case of circular coils it is possible to evaluate an
analytical expression for the ripple depth (3.104). This expression is derived

by the perturbative solution of the equation B̃ = ∇F̃ with the condition
∇2F̃ = 0, satisfied by a static magnetic field in the vacuum, where F̃ is the
perturbed magnetic potential, illustrated in details in ref.[31]. The calcula-
tions are performed using the toroidal coordinate system (r, θ, φ), particularly
suitable for describing the circular simmetry of the windings, the flux coordi-
nate ρ = ρ(r, θ, φ) can be easily expressed in function of these variables. If
the toroidal ripple field is generated by a set of uniformly distributed identical
coils, only the lowest harmonic correspondent to l = 1 gives an important con-
tribution to the perturbation, [31, 32], as a consequence δ ≈ δ1. The circular
simmetry makes it possible to evaluate the iso-ripple poloidal contours, where
the vale of δ is constant, these contours are circle of radius a(r, θ) which centers
are located at a distance L from the center of the coils, and the expression for
the ripple depth is:

δ(r, θ) ≈ δ1(r, θ) = δnI0

(
a

R0 − L0

N

)
(3.104)

Where δn is a parameter depending by the geometry. I0 is the 0-order modified
Bessel function of first kind, R0 is the tokamak vacuum major radius, L0 is
L(a = 0), N is the number of coils. The expressions for the iso-ripple radius a
and for the shift L, in good approximation, are:

a2 = L2 + r2 + 2rL cos θ (3.105)

L = L0 −
1

2

a2

R0 − L0

(3.106)
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From these relations it is possible to derive an expression for the iso-ripple
contours radius in function of the coordinates (r, θ):

a(r, θ) =

[
2(R0 − L0)

(
(R0 + r cos θ)−

√
(R0 + r cos θ)2 − r2 − L2

0 − 2rL0 cos θ

)] 1

2

≈ [(r2 + L2
0 + 2rL0)(R0 − L0)/(R0 + r cos θ)] (3.107)

Approximated expressions for δn and L0 are derived from the condition δ = 1
and L = 0 for a = (rn+ rx)/2, where rn is the inner and rx is the outer radius
of the toroidal windings:

L0 ≈
(rn + rx)

2

8R0

; δn ≈
[
I0

(
N

2

rn + rx
R0 − L0

)]−1

; (3.108)

Remembering the asymptotic expression of the modified Bessel function of first
kind, the ripple depth varies following the law:

δ ∝ exp

(
a

R0 − L0

N

)
(3.109)

From this relation it is easy to deduce that only the lowest harmonic gives
a non negligible contribution to the ripple field: the higher harmonics con-
tributions, are associated with the exponents aNl/(R0 − L0) with l > 1, for
tokamak parameters, aNl/(R0−L0) >> 1, such that correspondent terms fall
off with the distance from the coils center much faster than the first harmonic
contribution.
Injecting the expression (3.104) into the (3.91) and (3.92), and considering
only the first harmonic, the following expression for the toroidal ripple field is
derived:

B̃φ(r, θ, φ) = Bφδ(r, θ) cos(Nφ) = BφδnI0

(
a

R0 − L0

N

)
cos(Nφ) (3.110)

The expressions for δr(r, θ) and δθ(r, θ) in the limit of circular coils are [31]:

δr(r, θ) = δn
r + L0 cos θ

a
I1

(
a

R0 − L0

N

)
(3.111)

δθ(r, θ) =
L0 sin θ

a
I1

(
a

R0 − L0

N

)
(3.112)

Using these expressions, the poloidal and the radial components of the pertur-
bation become:

B̃r(r, θ, φ) = Bφδn
r + L0 cos θ

a
I1

(
a

R0 − L0

N

)
sin(Nφ) (3.113)

B̃θ(r, θ, φ) = Bφδn
L0 sin θ

a
I1

(
a

R0 − L0

N

)
sin(Nφ) (3.114)
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3. Fluctuations processes

Where I1 is the 1-order Bessel modified function of first kind. The explicit
expressions for the components of the ripple magnetic field illustrated are valid
for all tokamaks which present a number N of identical circular coils uniformly
distributed around the toroidal chamber (an example is Tore Supra), by means

of the coordinates trasformations, from B̃r and B̃θ it is possible to derive B̃ρ

and B̃s, which are the components of the perturbation respectively orthogonal
and parallel to the flux surfaces:

B̃ρ = B̃0
ρ sin(Nφ) (3.115)

B̃s = B̃0
s sin(Nφ) (3.116)

Where the amplitudes are:

B̃0
ρ = Bφ(δr cosα− δθ sinα) (3.117)

B̃0
s = Bφ(δr sinα + δθ cosα) (3.118)

Also the cartesian components B̃R and B̃Z can be expressed in the form:

B̃R = B̃0
R sin(Nφ) (3.119)

B̃Z = B̃0
Z sin(Nφ) (3.120)

Where:

B̃0
R = Bφ(δr cos θ − δθ sin θ) (3.121)

B̃0
Z = Bφ(δr sin θ + δθ cos θ) (3.122)

In this section have been reported the explicit expressions for the components
of the ripple magnetic perturbation generated by a set of circular coils in all
the three alternative coordinates systems introduced in section 2.2, in the next
chapter the effects of this perturbation on ray trajectories will be discussed
presenting the results of some examples with parameters typical of a JET-like
scenario.
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Chapter 4
Current drive simulations in

presence of fluctuations

The general model for decribing the effects of the fluctuations on radiofre-
quency current drive presented in the previous chapters is applied in some
examples of lower hybrid and electron cyclotron current drive simulations.
The two kinds of magnetic equilibrium perturbations considered are the same
discussed in details in chapter 2: drift-like density and magnetic field fluctu-
ations and magnetic ripple. In the first section the cold plasma dispersion
model, used in the study of LH and EC waves propagation, is introduced.
The fundamental characteristics of lower hybrid and electron cyclotron waves
are illustrated in sections 4.2 and 4.3. In section 4.4 the effects of drift-like
fluctuations and magnetic ripple on lower hybrid ray trajectories are studied
using a simple analytical equilibrium with parameters typical of JET toka-
mak (JET-like plasma [21, 23]) introduced just to test the perturbations effort
on the propagation. In the last two sections some examples of Lower Hybrid
and Electron Cyclotron current drive simulations in presence of fluctuations in
ITER tokamak scenarios are illustrated.

4.1 Cold plasma dispersion model

The conditions for the applicability of the cold plasma limit are [17]:

k2⊥v
2
Tα

ω2
cα

≪ 1 (4.1)

∣∣∣∣
ω − nωcα
k‖vTα

∣∣∣∣
2

≫ 1 (4.2)

Where k⊥ and k‖ are the component of the wave vector perpendicular and
parallel to the magnetic field, vTα and ωcα are the thermal velocity and the
cyclotronic frequency of the species, ω is the rf wave frequency and n the
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4. Current drive simulations in presence of fluctuations

harmonic number. The relation (4.1) implies that the perpendicular wave-
length λ⊥ = 2π/k⊥ must be much larger than the thermal Larmor radius
ρTα = vTα/ωcα. Since ρTα is the measure of the space explorated by the ther-
mal motion of a particle which at a given instant t is situated on a magnetic
field line, this condition implies that in the cold plasma limit the spatial dis-
persion can be neglected in direction perpendicular to the magnetic field. The
relation (4.2) for n = 0 states that the parallel phase velocity of the wave
vf‖ = ω/k‖ must be much larger than the thermal velocity of species, while
for n ≥ 1 it is satisfied far from the cyclotron resonances. When (4.2) holds,
the number of particles in resonance with the wave is small, as a consequence
the exchange of energy between the wave and the particles is negligible. In
substance, the two conditions of validity of the cold plasma limit imply that
spatial dispersion and dissipation through the resonant particles are negligi-
ble, then the cold plasma approximation does not decribe the damping on the
resonant particles, and it is appropriate only to study the rf wave propagation.

4.1.1 Dielectric tensor

Since the spatial dispersion is neglected, the cold plasma susceptibility tensor
Xk,ω and dielectric tensor Kk,ω are only functions of the frequency, XC

k,ω ≡ X(ω)
and K

C
k,ω ≡ K(ω), independent by k. The dielectric tensor presents an hermi-

tian form, because the antihermitian part KA
k,ω, associated to the damping on

resonant particles, can be ignored [17, 18]. The elements of K(ω) can be easily
evaluated by the solution of the linearized particle motion equation [18], or
calculating the limit for Tα → 0 of the general hot plasma dielectric tensor de-
rived by the integration of the linearized Vlasov equation introduced in chapter
1 [17]. Assuming a coordinates system (x, y, z) with the static magnetic field
B0 directed along the z-axis (Fig.(4.1)), K becomes:

K(ω) =




K⊥(ω) −iK×(ω) 0
iK×(ω) K⊥(ω) 0

0 0 K‖(ω)


 (4.3)

The explicit expressions for the components are:

K⊥(ω) = 1−
∑

α

ω2
pα

ω2 − ω2
cα

= 1−
∑

α

ω2
pα

1− ω2
cα

K‖(ω) = 1−
∑

α

ω2
pα

ω2
= 1−

∑

α

ω2
pα

K×(ω) = −
∑

α

ω2
pαωcα

ω(ω2 − ω2
cα)

= −
∑

α

ω2
pαωcα

1− ω2
cα

(4.4)

Where ωpα = ωpα/ω and ωcα = ωcα/ω are respectively the normalized plasma
and cyclotronic frequencies introduced in the previous chapter. The cold
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4.1. Cold plasma dispersion model

plasma permittivity tensor can be easily derived by the relation:

X(ω) = I+K(ω) (4.5)

Figure 4.1: System of coordinates (x, y, z) used for the dielectric tensor K and for the
dispersion tensor D.

4.1.2 Dispersion relation

Assuming that the wave vector lies on the x − z plane (see Fig.(4.1)), in the
cold plasma limit, the dispersion tensor D

C
k,ω ≡ D(N2, ϑ, ω) is given by the

hermitian matrix:

D(N2, ϑ, ω) =




K⊥(ω)−N2 cos2 ϑ −iK×(ω) N2 sinϑ cosϑ
iK×(ω) K⊥(ω)−N2 0

N2 sinϑ cosϑ 0 K‖(ω)−N2 sin2 ϑ




(4.6)
Where N = ck/ω is the refractive index. The corresponding dispersion relation
is a quadratic equation in N2:

D(N2, ϑ, ω) = detD(N2, ϑ, ω) = A(ω, ϑ)N4 + B(ω, ϑ)N2 + C(ω) = 0 (4.7)

Where:

A(ω, ϑ) = K⊥ sin2 ϑ+K‖ cos
2 ϑ (4.8)

B(ω, ϑ) = (K2
× −K2

⊥) sin
2 ϑ−K‖K⊥(1 + cos2 ϑ) (4.9)

C(ω) = K‖(K
2
⊥ −K2

×) (4.10)

Taking the parallel component N‖ and the frequency ω as given, and consid-
ering N⊥ as the dependent variable, the dispersion relation becomes:

A′(ω)N4
⊥ + B′(ω,N‖)N

2
⊥ + C(ω,N‖) = 0 (4.11)
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4. Current drive simulations in presence of fluctuations

With:

A′(ω) = K⊥ (4.12)

B′(ω,N‖) = (N2
‖ −K⊥)(K⊥ +K‖) +K2

× (4.13)

C ′(ω,N‖) = K‖[(N
2
‖ −K⊥)−K2

×] (4.14)

Or in alternative:

A′(ω) = K⊥ (4.15)

B′(ω,N‖) = (K⊥ +K‖)N
2
‖ − (KRKL +K⊥K‖) (4.16)

C ′(ω,N‖) = K‖(N
2
‖ −KR)(N

2
‖ −KL) (4.17)

Where KR and KL are:

KR = K⊥ +K× (4.18)

KL = K⊥ −K× (4.19)

The solution of the dispersion relation (4.11) gives N2
⊥ in function of N2

‖ and
ω:

N2
⊥ =

−B′ ±
√
B′2 − 4A′C ′

2A′
(4.20)

From these expression it is immediate to see that the wave cut-off, where
N2

⊥ = 0, occurs for C ′ = 0, this condition can be satisfied for:

KR = N2
‖ (4.21)

KL = N2
‖ (4.22)

K‖ = 0 (4.23)

The resonances, where N2
⊥ → ∞, instead occur for A′ = 0, which implies:

K⊥ = 0 (4.24)

4.1.3 Electrostatic approximation

In the electrostatic approximation, the component of the waves electric field
trasversal to the refractive indexN is considered negligible, and Ẽ is assumed to
have only a longitudinal component, in practice it is parallel to the wave vector,
Ẽ = Ẽk̂. In order to find the conditions for the validity of this approximation
and to derive the dispersion relation in the electrostatic limit, the waves electric
field in the Fourier space, Ẽk,ω, is separated into its longitudinal and transverse
components with respect to N:

Ẽk,ω = Ẽl
k,ω + Ẽt

k,ω (4.25)

Introducing this representation, the wave equation presented in first chapter
becomes:

(N2 −Kk,ω)Ẽ
t
k,ω −Kk,ω · Ẽl

k,ω = 0 (4.26)
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4.2. Lower Hybrid waves

The transverse component is negligible with respect to the longitudinal when:

N2 ≫ |Kij| (4.27)

Where Kij are the elements of the dielectric tensor Kk,ω. If this condition is
satisfied, the (4.26) can be reduced to:

N2Ẽt
k,ω −Kk,ω · Ẽl

k,ω ≃ 0 (4.28)

Then the transverse electric field is given by:

Ẽt
k,ω =

1

N2
Kk,ω · Ẽl

k,ω (4.29)

The (4.27) and the (4.29) imply that Ẽt
k,ω ≪ Ẽg

k,ω, then the electric field

direction is quasi-longitudinal and the assumption Ẽ = Ẽk̂ is justified. Dot-
multiplying by N/N the expression (4.28), the dispersion relation in the elec-
trostatic limit is derived:

DES =
N ·Kk,ω ·N

N2
= 0 (4.30)

The electrostatic dispersion relation in a cold plasma is then:

DES = N2
⊥K⊥ +N2

‖K‖ = 0 (4.31)

The electrostatic limit is of physical relevance for several radiofrequency waves,
as for example lower hybrid waves, which are quasi-electrostatic waves, and for
great values of N‖, the dispersion relation (4.31) is a good approximation of
the full electromagnetic expression (4.11).

4.2 Lower Hybrid waves

In an electron-ion plasma, the lower hybrid range of frequencies satisfies the
inequality (for tokamak plasmas the lower hybrid frequency typically belongs
to the interval 500MHz ≪ ω/2π ≪ 8GHz):

ωci ≪ ω ≪ ωce (4.32)

Assuming also that:
ω ≪ ωpe (4.33)

The components of the cold plasma dielectric tensor can be reduced to the
following approximated expressions:

K⊥ ≃ 1 +
ω2
pe

ω2
ce

−
ω2
pi

ω2

K‖ ≃ 1−
ω2
pe

ω2

K× ≃
ω2
pe

ω|ωce|
(4.34)
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Where the component K⊥ can be rewritten as:

K⊥ =

(
1 +

ω2
pe

ω2
ce

)(
1−

ω2
pi/ω

2

1 + ω2
pe/ω

2
ce

)

=

(
1 +

ω2
pe

ω2
ce

)(
1− ω2

LH

ω2

)

=
ω2
pi

ω2

(
ω2

ω2
LH

− 1

)
(4.35)

The lower hybrid frequency ωLH is defined as:

ω2
LH =

ω2
pi

1 + ω2
pe/ω

2
ce

(4.36)

From the (4.35) it is easy to observe that when the wave frequency is equal
to the lower hybrid frequency, ω = ωLH , K⊥ = 0 and the resonance condition
(4.24) is satisfied, then N⊥ → ∞. Near the resonance, mode conversions occur,
and the lower hybrid waves can be converted to ion Bernstein waves (IBW),
which cannot be described by the cold plasma dispersion model. In oreder to
avoid this mode conversion, in most lower hybrid current drive experiments
the frequencies are taken higher than ωLH , typically such that ω/ωLH ≈ 2 or
3. An important characteristic of lower hybrid waves consists in the fact that
these modes are quasi-electrostatic, then the component of the electric field
transverse with respect to the wavevector k is small compared to the longitu-
dinal component (Ẽt

k,ω ≪ Ẽg
k,ω), and for great values of N‖ the electrostatic

description represents a good approximation of the electromagnetic case.

4.2.1 Accessibility condition

Lower hybrid waves must satisfy an accessibility condition to propagate far
enough inside the plasma to reach the wave absorption layers without being
reflected or converted into other modes. The electromagnetic dispersion rela-
tion (4.11) possesses two different solutions:

N2
⊥ =

−B′ ±
√
B′2 − 4A′C ′

2A′
(4.37)

The slow wave corresponds to the upper sign, while the fast wave corresponds
to the lower sign (the term slow and fast are referred to the magnitude of
the phase velocity component perpendicular to the magnetic field vf⊥ = c/N⊥

[17]). When the discriminant B′2 − 4A′C ′ of the (4.37) is zero, the slow wave
merges with the fast wave, and a linear mode conversion occurs. In order
to avoid a mode conversion between the wave launching point and the wave
absorption layer, the following accessibility criterion must be fulfilled [17, 18]:

N‖ > N‖acc =

√

1 +
ω2
pe

ω2
ce

−
ω2
pi

ω2
+

√
ω2
pe

ω2
ce

(4.38)
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4.2. Lower Hybrid waves

This condition is obtained from B′2 − 4A′C ′ = 0 and using the approximated
expressions for the components of the diectric tensor (4.34). This accessibility
criterion depends on both the magnetic field and the density of the species, and
represents a severe limitation of the lower hybrid waves penetration capability
into the plasma: it is a lower limit on the parallel index of refraction and an
upper limit on the parallel phase velocity of the wave which can reach the
plasma core. In tokamak plasmas, the effects of the toroidal curvature and the
magnetic field helicity lead to strong upshifts of the parallel index of refration
N‖ and then to strong downshifts of the parallel phase velocity, and the relation
between the launched N‖ spectrum and the lower hybrid waves penetration
capability into the plasma core requires detailed calculations, performed, in
general, by means of raytracing techniques [15].

4.2.2 Lower Hybrid Current Drive

Lower hybrid waves are absorbed by the resonant electrons and transfer energy
and momentum to these particles by means of the parallel electron Landau
damping [17]. The resonance condition corresponding to this process is derived
specializing the general Doppler resonance condition (1.1) for harmonic number
n = 0:

ω − k‖v‖ = 0 (4.39)

This relation means that the wave is damped on the electrons having the
parallel component of the velocity equal to its parallel phase velocity:

v‖ = v‖res =
ω

k‖
(4.40)

The energy and the momentum gained by the resonant electrons go entirely
to the parallel degree of freedom, and the unidirectional change of the electron
velocity generates an asymmetry in the distribution function, assumed to be
initially Maxwellian, with resulting current flow. The steady state is given
by the balance between the accelleration effects of the waves on the resonant
electrons and the collisional relaxation which tends to re-establish the initial
Maxwellian distribution [17, 33]. As a consequence, the steady state distribu-
tion function is the solution of the steady state version of the bounce-averaged
kinetic equation (1.32), which neglecting the effects of the Ohmic electric field
is reduced to the following expression:

{
C(f)

}
+

{
Q(f)

}
= 0 (4.41)

This equation is in practice a balance between the modification of f 0 generated
by the accelleration of the electrons for effects of the wave, described by the
quasilinear operator

{
Q(f)

}
, and the collisional friction described by

{
C(f)

}
.

Observing the (4.40), it is straightforward to deduce that for great values of
k‖ or alternatively of N‖ the phase velocity becomes small and the wave is in
resonance with slow electrons (with v ≈ vTe), while for small values of k‖ the
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4. Current drive simulations in presence of fluctuations

wave is damped on the fast sovrathermal electrons. The slow electrons can
be easily pushed by the increment of momentum in parallel direction due to
the wave, but are more affected by the collisional friction and lose the gained
energy for effects of the collisions more rapidly than sovrathermal electrons,
for this reason lower hybrid waves are in general used to drive populations of
fast electrons on which the collisional effets are small [17, 33]. The current
drive local efficiency is defined as the ratio of the driven current density J and
the power density deposited into the plasma for generating the current:

ηCD =
J

P
(4.42)

Lower hybrid current drive experiments on fast electrons populations, using
waves with high parallel phase velocity, have been realized in several tokamak
devices with very high efficiency performances in agreement with the theoret-
ical predictions [16, 34, 35], but the driven current and the deposited power
relevated are orders of magnitude greater than the values expected by the
theoretical models and which a very small population of resonant electrons
implies [33, 35]. It seems that a fraction of the imposed low parallel refractive
index spectrum N‖ is upshifted into the plasma and the high parallel phase
velocity values are downshifted, such that the waves become sufficiently slow
to interact with a major number of electrons. Several physical explanations for
this paradox have been proposed [36, 37], nevertheless an exaustive solution
of the problem (the so-called spectral gap problem) has not been reached yet
and the mechanisms responsible for filling the spectral gap has still not been
individuated. This unsolved question makes very difficult the analysis and the
physical interpretation of data from Lower hybrid current drive experiments.

4.3 Electron Cyclotron waves

The term electron cyclotron waves is in general referred to electromagnetic
waves with a frequency in the range of the electron cyclotron frequency. For
a given magnetic field the electron cyclotron frequency is fce = 28B(T)GHz,
then for B = 4T, typical on-axis value in tokamak devices, it becomes fce =
112GHz, in general electron cyclotron resonance heating and current drive
systems work at frequencies of the order of 100GHz (fEC = 110GHz in Tore
Supra EC system). At frequencies of this order, the response of the ions to
electromagnetic waves can be neglected because of their large inertia, and
considering an electron-ion plasma, with an accuracy of order me/mi, the
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4.3. Electron Cyclotron waves

elements of the cold plasma dielectric tensor can be simplified to [17]:

K⊥ ≃ 1−
ω2
pe

ω2 − ω2
ce

K‖ ≃ 1−
ω2
pe

ω2

K× ≃ −
ω2
peωce

ω(ω2 − ω2
ce)

(4.43)

Since in electron cyclotron resonance heating and current drive experiments
the wave are excited with small values of the parallel refractive index, |N‖| ≪ 1
(for example in Tore Supra experiments N‖EC ≃ 0.2), the propagation is as-
sumed to be perpendicular to magnetic field, and two different modes exist:
the ordinary (O-mode) and the extraordinary (X-mode). This two modes are
characterized by the wave polarization: the electric field induced by the O-
mode is linearly polarized in direction parallel to the static magnetic field B0,
while the electric field of the X-mode is mostly circularly right-hand polar-
ized in a plane perpendicular to B0 [17, 18]. The O-mode can propagate only
at frequencies higher than the cutoff K‖ = 0, which using the approximated
expressions (4.43) corresponds to ω = ωpe, then the O-mode has only a prop-
agative branch for ω > ωpe. On the contrary, the X-mode experiences cutoffs
KR = N2

‖ and KL = N2
‖ , and the upper hybrid resonance [17]. The R and L

cutoff correspond to the frequencies:

ωR,L = ±ωpe
2

+

√(ωce
2

)2

+
ω2
ce

1−N2
‖

(4.44)

The upper hybrid resonance frequency is:

ωUH =
√
ω2
ce + ω2

pe (4.45)

The X-mode presents two branches of propagation separated by an evanes-
cent region: the first corresponds to frequencies ω > ωR (the so-called fast
X-mode branch), the second to ωL < ω < ωUH . For ω = ωUH a mode conver-
sion occurs, and the electron cyclotron waves become electron Bernstein waves
(EBW), electrostatic modes which propagation cannot be described using the
cold plasma dispersion model.

4.3.1 Electron Cyclotron Current Drive

Electron cyclotron waves transfer energy to the resonant fast electrons satis-
fying the cyclotronic damping condition:

ω − k‖v‖ =
ωce
γ

(4.46)
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The X-mode is circularly right-hand polarized in a plane perpendicular to B0,
thus leads to a transfer of energy in direction perpendicular to the static mag-
netic field. The O-mode is linearly polarized in direction parallel to B0, but
when the resonant electrons are accellerated by the electric field, the magnetic
field induced by the same wave rotates the momentum vector in such a way
that also in this case the net energy gain is finally oriented in perpendicular di-
rection. In both cases, electron cyclotron waves absorption leads to an increase
in the perpendicular energy of the resonant electrons, and there is no direct
momentum transfer from these modes to the plasma. The parallel velocity of
the resonant electrons is:

v‖ = v‖res =
ω − ωce/γ

k‖
(4.47)

These electrons usually lose their parallel momentum p‖ = γv‖ on a time scale
defined by the collision frequency, τ ∼ νc, after the resonant interaction their
perpendicular momentum increases and they become less collisional than the
corresponding electrons with opposite parallel velocity v‖ = −v‖res, therefore
the resonant electrons collide less with the other plasma species and relax
more slowly to v‖ = 0. The asymmetry in the electron collisionality generates
and asymmetry in the parallel velocities electron distribution which leads to
a steady state current [33, 38]. This mechanism makes possible to drive non-
inductive current into the plasma without injecting parallel momentum by
using electron cyclotron waves. Electron cyclotron current drive experiments
(ECCD) are performed using also second order harmonic resonant interaction,
corresponding to a Doppler resonance condition with harmonic number n = 2.
It is important to note that the electron cyclotron frequency ωce is function of
the space, this restricts power deposition to a region localized around the res-
onance surface corresponding to ω = ωce for first harmonic excitation, and to
ω = 2ωce for second harmonic excitations. As a consequence, the resonant ve-
locity v‖res has a continuum of values into the plasma, passing through zero at
resonant surfaces, then resonant velocity and driven current are of opposite sign
on either side of these surfaces, with resulting current cancellation. For this
reason an efficient electron cyclotron current drive requires strongly asymmet-
ric wave absorption about the resonant layer and in ECCD experiments waves
launching positions and polarization are chosen such that most of the power
is absorbed before reaching the exact cyclotron resonance. The precise spatial
localization of the wave absorption around the surface ω = ωce (or ω = 2ωce),
primarily depending by the frequency and by the value of the static magnetic
field [17], makes electron cyclotron current drive a particularly suitable task for
controling the details of the current profiles in tokamaks in order to lower the
confinement degradation caused by MHD instabilities [39](magnetic islands,
sawteeth, neoclassical tearing modes, edge localized modes, etc.).
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4.3.2 Accessibility of the electron cyclotron resonance

An important feature of electron cyclotron current drive and heating is the
accesibility of the electron cyclotron resonance surface defined by ω = ωce, 2ωce.
The accessibility to the resonance layer for the O-mode is restricted only by the
K‖ = 0 cutoff: when it occurs, N⊥ = 0, and the wave is reflected, and this cutoff
condition defines a surface of constant density that is the separatrix between
the domain of propagation of the wave and the evanescent region. The wave
must be excited in such a way that the resonance surface is outside this region,
which is individuated in the centre of the plasma, and which extension depends
by the plasma characteristics [17]. For the X-mode at the first harmonic two
evanescent regions are individuated: the first is between the KR = N2

‖ cutoff
and the upper hybrid resonance surfaces individuated respectively by ω = ωR
and by ω = ωUH , the second is defined by the KL = N2

‖ cutoff. The first
harmonic electron cyclotron resonance layer must be outside these two regions,
while for second harmonic X-mode exists only an evanescent portion of the
domain in the center of the plasma, delimited by ω = 2ωpe and the resonance
layer can be reached as long as it is not inside this cutoff region.

4.4 Effects of equilibrium perturbations on rays

trajectories

In this section the effects of the equilibrium perturbations generated by drift-
like fluctuations and magnetic ripple on lower hybrid waves rays trajectories
are illustrated. The simple analytical equilibrium with parameters tipical of
JET tokamak introduced in ref.[21, 23] is assumed.

4.4.1 JET-like plasma

The equilibrium used for testing the perturbations effects on the trajectories
presents circular and concentric flux surfaces, such that:

ρ =
r

ap
(4.48)

The unperturbed electronic density, electronic temperature and current density
profiles are:

ne(ρ) = (ne0 − nea)
(
1− ρ2

)
+ nea (4.49)

T e(ρ) = T e0
(
1− ρ2

)γ
+ T ea (4.50)

J(ρ) = J0
(
1− ρ2

)
(4.51)

The total current is then:

IP = 2π

∫ ap

0

Jrdr = πJ0
a2p
2

(4.52)
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Such that:

J0 =
2IP
πa2p

(4.53)

The toroidal and poloidal component of the unperturbed magnetic field are
respectively:

BT = B̂T
Rp

R
(4.54)

BP = B̂P
Rp

R
(4.55)

Where B̂T = BT0 is the value of the magnetic field on axis and the expression
for B̂P , derived from the Ampere’s law in the small aspect ratio limit [21], is:

B̂P =
µ0IP
2πap

1

ρ

[
1−

(
1− ρ2

)2]
(4.56)

The poloidal flux coordinate is then:

ψ = Rp

∫ ρ

0

BPdρ = Rp
µ0IP
2π

ρ2
(
1− 1

4
ρ2
)

(4.57)

The safety factor profile in the small aspect ratio limit can be easily derived:

q ≃ r

Rp

BT

BP

≃ qmax
ρ2

1− (1− ρ2)2
(4.58)

Where:

qmax =
B̂T

B̂Pa

ap
Rp

(4.59)

The parameters of the JET-like plasma used in the calculations of the per-
turbed trajectories are reported in table (4.1).

plasma minor radius ap 0.95m
plasma major radius Rp 3.05m
on-axis magnetic field BT0 3.2T
plasma current IP 3.5MA
central electron density ne0 5× 1019m−3

edge electron density nea 0.01× 1019m−3

central electron temperature T e0 6KeV

edge electron temperature T ea 0.1KeV
exponent of the electron temperature profile γ 1.5

Table 4.1: JET-like plasma parameters
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4.4. Effects of equilibrium perturbations on rays trajectories

In the analysis the ray are launched in the slow mode [23] from the position:

ρ0 = 0.968

θ0 = 0 (4.60)

φ0 = 0

The spectral quantities are assumed to have the following values:

ω/(2π) = 3.7GHz

m0 = 0 (4.61)

Nφ0 = −2.0

Where Nφ0 is the initial value of the toroidal component of the refractive index,
Nφ = ckφ/ω. The inital value of the covariant component n of the wave vector
can be determined in function of Nφ0:

n0 = kφ0R0 =
ωR0

c
Nφ (4.62)

Then the initial value of the parallel index of refraction N‖0 can be calculated
using this expression and remembering that m0 = 0:

N‖0 =
c

ω

(
P
m0

r0
cosα + T

n0

R0

)
= TNφ0 (4.63)

Where P = σIBP/B and T = σBBT/B are the component of the magnetic
field versor evaluated initially neglecting the perturbations. Using the plasma
parameters reported in table (4.1), this value becomes: N‖0 ≈ −1.95. The
initial value of the perpendicular refractive index N⊥0 is calculated solving the
dispersion relation (4.11) for N‖ = N‖0, and thus the initial value of the radial
wave number kρ0 can be evaluated using the expression (2.36).

4.4.2 Ray trajectories in presence of fluctuations

The local eikonal-like description of electron density and magnetic field fluctu-
ations is used to illustrate the effects of the equilibrium magnetic field on ray
trajectories in the lower hybrid frequency range. The electron density and the
magnetic field are:

ne(ρ, θ, φ) = ne(ρ) + ñe(ρ, θ, φ) (4.64)

B(ρ, θ, φ) = B(ρ, θ) + B̃(ρ, θ, φ) (4.65)

The time dependence of the perturbations is not considered in the study of
the propagation, because its time scales are very slow compared to the ray
evolution. The unperturbed electron density profile is given by the expression
(4.49) and the component of the unperturbed magnetic field by the (4.54) and
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4. Current drive simulations in presence of fluctuations

(4.55), while the perturbations generated by the fluctuations in the local ap-
proximation are represented respectively by the (3.59) for the density and by
the (3.65), (3.77) and (3.78) for the magnetic field components. The uniform

grid of k̃⊥ introduced in details in previous chapter is used in the calculation
of ñe and B̃⊥, a number Nk̃⊥

= 600 of oscillations each one corresponding to a

different value of k̃⊥ is considered and the value of the normalized correlation
wave vector is assumed to be apk⊥c = 300. The relative fluctuations spatial
profiles σne and σB⊥

used in the analysis are reported in function of the ra-
dial coordinate in Fig.(4.2): no poloidal dependence (λ = 0) and half-width
parameter ∆ρ = 0.07 are assumed for both electron density than magnetic fluc-
tuations, density perturbations have a maximum relative level σnemax = 30%
and are peaked at the plasma edge (ρ0 = 1), while magnetic perturbations
have σB⊥max = 0.3% and are peaked at ρ = ρ0 = 0.6. These profiles are used
in ref.[12], and describes the characteristics of fluctuations measured in several
experiments [1, 2], the effects of equilibrium perturbations on the trajectories
are tested launching the ray from the same position indicated by the coordi-
nates (4.60), introducing before density and magnetic fluctuations separately,
and after considering both the processes.
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Figure 4.2: A):σne profile used for testing fluctuations effects on ray trajectories, no
poloidal dependence is assumed (λ = 0), the peak is assumed to be at the plasma edge
(ρ0 = 1) and corresponds to a maximum relative level σnemax = 30%, the half-width value
is ∆ρ = 0.7; B):σB⊥

profile used for testing fluctuations effects on ray trajectories, no
poloidal dependence is assumed (λ = 0), the peak is assumed to be at ρ = ρ0 = 0.6 and
corresponds to a maximum relative level σB⊥max = 0.3%, the half-width value is ∆ρ = 0.7;

The evolution of the radial and poloidal ray position and of the compo-
nents of the refractive index along the trajectory in presence of electron density
fluctuations corresponding to the spatial profile illustrated in Fig.(4.2)/A) is
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4.4. Effects of equilibrium perturbations on rays trajectories

reported in function of the toroidal normalized angle φ/2π and compared with
the case without fluctuations in Figs.(4.3) and (4.4). The rays are launched
from the initial position (4.60) with the inital values of the spectral quantities
(4.61). From the evolution of the radial and poloidal position it can be ob-
served that the ray trajectory, after a brief initial segment where it is identical
to the case without fluctuations, can be strongly modified by perturbations
generated by density fluctuations peaked at the plasma edge. The relevance
of these trajectory modifications in current drive calculations depends by the
characteristics of the considered scenario, in ITER-like scenarios, for example,
the power trasported by the ray is rapidly damped, near the plasma edge,
before than the trajectories start varying for effects of the fluctuations. Also
the spectral quantities of the ray are strongly affected by the perturbations:
since fluctuations have the maximum at the plasma edge, the trend of the
parallel and of the perpendicular index of refraction becomes different by the
case without fluctuations from the beginning of the trajectory, and the effects
of the fluctuations on N⊥ can modify the damping of the ray. However, it
is very important to remember that the random nature of the density fluc-
tuations generated by drift waves makes the ray trajectories stochastic, thus
the evolution of the position and of the refractive index along rays launched
with identical initial conditions can become very different, and the effects of
the perturbation on the absorption cannot be deduced and quantified from the
behaviour of one single ray. Since fluctuations induce a breaking in axisym-
metry of the system, the toroidal mode number n is no longer a constant of
the ray evolution, as it can be observed in Fig.(4.4). The behaviour of n is
very sensitive to equilibrium parturbations: as the ray start propagating into
the plasma, it covers immediately the area with maximum level of fluctua-
tions, and the toroidal wave number varies strongly respect to the constant
value correspondent to the case without fluctuations, when the ray penetrates
into the plasma core, where fluctuations amplitude is zero (see the spatial pro-
file in Fig.(4.2)/A)), n remains constant, and it restarts oscillating in φ when
the ray returns at the plasma edge, where fluctuations level is again high. In
Figs.(4.6) and (4.6) the evolution of the ray position and of the components
of the refractive index in presence of magnetic field fluctuations having the
spatial profile of Fig.(4.2)/B) is compared with the case without fluctuations.
The initial conditions are the same used for density fluctuations ((4.60) and
(4.61)). Unlike the case with density perturbations, the ray trajectory is not
significantly affected by magnetic field fluctuations, as it can be observed in
the figures, and also the parallel and perpendicular refractive index behaviour
varies minimally respect to the evolution without fluctuations. The only com-
ponent of the refractive index strongly affected by magnetic fluctuations is the
toroidal one n, which remains constant when the ray goes through the zones
of the plasma where the perturbations amplitude is negligible as for example
at the edge (the fluctuations spatial profile considered is peaked at ρ = 0.6),
and oscillates when the ray crosses the zones where fluctuations level is high.

87



4. Current drive simulations in presence of fluctuations

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

abs(φ)/2π

ρ
without fluctuations

with fluctuations

0 0.5 1 1.5 2 2.5 3
−6

−5

−4

−3

−2

−1

0

abs(φ)/2π

θ/2
π

0 0.5 1 1.5 2 2.5 3
−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

abs(φ)/2π

N ||

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

abs(φ)/2π

N pe
rp

Figure 4.3: Comparison between the ray behaviour in presence of density fluctuations ñe
(blue solid lines) and the ray behaviour without fluctuations (dashed red lines): the radial
position ρ, the normalized poloidal angle θ/2π, the parallel index of refraction N‖ and the
perpendicular index of refraction N⊥ are plotted in function of the toroidal angle φ/2π.
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Figure 4.4: Comparison between the ray behaviour in presence of density fluctuations
ñe (blue solid lines) and the ray behaviour without fluctuations (dashed red lines): the
normalized radial wave number kρap, the poloidal wave number m and the toroidal wave
number n are plotted in function of the toroidal angle φ/2π.
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Figure 4.5: Comparison between the ray behaviour in presence of magnetic field fluctua-

tions B̃ (blue solid lines) and the ray behaviour without fluctuations (dashed red lines): the
radial position ρ, the normalized poloidal angle θ/2π, the parallel index of refraction N‖ and
the perpendicular index of refraction N⊥ are plotted in function of the toroidal angle φ/2π.
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Figure 4.6: Comparison between the ray behaviour in presence of magnetic field fluctua-

tions B̃ (blue solid lines) and the ray behaviour without fluctuations (dashed red lines): the
normalized radial wave number kρap, the poloidal wave number m and the toroidal wave
number n are plotted in function of the toroidal angle φ/2π.
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Figure 4.7: Comparison between the ray behaviour in presence of both electron density

and magnetic field fluctuations, ñe and B̃ (blue solid lines), and the ray behaviour without
fluctuations (dashed red lines): the radial position ρ, the normalized poloidal angle θ/2π,
the parallel index of refraction N‖ and the perpendicular index of refraction N⊥ are plotted
in function of the toroidal angle φ/2π.
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Figure 4.8: Comparison between the ray behaviour in presence of both electron density

and magnetic field fluctuations, ñe and B̃, (blue solid lines) and the ray behaviour without
fluctuations (dashed red lines): the normalized radial wave number kρap, the poloidal wave
number m and the toroidal wave number n are plotted in function of the toroidal angle
φ/2π.
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As it is clearly shown in figures, the effects of electron density fluctuations
on the trajectories and on refractive index evolution are much more significant
respect to magnetic field fluctuations, and then consequences of equilibrium
density perturbations generated by drift waves on the propagation are dom-
inant respect to the effects of magnetic field fluctuatons. In Figs.(4.7) and
(4.8) the ray behaviour in presence of both density and magnetic fluctuations
having relative level profiles reported in Fig.(4.2) is illustrated. The rays are
launched with the same initial conditions of the previous cases. It is important
to note the differencies between the behaviour of the ray reported in Figs.(4.3)
and (4.4) and the ray illustrated in Figs.(4.7) and (4.8): since magnetic fluctu-
ations effects on propagation are negligibles, the variations of the trajectories
respect to the case without perturbations are associated essentially to density
fluctuations, the two rays are launched with the same initial conditions, but
the evolution of the ray coordinates and of the components of the refractive
index presents visible differencies. This differencies are due to the random
nature of the drift-like fluctuations, and demonstrate that for effects of these
processes the trajectory of the ray becomes essentially stochastic.

4.4.3 Ray trajectories in presence of magnetic ripple

The ripple field in JET-like scenario is assumed to be generated by a set of N
uniformly distributed circular coils, then the perturbation of the equilibrium
magnetic field can be expressed using the analytical expressions derived in
Ref.[31] and introduced in section 3.2.2. The toroidal ripple field is given by
the expression (3.110) and it is here reported:

B̃φ = BφδnI0

(
a

R0 − L0

N

)
cos(Nφ) (4.66)

Where Bφ is the unperturbed toroidal magnetic field, represented in this case
by the expression (4.54), N is the number of coils, a(r, θ) is the radius of the
iso-ripple contours given by the (3.107), R0 is the vacuum vessel major radius,
L0 is the distance between the center of the coils and the iso-ripple contour
corresponding to a = 0 and δn is an adimensional parameter depending by the
geometry of the coils.The radial and poloidal component of the perturbation
generated by the set of coils are:

B̃r(r, θ, φ) = Bφδn
r + L0 cos θ

a
I1

(
a

R0 − L0

N

)
sin(Nφ) (4.67)

B̃θ(r, θ, φ) = Bφδn
L0 sin θ

a
I1

(
a

R0 − L0

N

)
sin(Nφ) (4.68)

Explicit expressions for the components B̃ρ, B̃s and B̃R, B̃Z in function of B̃r

and B̃θ have been also introduced and discussed in details in the previous chap-
ter (see relations (3.115),(3.116),(3.119),(3.120)). In the case of circular coils,
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4.4. Effects of equilibrium perturbations on rays trajectories

the parameters L0 and δn are given in function of the inner and outer radius of
the windings, rn and rx, by the expressions (3.108). Consequently, the pertur-
bation of the magnetic field depends only by a few number of parameters which
values is connected to the design of the different tokamak devices: the vacuum
vessel major radius R0, the number of coils N , the inner and outer radius of
the windings, rn and rx. The values of these parameters used for testing ripple
effects on lower hybrid waves propagation in the JET-like scenario introduced
in subsection 4.4.1 are reported in table (4.2).

vacuum major radius R0 3.05m
number of coils N 18
inner windings radius rn 1.00m
outer windings radius rx 1.50m

Table 4.2: Parameters used for testing magnetic ripple effects on ray trajecto-
ries in a JET-like plasma.

The behaviour of the radial and poloidal ray position and of the compo-
nents of the refractive index along the trajectory in presence of ripple magnetic
field is reported in function of the toroidal normalized angle φ/2π in Figs.(4.9)
and (4.10) and compared with the evolution of the same quantities in an unper-
turbed axisymmetric equilibrium, without fluctuations and ripple. The rays
initial position and the starting values of the spectral quantities are the same
used for testing the fluctuations effects ((4.60) and (4.61)). Both the ray tra-
jectory and the components of the refractive index are strongly affected by
the ripple field. An high frequency modulation of the toroidal wave number n
can be observed, the amplitude of this modulation is great when the ray prop-
agates into the zones close to the plasma edge, where the ripple corrections
to the magnetic field are high, and becomes negligible when the ray crosses
the plasma core, where the value of the ripple field vanishes [31, 32]. This
behaviour can be noted also in the component of the refractive index parallel
and perpendicular to the magnetic field, N‖ and N⊥, and in the poloidal and
radial components m and kρap: in the well localized zones in proximity of the
edge, these quantities oscillate at high frequencies around a medium trend,
while when the ray penetrates into the plasma, the oscillations amplitude de-
creases and the evolution becomes regular, but remains different respect to the
case without any perturbation. The perturbation induced by magnetic ripple
is stationary, then independent by the time, and unlike the perturbations gen-
erated by stochastic fluctuations, it does not have a random term in the phase.
Consequently the modifications to the ray trajectory and to the evolution of
the refracive index in this case are not of random nature, and rays launched
with identical initial conditions in a rippled magnetic equilibrium have the
same trajectory.
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Figure 4.9: Comparison between the ray behaviour in presence of ripple magnetic field B̃

(blue solid lines) and the ray behaviour in an unperturbed axisymmetric equilibrium (dashed
red lines): the radial position ρ, the normalized poloidal angle θ/2π, the parallel index of
refraction N‖ and the perpendicular index of refraction N⊥ are plotted in function of the
toroidal angle φ/2π.
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Figure 4.10: Comparison between the ray behaviour in presence of ripple magnetic field B̃

(blue solid lines) and the ray behaviour in an unperturbed axisymmetric equilibrium (dashed
red lines): the normalized radial wave number kρap, the poloidal wave number m and the
toroidal wave number n are plotted in function of the toroidal angle φ/2π.
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Figure 4.11: Comparison between the ray behaviour in presence of ripple magnetic field B̃

and drift-like density fluctuations ñe (blue solid lines), and the ray behaviour in an unper-
turbed axisymmetric equilibrium (dashed red lines): the radial position ρ, the normalized
poloidal angle θ/2π, the parallel index of refraction N‖ and the perpendicular index of
refraction N⊥ are plotted in function of the toroidal angle φ/2π.
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Figure 4.12: Comparison between the ray behaviour in presence of ripple magnetic field

B̃ and drift-like density fluctuations ñe (blue solid lines) and the ray behaviour in an un-
perturbed axisymmetric equilibrium (dashed red lines): the normalized radial wave number
kρap, the poloidal wave number m and the toroidal wave number n are plotted in function
of the toroidal angle φ/2π.
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In Figs.(4.11) and (4.12) the behaviour of the ray in presence of both
magnetic ripple and drift-like density fluctuations having the spatial profile of
Fig.(4.2)/A) is illustrated. Also in these figures, as in (4.9) and the (4.10),
where the evolution of a ray launched with the same initial conditions consid-
ering only the ripple perturbation is shown, when the ray propagates near the
plasma edge, an high frequency modulation of the refractive index components
is observed, expecially in the toroidal component n. This means that when the
ripple field is accounted, in proximity of the edge, where the ripple correction
is high, its effects on the propagation are dominant respect to the fluctuations,
and especially the modulation of the toroidal wave number n from a quanti-
tative point of view is more relevant than the stochastic oscillations generated
by the fluctuations.

4.5 LHCD in an ITER scenario with perturbed

equilibrium

In this section some examples of lower hybrid current drive (LHCD) simula-
tions performed considering fluctuations effects are presented. The equilibrium
perturbations generated by the fluctuations are expressed in the local form, and
applications of the model to the up/down symmetric ITER scenario 4 [40, 41]
are illustrated and discussed in details. In this scenario current drive calcula-
tions are faster than in Tore Supra and FTU cases, because for effects of the
plasma characteristics (densities and temperatures profiles), the power carried
by the rays is in general fully damped near the edge, before than the rays
reach for the first time the plasma core and return at the border. This makes
ITER scenario 4 particularly suitable for testing fluctuations effects on lower
hybrid current drive. Plasma parameters characteristics of ITER scenario 4
are reported in table (4.3).

plasma minor radius ap 1.85m
plasma major radius Rp 6.35m
on-axis magnetic field BT0 5.3T
central electron density ne0 7.25× 1019m−3

edge electron density nea 2.3× 1019m−3

central electron temperature T e0 24KeV

edge electron temperature T ea 0.18KeV
effective charge Zeff 2.23

Table 4.3: Parameters of ITER scenario 4

The poloidal section of the flux surfaces correspondent to ITER scenario 4
equilibrium, evaluated with HELENA code [30], and the radial profiles of the
unperturbed equilibrium quantities are illustrated in Figs.(4.13) and (4.14).
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Figure 4.13: Poloidal section of the magnetic flux surfaces correspondent to ψ = const for
the ITER scenario 4 equilibrium.
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Figure 4.14: Radial profiles of normalized poloidal magnetic flux, electron temperature,
electron density, ion temperatures, ion densities, and effective charge for the ITER scenario
4 equilibrium.
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4. Current drive simulations in presence of fluctuations

The lower hybrid waves frequency is fLH = ωLH/2π = 5.0GHz and the
total power injected into the plasma is PLH = 20MW. Four rays are launched
into the plasma from the vertical positions Z = 0.15, 1.15m, two correspond to
the positive lobe of the antenna and have initial value of the refractive index
N‖0 = 4, while the other two represent the negative lobe and have N‖0 = −2.
The trajectories are stopped when the fraction of power carried by the rays is
fully absorbed.
Two different electron density fluctuations processes are considered, and the as-
sociated perturbations ñe1 and ñe2 are both calculated in the local approxima-
tion assuming a number of oscillations Nk̃⊥

= 900 with normalized correlation
wave vector apk⊥c = 300. The first process ñe1 is a background perturbation
having maximum level σne1max = 3% at ρ = ρ0 = 0.5, semi-amplitude pa-
rameter ∆ρ = 0.5 and no poloidal dependence (λ = 0), while the second σne2
presents a very thin spatial profile peaked at the plasma edge (ρ0 = 1) with a
maximum relative level σne2max = 30%, semi-amplitude parameter ∆ρ = 0.02
and a strong poloidal dependence (λ = 0.54). The radial evolution of ñe1 and
ñe2 and the poloidal dependence of ñe2 are reported in Fig.(4.15).
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Figure 4.15: A) Radial dependence of the spatial profiles associated with the two fluctua-
tions processes considered in LHCD simulations in ITER scenario 4: the red line corresponds
to ñe1, peaked at ρ = ρ0 = 0.5 and having σne1max = 3%, λ = 0,∆ρ = 0.5, while the black
line corresponds to ñe2, peaked at the edge and having σne2max = 30%, λ = 0.54,∆ρ = 0.02;
B) Poloidal depencence of the spatial profile σne2 correspondent to the perturbation ñe2;

In Figs.(4.16) and (4.17) the evolutions of the parallel refractive index of
the rays used for the calculation of the quasilinear diffusion operator consid-
ering only the background process (Fig.(4.16)), and both the perturbations
(Fig.(4.17)) are plotted in function of the ray length (blue solid lines).
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Figure 4.16: Parallel refractive index along the ray: the evolution of N‖ along the tra-
jectories of the rays used for LHCD calculations considering only the background density
perturbation ñe1 is reported in function of the ray length (blue solid lines); the parallel
refractive index threshold given by the condition N‖ ≥ 6.5/

√
Te(KeV) above which a strong

Landau damping occurs is plotted for each ray launched into the plasma (red dashed lines).
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Figure 4.17: Parallel refractive index along the ray: the evolution of N‖ along the tra-
jectories of the rays used for LHCD calculations considering both the density perturbations
ñe1 and ñe2 is reported in function of the ray length (blue solid lines); the parallel refractive
index threshold given by the condition N‖ ≥ 6.5/
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damping occurs is plotted for each ray launched into the plasma (red dashed lines).
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4. Current drive simulations in presence of fluctuations

As it can be observed in Fig.(4.17), even considering only a low background
perturbation level, N‖ is affected by the fluctuations, and its evolution presents
stochastic oscillations, which are more evident in the case where both ñe1
and ñe2 are taken into account. In the same figures the following quantity is
reported (red dashed lines):

N‖th =
6.5√

Te(KeV)
(4.69)

Where the electron temperature Te is determined at all positions along the
rays path. The condition N‖ ≥ N‖th defines a local criterion for having strong
Landau damping of the lower hybrid waves on the bulk eletrons [32, 42]. Infact,
when this condition is fullfilled, the phase velocity of the wave is close to 3-4
times the thermal velocity, the density of resonant electrons is large enough
and the absorption rate becomes very large. Since the inequality N‖ ≥ N‖th

is satisfied for all the launched rays before the full absorption, the damping is
strong and all the power injected into the plasma is transferred to the electrons.
The current density generated by LH waves into the plasma considering only
the background process ñe1 and both the parturbations ñe1 and ñe2 is reported
in function of the radial coordinate ρ and compared with the current density
generated in the case without fluctuations injecting the same power PLH =
20MW and launching the same number of rays with identical initial conditions
in Figs.(4.18) and (4.19). These pictures illustrate that the lower hybrid current
density profiles, in a scenario with the characteristics of ITER scenario 4, are
not strongly modified by density fluctuations effects, even assuming a level of
perturbation at the edge of 30%, as in the case with both ñe1 and ñe2 reported
in Fig.(4.19), only the maximum of the peak is slightly lower respect to the case
without fluctuations, but the localization and the width of the profiles do not
change. This is connected to the fact that also in presence of the perturbations,
the power is deposited in the same area of the plasma, near to the plasma edge
(peak at ρ ≈ 0.65) and no broadening of the deposition profile is observed,
as it is shown in Figs.(4.20) and (4.21). In Figs.(4.22) and (4.23) the total
current Itot generated by LH waves into the plasma is plotted, it is calculated
at each quasilinear iteration correspondent to the instants tn = n∆τ of the
uniform temporal grid adopted in the solution of the kinetic equation and
introduced in section 2.5. The value ∆τνc = 10 is chosen for the quasilinear
iteration time step normalized to the collisional period, such that ∆τ > τc
and the effects of the perturbations satisfying the inequality τc < τ̃ on the
distribution function evolution and on the current generated into the plasma
can be estimated evolving the value of the fluctuations phase at each tn = n∆τ
corresponding to a point of the temporal grid (see section 2.5). Itot is plotted
in function of the normalized time tνc and differently from the current density
and the power, its evolution is sensitive to density fluctuations, and presents
oscillations respect to the case without perturbations.
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Figure 4.18: Comparison between the current density generated by LH waves in an equilib-
rium with the background density perturbation ñe1 (blue solid line) and the current density
generated injecting the same PLH = 20MW and launching the same number of rays with
the same initial conditions in an unperturbed equilibrium (red dashed line).
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Figure 4.19: Comparison between the current density generated by LH waves in an equi-
librium with both the density perturbations ñe1 and ñe2 (blue solid line) and the current
density generated injecting the same PLH = 20MW and launching the same number of rays
with the same initial conditions in an unperturbed equilibrium (red dashed line).
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Figure 4.20: Comparison between the LH power deposition profiles evaluated in an equilib-
rium with the background density perturbation ñe1 (blue solid line) and LH power deposition
profiles evaluated injecting the same PLH = 20MW and launching the same number of rays
with the same initial conditions in an unperturbed equilibrium (red dashed line).
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Figure 4.21: Comparison between the LH power deposition profiles evaluated in an equi-
librium with both the density perturbations ñe1 and ñe2 (blue solid line) and LH power
deposition profiles evaluated injecting the same PLH = 20MW and launching the same
number of rays with the same initial conditions in an unperturbed equilibrium (red dashed
line).
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rium with the background density perturbation ñe1 (blue solid line) and the total current
generated injecting the same PLH = 20MW and launching the same number of rays with
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rent is plotted in function of the normalized time tνc. The quasilinear iteration time step is
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Figure 4.23: Comparison between the total current generated by LH waves in an equilib-
rium with both the density perturbations ñe1 and ñe2 (blue solid line) and the total current
generated injecting the same PLH = 20MW and launching the same number of rays with the
same initial conditions in an unperturbed equilibrium (red dashed line). The total current
is plotted in function of the normalized time tνc. The normalized quasilinear iteration time
step is ∆τνc = 10.
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4. Current drive simulations in presence of fluctuations

In Fig.(4.22), the variations respect to the evolution without perturbations,
represented by the red dashed line, are visible, even if only the background pro-
cess ñe1 is considered, taking into account also ñe2 the oscillations amplitude
increase considerably, and a small downshift in the final value of the total cur-
rent produced is observed (Itot = 0.66388MA in the case without fluctuations
and Itot = 0.65961MA with ñe1 and ñe2).
The effects of density fluctuations on lower hybrid current drive has been tested
in an ITER relevant scenario using two perturbation models having spatial pro-
files with characteristics similar to fluctuations detected in several experiments
[1]. The current density and power deposition profiles are not very sensitive
to these fluctuations processes. The power in deposited in a localized area
of the plasma near the edge (Figs.(4.20) and (4.21)), and it is fully absorbed
before than the rays reach the center of the plasma, then the ray trajectory is
not significantly modified by fluctuations. The total current generated by LH
waves is the quantity most sensitive to electron density perturbations, and a
downshift in the value of Itot can be finally observed.

4.6 ECCD in an ITER scenario with perturbed

equilibrium

The effects of density fluctuations on electron cyclotron current drive (ECCD)
are investigated with some applications of the model to ITER operational
scenario 2 [41]. Plasma parameters characteristics of ITER scenario 2 are
reported in table (4.4).

plasma minor radius ap 1.85m
plasma major radius Rp 6.35m
on-axis magnetic field BT0 5.3T
central electron density ne0 10.2× 1019m−3

edge electron density nea 5.85× 1019m−3

central electron temperature T e0 25KeV

edge electron temperature T ea 2.2KeV
central effective charge Zeff0 1.7
edge effective charge Zeffa 1.56

Table 4.4: Parameters of ITER scenario 2

The poloidal section of the magnetic flux surfaces correspondent to ITER
scenario 2 equilibrium, evaluated with the 2-D Grad-Shafranov solver HE-
LENA [30], is shown in Fig.(4.24), and the radial profiles of the unperturbed
equilibrium quantities are illustrated in Fig.(4.25).
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Figure 4.24: Poloidal section of the magnetic flux surfaces correspondent to ψ = cost for
the ITER scenario 2 equilibrium. The red and the blue lines are respectively the contours
of constant ψ and θ.
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Figure 4.25: Radial profiles of normalized poloidal magnetic flux, electron temperature,
electron density, ion temperatures, ion densities, and effective charge for the ITER scenario
2 equilibrium.
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4. Current drive simulations in presence of fluctuations

The electron cyclotron frequency is fEC = ωEC/2π = 170GHz and simula-
tions are performed with first harmonic O-mode and second harmonic X-mode,
because the ECCD system projected for ITER is based on the combination of
these two modes. The waves are excited from the poloidal launching position
RL = 6.4848m,ZL = 4.11m and are described by 246 rays launched from these
position. Since simulations are performed just to test the applicability of the
model to ECCD calculations, and to give an example of fluctuations effect on
EC current density and power deposition profiles, the small non operational
value PEC = 1 · 10−6MW = 1W for the power injected by EC waves into the
plasma is taken, and the power carried by each ray is Pray = PEC/N where N
is the number of rays. Two different electron density fluctuations processes are
considered, and the associated perturbations ñe1 and ñe2 are both calculated
in the local approximation assuming a number of oscillations Nk̃⊥

= 900 with
normalized correlation wave vector apk⊥c = 300. The first process (ñe1) is a
background perturbation having maximum level σne1max = 3% at ρ = ρ0 = 0.5,
semi-amplitude parameter ∆ρ = 0.5 and no poloidal dependence (λ = 0), while
the second (ñe2) presents a very thin spatial profile peaked at the plasma edge
(ρ0 = 1) with a maximum relative level σne2max = 50%, semi-amplitude param-
eter ∆ρ = 0.02 and a strong poloidal dependence (ρ = 0.54). ñe2 describes the
fluctuations with high relative level and strong poloidal depencence detected
at the plasma edge in many devices [1]. The radial evolution of σne1 and σne2
and the poloidal dependence of σne2 are reported in Fig.(4.26).
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Figure 4.26: A) Radial dependence of the spatial profiles associated with the two fluctua-
tions processes considered in ECCD simulations in ITER scenario 2: the red line corresponds
to ñe1, peaked at ρ = ρ0 = 0.5 and having σne1max = 3%, λ = 0,∆ρ = 0.5, while the black
line corresponds to ñe2, peaked at the edge and having σne2max = 50%, λ = 0.54,∆ρ = 0.02;
B) Poloidal depencence of the spatial profile σne2 correspondent to the perturbation ñe2;
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4.6. ECCD in an ITER scenario with perturbed equilibrium

In Figs.(4.27) and (4.28) the parallel refractive index of the rays used for
ECCD calculations with first harmonic O-mode (Fig.(4.27)) and second har-
monic X-mode (Fig.(4.28)) in presence of fluctuations are reported (blue lines)
and compared with the case without fluctuations (red lines). As the rays enter
into the plasma, they experience immediately the fluctuations effects, and the
parallel index of refraction start oscillating respect to the case without per-
turbations. The behaviour of the refractive index presents a great variation
respect to the case without fluctuations at the beginning of the trajectories,
near the edge, where the perturbation ñe2 has the maximum, when the rays
penetrate into the plasma, the value of ñe1 vanishes and the small oscillations
are due to the background perturbation ñe1. In Figs.(4.29) and (4.30) the cur-
rent density generated by EC waves considering the effects of the perturbations
ñe1 and ñe2 is reported in function of the radial coordinate ρ and compared
with the current density generated in the case without fluctuations injecting
the same power PEC = 1 · 10−6MW and launching the same number of rays
with identical initial conditions. An evident drop of the maximum current
density level from Jmax ≈ 7 · 10−9MA/m2 to Jmax ≈ 2 · 10−9MA/m2 and a
consistent spreading of the profiles respect to the case without fluctuations is
observed for both O-mode and X-mode, thus the current density generated by
EC waves in ITER scenarios is strongly affected by density fluctuations of the
level of 50%, and the consequences of these perturbations are a considerable
broadening of the current density profiles and a drop of the local maximum of
the driven current. Obviously, this behaviour is connected to the broadening
of the profiles of the power density deposited by the waves into the plasma,
reported in Fig.(4.31) for the O-mode and in Fig.(4.32) for the X-mode. The
total current generated by O-mode and X-mode is plotted in Figs.(4.33) and
(4.34) in function of the normalized time tνc introduced in the previous section,
also for ECCD simulations it has been assumed the value νc∆τ = 10 for the
normalized quasilinear time step. The effects of the fluctuations on this quan-
tity is very impressive and a downshift ∆Itot in the value of Itot is observed:
∆Itot/Itot ≈ 18% for the O-mode and ∆Itot/Itot ≈ 7% for the X-mode.
The lack of localization in the power deposition and the consequent broadening
of the current density profiles, the drop of the current density and the down-
shift in the total current generated by electron density fluctuations may have
an important negative consequence on the possibility of controling the MHD
instabilities in ITER scenarios generating non-inductive current by means of
electron cyclotron waves [39]; with the purpose of indentifying the level of
edge density fluctuations above which the current density and the power de-
position profiles are consistently modified, several simulations have been per-
formed for the X-mode considering the perturbations ñe1 and ñe2 and varying
the maximum level of the edge fluctuations process ñe2, assuming the values
σne2max = 10%, 30%, 50%. The current and power density deposition profiles
calculated with the different levels of edge fluctuations are reported using dif-
ferent blue graduations in Figs.(4.35) and (4.36).
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Figure 4.27: Comparison between the evolution of N‖ along the trajectories of the rays
used for ECCD calculations with 1rst harmonic O-mode in presence of fluctuations (blue
lines) and the behaviour of N‖ in the case without fluctuations (red lines).
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Figure 4.28: Comparison between the evolution of N‖ along the trajectories of the rays
used for ECCD calculations with 2nd harmonic X-mode in presence of fluctuations (blue
lines) and the behaviour of N‖ in the case without fluctuations (red lines).
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Figure 4.29: Comparison between the current density generated by 1rst harmonic O-mode
EC waves in an equilibrium with the density perturbations ñe1 and ñe2 (blue solid line) and
the current density generated injecting the same PEC = 1 ·10−6MW and launching the same
number of rays with the same initial conditions in an unperturbed equilibrium (red dashed
line).
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Figure 4.30: Comparison between the current density generated by 2nd harmonic X-mode
EC waves in an equilibrium with the density perturbations ñe1 and ñe2 (blue solid line) and
the current density generated injecting the same PEC = 1 ·10−6MW and launching the same
number of rays with the same initial conditions in an unperturbed equilibrium (red dashed
line).
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Figure 4.31: Comparison between the EC 1rst harmonic O-mode power deposition profiles
evaluated in an equilibrium with the density perturbations ñe1 and ñe2 (blue solid line)
and the EC 1rst harmonic O-mode power deposition profiles evaluated injecting the same
PEC = 1 · 10−6MW and launching the same number of rays with the same initial conditions
in an unperturbed equilibrium (red dashed line).
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Figure 4.32: Comparison between the EC 2nd harmonic X-mode power deposition profiles
evaluated in an equilibrium with the density perturbations ñe1 and ñe2 (blue solid line)
and the EC 2nd harmonic X-mode power deposition profiles evaluated injecting the same
PEC = 1 · 10−6MW and launching the same number of rays with the same initial conditions
in an unperturbed equilibrium (red dashed line).

114



4.6. ECCD in an ITER scenario with perturbed equilibrium

0 20 40 60 80 100 120 140 160 180 200
5

5.5

6

6.5

7

7.5

8

8.5

9
x 10

−9

tν
c

I to
t  

(M
A

)

1rst harmonic O−mode

without fluctuations

with fluctuations δn
e1

 and δn
e2

Figure 4.33: Comparison between the total current generated by 1rst harmonic O-mode
EC waves in an equilibrium with the perturbations ñe1 and ñe2 (blue solid line) and the total
current generated injecting the same PEC = 1 · 10−6MW and launching the same number of
rays with the same initial conditions in an unperturbed equilibrium (red dashed line). The
total current is plotted in function of the normalized time tνc. The quasilinear iteration
time step is ∆τνc = 10.
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Figure 4.34: Comparison between the total current generated by 2nd harmonic X-mode
EC waves in an equilibrium with the perturbations ñe1 and ñe2 (blue solid line) and the total
current generated injecting the same PEC = 1 · 10−6MW and launching the same number of
rays with the same initial conditions in an unperturbed equilibrium (red dashed line). The
total current is plotted in function of the normalized time tνc. The quasilinear iteration
time step is ∆τνc = 10.
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Figure 4.35: Comparison between the current density generated by 2nd harmonic Xmode
EC waves in an equilibrium with the density perturbations ñe1 and ñe2 with different values
of the maximum relative level σne2max = 10%, 30%, 50% (blue colormap lines) and the
current density generated injecting the same PEC = 1 · 10−6MW and launching the same
number of rays with the same initial conditions in an unperturbed equilibrium (red dashed
line).
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Figure 4.36: Comparison between the power density generated by 2nd harmonic Xmode
EC waves in an equilibrium with the density perturbations ñe1 and ñe2 with different values
of the maximum relative level σne2max = 10%, 30%, 50% (blue colormap lines) and the power
density generated injecting the same PEC = 1 · 10−6MW and launching the same number of
rays with the same initial conditions in an unperturbed equilibrium (red dashed line).
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4.6. ECCD in an ITER scenario with perturbed equilibrium

The profiles calculated with the different levels of edge fluctuations are com-
pared with the case without equilibrium perturbations (red dashed line). Con-
sidering only the background perturbation ñe1 (wich presents σne1max = 3%), or
assuming the maximum relative fluctuations level at the edge σne2max = 10%,
the only effect on the profiles is a little drop of the local current density and
power density maximum, no significant broadening is observed. If the maxi-
mum relative level of the edge perturbation ñe2 becomes 30% or 50%, instead,
a great broadening is detected and the profiles are strongly modified for effect
of the fluctuations, then if the level of electron density fluctuations is above
the 20 − 30% at the edge in an ITER like scenario the current density and
the power deposition profiles are significantly affected by the perturbations
and the localization of the power deposited by the EC waves into the plasma
is changed. Since these modifications in the localization and in the values of
the current generated can compromize the possibility of stabilization the neo-
classical tearing modes (NTM) in future ITER operative scenarios, a complete
analysis of the fluctuations effects, including also magnetic perturbations and
ripple and describing them on the base of experimental data taken from other
devices, is a crucial issue for modeling ECCD experiments in a more realis-
tic way and individuating the conditions for having an efficient control of the
MHD instabilities through electron cyclotron current drive [39].
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Chapter 5
Conclusions and future

perspectives

In this thesis a general model for studying the fluctuations effects on radiofre-
quency waves current drive in toroidal plasmas in the framework of the quasi-
linear description of wave-particle interaction is presented. These effects are
represented as time dependent perturbations of the magnetic equilibrium quan-
tities, characterized by a phase and an amplitude, which explicit expressions
can be setted on the basis of the physical characteristics of the different fluctu-
ations processes. The corrections to the ray equations due to the perturbations
are derived explicitely and implemented in the fast universal raytracing code
C3PO [21], coupled with the 3-D Fokker-Planck solver LUKE, developed for
radiofrequency current drive simulations in toroidal plasmas with arbitrary
magnetic equilibrium [22]. All the fluctuations processes which evolution time
scales is much slower than wave propagation time scales and bounce particle
motion time scales, preserving the limit of applicability of the WKB eikonal
ansatz in the solution of the Maxwell’s equation, the validity of the quasilinear
description of wave-particle interaction and the bounce-averaging procedure of
the kinetic equation, can be described by the proposed model, without any
other restriction. Since their time scales are much slower than waves prop-
agation times, fluctuations are considered as static in the time interval over
which the ray equations are integrated and the ray path is calculated in the
perturbed non-axisymmetric equilibrium, while the quasilinear loop for esti-
mating the radiofrequency diffusion coefficient and calculating the electron
distribution function (LUKE code), is setted up taking into account the time
evolution of the fluctuations modes, which is comparable with the collisional
period. The electron distribution function can then be evaluated solving the
kinetic equation and taking into account the effect of the long time scale evo-
lution of the fluctuations, and the value of the current generated by the waves
and its density profile can be estimated using the perturbed equilibrium, as
far the perturbed magnetic flux surfaces remain nested.
Two examples of fluctuations processes which effects on radiofrequency current
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5. Conclusions and future perspectives

drive can be described using the proposed approach are presented: stochas-
tic fluctuations of the electron density and of the magnetic field, induced
by electron drift waves and other MHD modes propagating into the plasma
[10, 11, 12], and ripple magnetic field, which is due to the descrete structure
of the system for the generation of the toroidal magnetic field in the devices,
based on a finite set of bobines [31, 32]. Explicit expressions of the equilibrium
perturbations describing the effects of these processes are derived on the basis
of their physical characteristics and discussed in details.
The perturbations generated by the MHD modes are periodic time-dependent
oscillations having a random contribution to the phase, lying on the magnetic
flux surfaces and directed perpendicularly to the unperturbed magnetic field
lines. All these characteristics are well described by the global representation
based on the Fourier series sum illustrated in subsection 3.1.2, and also the
exact relationship between the perturbations amplitude and the wave vector
spectral distribution is derived starting from this, nevertheless the implemen-
tation of the global representation implies several numerical difficulties, in par-
ticular connected with the condition of periodicity of the perturbations. For
this reason an alternative local representation, where the fluctuations phase
is given by an eikonal-like expression and the amplitude of the pertubations
depends by the spectral distribution of the wave vector and by the spatial
profile of the relative level of fluctuations is proposed. The local eikonal-like
representation is a good approximation of the general non-local model for high
values of the fluctuations wave vector, and implies the lack of the periodicity
in space of the perturbations, while preserves the other characteristics of the
oscillations.
The ripple magnetic field is described by a static perturbation of the equi-
librium field which phase is a function of the number of coils N and of the
toroidal angle φ, and which amplitude depends by the geometrical properties
of the bobines. Explicit expressions for the amplitude of the toroidal ripple
magnetic field and for the components of the ripple perturbation generated by
a set of N identical circular coils are reported and discussed in details [31, 32].
The effects of the fluctuations on lower hybrid rays propagation are tested in a
JET-like scenario: ray trajectories and evolution of the refractive index com-
ponents in presence of density and magnetic field fluctuations and magnetic
ripple are reported and compared with the case without perturbations. The
rays trajectories and all the components of the refractive index are detected
to be very sensitive to electron density fluctuations processes, which in opera-
tive scenarios present the maximum relative level at the plasma edge [11, 12],
while the only quantity strongly affected by magnetic field fluctuations, gen-
erally peaked in the interior of the plasma [12], is the toroidal wave number n.
Since the toroidal wave number is no longer a constant of the ray evolution,
both density and magnetic fluctutions induce a breaking in the axisymmetry
of the system. For effects of density fluctuations the ray trajectory becomes
stochastic, this means that the evolution of rays launched by the same posi-
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tion with identical initial values of the spectral quantities (ω and N) in the
same scenario can be different. The ripple magnetic field modifies also strongly
the trajectories and induces a regular modulation of the toroidal wave number
n, the frequency of the oscillations is constant and depends by the number
of coils present in the magnetic system, while the amplitude is great when
the ray propagates in proximity of the plasma edge, where the ripple effect is
strong and it is dominant also respect to density drift-like fluctuations, and
drops rapidly as the wave penetrates into the core, where the ripple effects are
negligible.
Lower hybrid (LH) and electron cyclotron (EC) current drive simulations in
ITER operative scenarios 2 and 4 [40, 41] considering drift wave type fluc-
tuations of the electronic density are performed and the results are reported
and discussed in details. The fluctuations effects on lower hybrid current den-
sity and power deposition profiles in ITER scenario 4 are negligible, the only
quantity lightly affected by the perturbations in LHCD simulations is the to-
tal current generated by the waves, and a small downshift in the value of Itot
(1−2%) is observed taking a maximum fluctuations level of 30% at the plasma
edge. On the contrary, density fluctuations, even if they are well localized at
the plasma edge, affect strongly current density and power deposition profiles
generated by electron cyclotron waves in ITER scenario 2: significant broad-
ening of the profiles and delocalization of the deposited power are observed
for both 1rst harmonic O-mode and 2nd harmonic X-mode taking maximum
fluctuations levels of 30% and 50%, in particular the O-mode is found more
sensitive to these effects. Through a comparative analysis between the results
of several ECCD simulations, a level of density fluctuations at the edge between
the 20% and the 30% is individuated as the threshold above which a significant
broadening of the current density profiles is detected. Since the broadening
of the current density profiles and the delocalization of the deposited power
might compromize the possibility of stabilization of the neoclassical tearing
modes (NTM) through electron cyclotron current drive in future ITER opera-
tive scenarios [39], a complete and detailed analysis of the fluctuations effects,
including also magnetic perturbations and ripple, exploring experimental sce-
narios in existing tokamaks with several levels of fluctuations and comparing
experimental data with code predictions is a crucial issue for improving the
comprehension and the interpretation of ECCD experiments and individuating
the conditions for having an efficient control of the MHD instabilities in future
ITER scenarios.
The versatility of the developed model makes possible its application in the
analysis of a great number of scenarios, and its extension to the study of fluc-
tuations processes which present different physical properties. Simulations of
discharges fully driven by LH waves in Tore Supra tokamak will be performed
considering the equilibrium perturbations, and the influence of plasma fluc-
tuations on bridging the spectral gap [33, 35] will be studied in details and
discussed. More realistic representations of MHD modes induced perturba-
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5. Conclusions and future perspectives

tions could be implemented in future, defining an expression for the amplitude
with a random term (actually the random contribution is contained only in
the phase), or coupling the package C3PO-LUKE with gyrokinetic simulation
codes. The implementation of the global representation illustrated in the third
chapter of the thesis could make possible a more accurated estimation of the
effects of the perturbations with small wave vector values, and a coherent
modeling of the processes generated by several MHD modes (balooning insta-
bilities). The expressions for the ripple field components could be extended to
the general case of non-circular bobines by means of the numerical solution of
the magnetic potential equations [31].
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Appendix A
Coordinates systems

In this appendix the detailed definition of curvilinear coordinates systems de-
scribing the configuration space introduced in section 2.2 is illustrated together
with explicit expressions for the position vector and for the covariant and con-
travariant basis. A more complete description of these sets of coordinates,
including also expressions for the metric coefficients, the Christoffel symbols
and the differential operators, is reported in reference [22].

A.1 System (R,Z, φ)

Definition

The coordinates (R,Z, φ) are defined on the following space:

0 ≤ R ≤ +∞
−∞ ≤ Z ≤ +∞ (A.1)

0 ≤ φ < 2π

They are related to the cartesian coordinates (x, y, z) by the expressions:

R =
√
x2 + y2

Z = −z (A.2)

φ = arctan(y/x) + πH(−x) [2π]

These relations can be inverted to:

x = R cosφ

y = R sinφ (A.3)

z = −Z
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A. Coordinates systems

Position vector

The position vector is given by the following expression:

X = RR̂ + ZẐ (A.4)

Where the orthonormal basis
(
R̂, Ẑ, φ̂

)
is defined as:

R̂ = cosφx̂+ sinφŷ

Ẑ = −ẑ (A.5)

φ̂ = R̂× Ẑ = − sinφx̂+ cosφŷ

Covariant basis

The covariant vector basis is defined as follows:

eR =
∂X

∂R
= R̂

eZ =
∂X

∂Z
= Ẑ (A.6)

eφ =
∂X

∂φ
= R

∂R̂

∂φ
= Rφ̂

Such that the covariant basis becomes:

(eR, eZ , eφ) =
(
R̂, Ẑ, Rφ̂

)
(A.7)

The scaling factors are:

(hR, hZ , hφ) = (1, 1, R) (A.8)

And the normalized tangent basis is:

(êR, êZ , êφ) =
(
R̂, Ẑ, φ̂

)
(A.9)

Contravariant basis

The contravariant vector basis is defined as follows:

eR = ∇R = R̂

eZ = ∇Z = Ẑ (A.10)

eφ = ∇φ =
φ̂

R

Such that the contravariant basis becomes:

(
eR, eZ , eφ

)
=

(
R̂, Ẑ,

φ̂

R

)
(A.11)
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A.2. System (r, θ, φ)

And the normalized reciprocal basis is:

(
êR, êZ , êφ

)
=

(
R̂, Ẑ, φ̂

)
(A.12)

In this system, the normalized reciprocal basis coincides with the normalized
tangent basis, since both bases are orthogonal.

A.2 System (r, θ, φ)

The coordinates (r, θ, φ) are referred to the magnetic axis (Rp, Zp) (see Fig.(2.2))
and are defined on the following space:

0 ≤ r ≤ +∞
0 ≤ θ < 2π (A.13)

0 ≤ φ < 2π

They are related to (R,Z, φ) by the expressions:

r =
√
(R−Rp)2 + (Z − Zp)2

θ = arctan((Z − Zp)/(R−Rp)) + πH(Rp −R) [2π] (A.14)

These relations can be inverted to:

R = Rp + r cos θ

Z = Zp + r sin θ (A.15)

Position vector

The position vector is given by the following expression:

X = RpR̂ + ZpẐ + rr̂ (A.16)

Where the orthonormal basis
(
r̂, θ̂, φ̂

)
is defined as:

r̂ = cos θR̂ + sin θẐ

θ̂ = φ̂× r̂ = − sin θR̂ + cos θẐ (A.17)

Since:

φ̂× r̂ =
(
R̂ + Ẑ

)
×

(
cos θR̂ + sin θẐ

)

=
[(

cos θR̂ + sin θẐ
)
· R̂

]
Ẑ −

[(
cos θR̂ + sin θẐ

)
· Ẑ

]
R̂

= cos θẐ − sin θR̂ (A.18)

125



A. Coordinates systems

Covariant basis

The covariant vector basis is defined as follows:

er =
∂X

∂r
= r̂

eθ =
∂X

∂θ
= r

∂r̂

∂θ
= rθ̂ (A.19)

eφ =
∂X

∂φ
= Rp

∂R̂

∂φ
+ r

∂r̂

∂φ
= (Rp + r cos θ)

∂R̂

∂φ
= Rφ̂

Such that the covariant basis becomes:

(er, eθ, eφ) =
(
r̂, rθ̂, Rφ̂

)
(A.20)

The scaling factors are:

(hr, hθ, hφ) = (1, r, R) (A.21)

And the normalized tangent basis is:

(êr, êθ, êφ) =
(
r̂, θ̂, φ̂

)
(A.22)

Contravariant basis

The contravariant vector basis is defined as follows:

er = ∇r = r̂

eθ = ∇θ = θ̂

R
(A.23)

eφ = ∇φ =
φ̂

R

Such that the contravariant basis becomes:

(
er, eθ, eφ

)
=

(
r̂,
θ̂

R
,
φ̂

R

)
(A.24)

And the normalized reciprocal basis is:

(
êr, êθ, êφ

)
=

(
r̂, θ̂, φ̂

)
(A.25)

Also in this system, the normalized reciprocal basis coincides with the normal-
ized tangent basis, since both bases are orthogonal.
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A.3. System (ψ, s, φ)

A.3 System (ψ, s, φ)

Definition

The coordinates (ψ, s, φ) are in general used to parametrize toroidal mag-
netic configurations with closed flux surfaces, and are defined from the origin
(Rp, Zp) on the closed space:

min(ψ0, ψa) ≤ ψ ≤ max(ψ0, ψa)

0 ≤ θ ≤ smax (A.26)

Where ψ0 is the value of the poloidal flux function at the center (Rp, Zp) and
ψa is the value at the edge. These flux coordinates are related to (r, θ, φ) by
the expressions:

ψ = ψ(r, θ)

s = s(r, θ) (A.27)

These relations can be inverted to:

r = r(ψ, s)

θ = θ(ψ, s) (A.28)

ψ(r, θ) must be a monotonic function of the radial coordinate r from ψ0 at the
center to ψa at the edge. This is the condition for having nested flux surfaces

[25]. The local orthonormal basis
(
ψ̂, ŝ, φ̂

)
is defined as follows:

ψ̂ =
∇ψ
|∇ψ|

ŝ = φ̂× ψ̂ (A.29)

The trasformation from
(
r̂, θ̂

)
to

(
ψ̂, ŝ

)
is a rotation of angle α such that:

(
ψ̂
ŝ

)
=

(
cosα − sinα
sinα cosα

)
·
(
r̂

θ̂

)
(A.30)

Position vector

The expression for the position vector is identical to that defined for (r, θ, φ)
system:

X = RpR̂ + ZpẐ + r(ψ, s)r̂ (A.31)
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A. Coordinates systems

Covariant basis

The covariant vector basis is defined as follows:

eψ =
∂X

∂ψ
=
∂r

∂ψ

∣∣∣∣
s

r̂ + r
∂r̂

∂ψ

∣∣∣∣
s

=
∂r

∂ψ

∣∣∣∣
s

r̂ + r
∂θ

∂ψ

∣∣∣∣
s

θ̂

es =
∂X

∂s
=
∂r

∂s

∣∣∣∣
ψ

r̂ + r
∂r̂

∂s

∣∣∣∣
ψ

=
∂r

∂s

∣∣∣∣
ψ

r̂ + r
∂θ

∂s

∣∣∣∣
ψ

θ̂ (A.32)

eφ =
∂X

∂φ
= Rp

∂R̂

∂φ
+ r

∂r̂

∂φ
= (Rp + r cos θ)

∂R̂

∂φ
= Rφ̂

Such that the covariant basis becomes:

(eψ, es, eφ) =

(
∂r

∂ψ

∣∣∣∣
s

r̂ + r
∂θ

∂ψ

∣∣∣∣
s

θ̂,
∂r

∂s

∣∣∣∣
ψ

r̂ + r
∂θ

∂s

∣∣∣∣
ψ

θ̂, Rφ̂

)
(A.33)

The scaling factors are:

(hψ, hs, hφ) =



√
∂r

∂ψ

∣∣∣∣
2

s

+ r2
∂θ

∂ψ

∣∣∣∣
2

s

,
∂r

∂s

∣∣∣∣
2

ψ

+ r2
∂θ

∂s

∣∣∣∣
2

ψ

, R


 (A.34)

And the normalized tangent basis is:

(êψ, ês, êφ) =

(
1

hψ

[
∂r

∂ψ

∣∣∣∣
s

r̂ + r
∂θ

∂ψ

∣∣∣∣
s

θ̂

]
,
1

hs

[
∂r

∂s

∣∣∣∣
ψ

r̂ + r
∂θ

∂s

∣∣∣∣
ψ

θ̂

]
, φ̂

)
(A.35)

Contravariant basis

The contravariant vector basis is defined as follows:

eψ = ∇ψ = |∇ψ|ψ̂
es = ∇s = ŝ (A.36)

eφ = ∇φ =
φ̂

R

Such that the contravariant basis becomes:

(
eψ, es, eφ

)
=

(
|∇ψ|ψ̂, ŝ, φ̂

R

)
(A.37)

And the normalized reciprocal basis is:

(
êψ, ês, êφ

)
=

(
ψ̂, ŝ, φ̂

)
(A.38)
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A.4. System (ψ, θ, φ)

Explicit expressions for the components of the tangent basis (eψ, es, eφ) can be
derived from the reciprocal basis elements:

eψ =
es × eφ

eψ · es × eφ
=

ψ̂

|∇ψ|

es =
eφ × eψ

es · eφ × eψ
= ŝ (A.39)

eφ =
eψ × es

eφ · eψ × es
= Rφ̂

Then the covariant basis becomes:

(eψ, es, eφ) =

(
ψ̂

|∇ψ| , ŝ, Rφ̂
)

(A.40)

Where the scaling factors are:

(hψ, hs, hφ) =

(
1

|∇ψ| , 1, R
)

(A.41)

And the normalized tangent basis is the following:

(êψ, ês, êφ) = (ψ̂, ŝ, φ̂) (A.42)

Also in this case the normalized tangent basis coincides with the normalized
reciprocal basis, since both bases are orthogonal. By comparing expressions
(A.32) and (A.39) the following relations are derived:

∂r

∂ψ

∣∣∣∣
s

=
cosα

|∇ψ|
∂θ

∂ψ

∣∣∣∣
s

=
− sinα

r|∇ψ| (A.43)

∂r

∂s

∣∣∣∣
ψ

= (ŝ · r̂) = sinα

∂θ

∂s

∣∣∣∣
ψ

=

(
ŝ · θ̂

)

r
=

cosα

r
(A.44)

A.4 System (ψ, θ, φ)

Definition

The coordinates (ψ, θ, φ) are defined from the origin (Rp, Zp) on the space:

min(ψ0, ψa) ≤ ψ ≤ max(ψ0, ψa) (A.45)
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A. Coordinates systems

Where ψ0 is the value of the poloidal flux function at the center (Rp, Zp) and
ψa is the value at the edge. These coordinates are related to (r, θ, φ) by the
expression:

ψ = ψ(r, θ) (A.46)

This relation can be inverted to:

r = r(ψ, θ) (A.47)

ψ(r, θ) must be a monotonic function of the radial coordinate r from ψ0 at the
center to ψa at the edge. This is the condition for having nested flux surfaces
[25].

Position vector

The expression for the position vector is identical to that defined for (r, θ, φ)
system:

X = RpR̂ + ZpẐ + r(ψ, θ)r̂ (A.48)

Covariant basis

The covariant vector basis is defined as follows:

eψ =
∂X

∂ψ
=
∂r

∂ψ

∣∣∣∣
θ

r̂

eθ =
∂X

∂θ
=
∂r

∂θ

∣∣∣∣
ψ

r̂ + r
∂r̂

∂θ
=
∂r

∂θ

∣∣∣∣
ψ

r̂ + rθ̂ (A.49)

eφ =
∂X

∂φ
= Rp

∂R̂

∂φ
+ r

∂r̂

∂φ
= (Rp + r cos θ)

∂R̂

∂φ
= Rφ̂

Such that the covariant basis becomes:

(eψ, eθ, eφ) =

(
∂r

∂ψ

∣∣∣∣
θ

r̂,
∂r

∂θ

∣∣∣∣
ψ

r̂ + rθ̂, Rφ̂

)
(A.50)

The scaling factors are:

(hψ, hθ, hφ) =

(
∂r

∂ψ

∣∣∣∣
θ

,

√
∂r

∂θ

∣∣∣∣
2

ψ

+ r2, R

)
(A.51)

And the normalized tangent basis is:

(êψ, êθ, êφ) =

(
r̂,

1

hθ

[
∂r

∂θ

∣∣∣∣
ψ

r̂ + rθ̂

]
, φ̂

)
(A.52)
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A.4. System (ψ, θ, φ)

Contravariant basis

The contravariant vector basis is defined as follows:

eψ = ∇ψ = |∇ψ|ψ̂

eθ = ∇θ = θ̂

r
(A.53)

eφ = ∇φ =
φ̂

R
Such that the contravariant basis becomes:

(
eψ, eθ, eφ

)
=

(
|∇ψ|ψ̂, θ̂

r
,
φ̂

R

)
(A.54)

And the normalized reciprocal basis is:
(
êψ, êθ, êφ

)
=

(
ψ̂, θ̂, φ̂

)
(A.55)

Explicit expressions for the components of the tangent basis (eψ, eθ, eφ) can
be derived from the reciprocal basis elements:

eψ =
eθ × eφ

eψ · eθ × eφ
=

r̂

|∇ψ| cosα

eθ =
eφ × eψ

eθ · eφ × eψ
=

rθ̂

cosα
(A.56)

eφ =
eψ × eθ

eφ · eψ × eθ
= Rφ̂

Then the covariant basis becomes:

(eψ, eθ, eφ) =

(
r̂

|∇ψ| cosα,
rθ̂

cosα
,Rφ̂

)
(A.57)

Where the scaling factors are:

(hψ, hθ, hφ) =

(
1

|∇ψ| cosα,
r

cosα
,R

)
(A.58)

And the normalized tangent basis is the following:

(êψ, êθ, êφ) = (r̂, θ̂, φ̂) (A.59)

It is important to observe that in this coordinates system the normalized tan-
gent basis (A.59) does not coincide with the normalized reciprocal basis (A.55),
since both bases are not orthogonal. By comparing expressions (A.54) and
(A.57) the following relations are derived:

∂r

∂ψ

∣∣∣∣
θ

=
1

|∇ψ| cosα
∂r

∂θ

∣∣∣∣
ψ

= r

√√√√
1(
θ̂ · ŝ

) − 1 = r tanα (A.60)
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Appendix B
Derivatives of the equilibrium

In this appendix are reported explicit expressions for the derivatives of the
equilibrium quantities βTα, ωpα and ωcα calculated considering the equilibrium
perturbations generated by the fluctuations and implemented in the raytrac-
ing routine C3PO [21]. Remembering that the fluctuations processes time
scales are slow compared to the propagation times the perturbation are con-
sidered static respect to the ray evolution and no explicit time dependence is
introduced in the dispersion relation. Remebering the general expressions for
the perturbed equilibrium quantities illustated in chapter 2, the derivatives
become:

∂βTα
∂ρ

=
βTα
2Tα

∂Tα
∂ρ

=
βTα
2Tα

(
∂T α
∂ρ

+
∂T̃α
∂ρ

)
;

∂βTα
∂θ

=
βTα
2Tα

∂Tα
∂θ

=
βTα
2Tα

∂T̃α
∂θ

; (B.1)

∂βTα
∂φ

=
βTα
2Tα

∂Tα
∂φ

=
βTα
2Tα

∂T̃α
∂φ

;

∂ωpα
∂ρ

=
ωpα
2nα

∂nα
∂ρ

=
ωpα
2nα

(
∂nα
∂ρ

+
∂ñα
∂ρ

)
;

∂ωpα
∂θ

=
ωpα
2nα

∂nα
∂θ

=
ωpα
2nα

∂ñα
∂θ

; (B.2)

∂ωpα
∂φ

=
ωpα
2nα

∂nα
∂φ

=
ωpα
2nα

∂ñα
∂φ

;
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B. Derivatives of the equilibrium

∂ωcα
∂ρ

=
ωcα
B2

[
B̃ρ
∂B̃ρ

∂ρ
+

(
σIBp + B̃s

)(
σI
∂BP

∂ρ
+
∂B̃s

∂ρ

)
+

+
(
σBBT + B̃φ

)(
σI
∂BT

∂ρ
+
∂B̃φ

∂ρ

)]
;

∂ωcα
∂θ

=
ωcα
B2

[
B̃ρ
∂B̃ρ

∂θ
+

(
σIBp + B̃s

)(
σI
∂BP

∂θ
+
∂B̃s

∂θ

)
+

+
(
σBBT + B̃φ

)(
σI
∂BT

∂θ
+
∂B̃φ

∂θ

)]
; (B.3)

∂ωcα
∂φ

=
ωcα
B2

[
B̃ρ
∂B̃ρ

∂φ
+

(
σIBp + B̃s

) ∂B̃s

∂φ
+

(
σBBT + B̃φ

) ∂B̃φ

∂φ

]
;
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quando siamo stati lontani, per avere intrapreso questo splendido cammino
insieme.
Ringrazio tutti i miei colleghi di dottorato e di studi universitari, in modo par-
ticolare il Toscano e il Tenti, per tutti i momenti trascorsi insieme, anche di
studio, e le belle serate passate fra i giorni di lavoro, a loro mando un grande
in bocca al lupo per il futuro e un arrivederci in giro da qualche parte, per un’
altra delle nostre solite cene.
Voglio ricordare i miei amici, senza i quali tante cose in questi anni non avreb-
bero avuto lo stesso significato. Grazie a Teo e ad Andre per i tantissimi
momenti vissuti insieme, fin dagli anni del liceo, per i viaggi, le serate, le
risate, le discussioni, anche per le liti, che ogni tanto in fondo ci vogliono e
fanno crescere...Grazie ad Alberto e Claudio per esserci sempre, con la loro
generosità e semplicità, e per essere due grandi esempi di persone coerenti e
a loro modo controcorrente, in un mondo dove non è tanto semplice andare
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