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Introduction

This Ph.D. thesis aims at speaking about physics and finance; in its intent
it would like to focus on modeling and analysis of financial time series rather
than finance itself, even though financial applications are a quite natural way
out of the former. As a physicist, I appreciate the term Econophysics, coined
in the mid nineties by H. Stanley to address the growing number of papers by
physicists venturing into the lands of financial markets and trying to find out
the underlying price dynamics, if any. Physicists had already recognized that
market dynamics could not be tackled with the tools of deterministic physics,
while more recent attempts to single out analogies with quantum mechanics
may sound at least risky. Nevertheless, statistical mechanics and the intrinsic
probabilistic character of the quantum world set up a connection with social
sciences, as stated by E. Majorana [1] in 1942. More recently, the study of
complex systems strengthened the link, being clearer and clearer that collec-
tive behaviors, not easily justifiable in terms of individual rational decisions,
have to be taken into account when addressing relevant financial phenomena
like bubbles and crashes: many is not complex and complex is more. For sure,
physicists are trained to think about predictions as probabilistic concepts as
well, and many of them master the statistical tools adequate to analyze finan-
cial prices viewed as the outcome of many endogenous and exogenous factors
subject to uncertainty. In particular, statistical mechanics provided concepts
and frameworks which have found unexpected analogies in financial contexts.
As an example, the Tsallis distribution, emerging in the scope of non exten-
sive statistical mechanics, has proved to be one of the best candidate to model
high frequency price changes and it can be justified as the result of a general-
ized Langevin dynamics for the price return in which the damping coefficient
is stochastic either. Even more important, physicists often own the curiosity
which is necessary to go beyond sample analysis, asking for the dynamics which
produced that sample.

The other way round, concepts first appeared in social sciences have now
permeated physics. In 1900, the random walk process had been used by L.
Bachelier to describe the price evolution for the first time, a few years before
the seminal papers about Brownian motion by A. Einstein [2] and M. Smolu-
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Introduction

chowski [3]. Not to mention power law distributions: they deeply characterize
the scaling laws of many long range correlated systems, but they were intro-
duced by the Italian social economist V. Pareto [4] when investigating the
distribution of wealth of individuals. Besides motivations and historical chron-
icles, eminent physicists like R. N. Mantegna, J. P. Bouchaud, H. E. Stanley
and many others, have given clear contributions to the analysis of financial
data and phenomena, supporting a quantitatively backed questioning of estab-
lished paradigms, one for all the Gaussianity of yields which was the building
block of standard derivative pricing practice far too long.

The work illustrated in this thesis aims to put itself in the above perspec-
tive. The one of Econophysics as an interdisciplinary sphere in which tools
coming from different areas are welcome whenever they help in improving our
comprehension of financial or economic phenomena, or at least the quantitative
description of the known empirical facts and the huge amount of “experimen-
tal” data coming from financial markets nowadays. Some of those tools may
be familiar to physicists and mathematicians, such as the theory of stochastic
processes and the formalism of stochastic calculus, some other are may be less,
like Bayesian inference. In the first chapter, we will revise briefly the main
evidences of non Gaussianity, known as “stylized fact”, focusing on the slow
decay of the empirical distributions, especially for high frequency data, and
on the non constant erratic behavior of the amplitude of price fluctuations.
Even more important, the return-volatility correlation and the volatility au-
tocorrelation, which reflect an underlying dynamics and support the idea of
the volatility as a fundamental, even though hidden, process. In Chapter 2 we
will introduce a general class of diffusion processes with multiplicative noise
which are recurrent in study of many physical systems. We will present an ex-
act algorithmic solution for the moments of the associated probability density
function; it will permit to characterize the process and its relaxation modes
at all times, revealing interesting scaling properties, not least its ability to
generate power law tailed stationary distributions. Some specific limits of this
general process turn out to have been considered extensively in the literature
to describe the dynamics of the stochastic process driving the volatility in the
context of Stochastic Volatility Models, which will be introduced in Chapter 3.
In particular we will present the linear approximation of the so called expo-
nential Ornstein-Uhlenbeck model, deriving closed form expressions for the
cumulants. Their analysis will confirm the non Gaussian nature of the linear
model and will be useful for pricing purposes. Then we will present a different
model, in which the volatility distributes asymptotically as an Inverse Gamma
variable, in agreement with past empirical analysis. Here, the volatility dy-
namics is again a special limit of the general process studied in Chapter 2;
we will carry out an exhaustive characterization of this model, drawing exact
expressions for the return-volatility correlation and the volatility autocorrela-
tion, and we will describe a mechanism by which the power law tails of the
volatility induce power law tails for price returns. We will also estimate the
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model parameters from daily financial data and we will test to what extent
the proposed dynamics is able to capture the scaling properties of empirical
return distributions. In Chapter 4 a possible application to financial series of
Bayesian Product Partition Models (PPMs) will be described, in which returns
are modeled as random variables drawn from possibly different distributions
and clusters of statistically similar observations are elicited. We will describe
two different approaches: in the first one cluster selection will be made based
on the mean of the returns distribution, while in the second the partition struc-
ture will refer to the volatilities of the observations. We will also describe a
suitable Markov Chain Monte Carlo technique to implement these approaches
and we will design an efficient algorithm for outliers identification.

In the last chapter we will address specific financial issues: derivative pric-
ing and risk management. The calibration of the linearized version of the
exponential Ornstein-Uhlenbeck model, presented in Chapter 3, will be car-
ried out exploiting real option prices from the Milan Stock Exchange and an
efficient and general calibration procedure will be implemented. Along the way
we will see also an example of how the features of the return distribution are
reflected by market option prices. Then PPMs will be used to compute risk
exposure for single assets and the results will be compared with classical Max-
imum Likelihood estimates based on fat tailed Student-t distributions. Finally
we will consider the case of portfolios containing derivative instruments, where
non Gaussian features emerge as a consequence of the nonlinearity of those
contracts. A general methodology based on the generalized Fourier transform
formalism will be proposed to efficiently compute risk estimates as well as their
sensitivities for these portfolios. All the obtained results will be summarized at
the end of the thesis, along with some possible extension and related research
topics and perspectives.

The studies and the results which are the object of this work are docu-
mented by the following scientific publications:

[5] G. Bormetti, M. E. De Giuli, D. Delpini and C. Tarantola, Bayesian
Value-at-Risk with Product Partition Models, Quantitative Finance (2010),
doi: 10.1080/14697680903512786.

[6] D. Delpini, G. Bormetti, M. E. De Giuli and C. Tarantola, Estimating
Value-at-Risk with Product Partition Models, In: S. Co. 2009 - Com-
plex data modeling and computationally intensive statistical methods
for estimation and prediction, Proceedings. 2009, Maggioli Editore.

[7] G. Bormetti, V. Cazzola, D. Delpini, G. Montagna and O. Nicrosini, The
low volatility fluctuations regime of the exponential Ornstein-Uhlenbeck
model, Journal of Physics: Conference Series, 221, 012014 (2010).

[8] G. Bormetti, V. Cazzola and D. Delpini, Option pricing under Ornstein-
Uhlenbeck stochastic volatility: a linear model, International Journal of
Theoretical and Applied Finance, 13, 1047 (2010).
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[9] G. Bormetti and D. Delpini, Exact moment scaling from multiplicative
noise, Physical Review E, 81, 032102 (2010).

[10] G. Bormetti, V. Cazzola, D. Delpini and G. Livan, Accounting for risk of
non linear portfolios, The European Physical Journal B, 76, 157 (2010).

They have been presented also in the form of oral presentations in the following
international conferences, meetings and seminars:

• Option Pricing under Ornstein-Uhlenbeck Stochastic Volatility Models,
Bayesian Analysis and Econophysics for Financial Markets, mini work-
shop at the Department of Statistics - Athens University of Economics
and Business, Athens, June 2nd-4th, 2009.

• Estimating Value-at-Risk with Product Partition Models, S.Co. 2009
- Complex Data Modeling and Computationally Intensive Statistical
Methods for Estimation and Prediction, Milano, September 14th-16th,
2009.

• Ornstein-Uhlenbeck Stochastic Volatility Models and Option Pricing, Econo-
physics Colloquium 2009, Erice, October 25th-31st, 2009.

• Exact Moment Scaling from Multiplicative Noise, seminar at the Depart-
ment of Political Economics and Quantitative Methods - University of
Pavia, April 28th, 2010.
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Chapter 1
Stylized facts in financial
markets

In this chapter, we will review the first attempts to model the price of a finan-
cial asset as a stochastic process, from the work of Bachelier, who proposed
a Gaussian process for the price itself, to the much more realistic Geometric
Brownian Motion (GBM), introduced by Osborne and Samuelson and predict-
ing a Gaussian law for price logarithm. Then, we will summarize a body of
empirical evidences about financial time series, surprisingly stable across dif-
ferent markets and known as “stylized facts”. We will see that the empirical
distributions of price variations are characterized by a probability for extreme
events which is much more higher than predicted by a Gaussian law. Contrar-
ily to what assumed by the GBM model, the amplitude of price fluctuations,
the so called volatility, is not constant. We will see that it varies with time,
and that its evolution closely resembles the paths of a stochastic process. We
will also inspect the correlations which are present in financial time series, in
particular between past returns and future volatility and between volatility
values at different times. We will conclude that Geometric Brownian Motion
is just an approximation of the price actual dynamics while more realistic de-
scriptions are mandatory in order to capture the empirical evidences discussed
here.

1.1 The Gaussian paradigm

The modeling of price evolution in financial markets is carried out typically in
terms of stochastic processes, of which the most cited example is probably the
Brownian motion. The theoretical description of this process was accomplished
by Einstein when dealing with the determination of the Avogadro number [2],
even though the formalization of the random walk, of which the Brownian
motion is a scaling limit, was first attempted by Louis Bachelier in its pioneer-
ing Ph.D. thesis [11]. Having in mind the problem of the rational pricing of
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1. Stylized facts in financial markets

derivative instruments in speculative markets, for the first time he proposed
to describe prices of financial instruments as stochastic processes. Bachelier
considered a Markovian evolution for the stock price, so that the conditional
probability of the future price St+τ at time t+ τ only depends on the present
value St, and not on the knowledge of the whole past history:

p(St+τ | St′ , t′ ≤ t) = p(St+τ | St) .

From this Markov property, Bachelier was able to recognize that the above
transition probability satisfies what is now called the Chapman-Kolmogorov
equation 1

p(St+τ | S0) =

∫
p(St+τ | St)p(St | S0) dSt . (1.1)

Implicitly, Bachelier assumed also the homogeneity and stationarity conditions

p(St+τ | St) = p(St+τ − St; τ)

and from Eq. (1.1) he deduced the Gaussian law for the distribution of ab-
solute price changes, not recognizing that possible solutions also included the
whole family of Levy-Khintchine infinitely divisible distributions (e.g. the sta-
ble Levy-Pareto and the Poisson distributions). From the point of view of
Stochastic Differential Equations (SDEs), the above assumptions are incorpo-
rated assuming that the price change evolution is governed by the following
equation

dSt = µ dt+ σ dWt , St=t0 = S0 , (1.2)

where the constant µ is the mean growth rate of St, dWt
.
= Wt+dt −Wt repre-

sents the infinitesimal variation of a standard Wiener process modeling price
fluctuations, and σ is a constant modulating their amplitude. It follows di-
rectly from the properties of dW that the solution St − S0 of Eq. (1.2) for the
time scale ∆t = t− t0 is a Gaussian random variable with mean µ∆t and vari-
ance σ2∆t, and that equation describes what is called an Arithmetic Brownian
Motion (ABM).

Despite its intuition, the Bachelier’s solution is not enough motivated from
an economic point of view, since it predicts negative prices with possibly strong
probabilities. In 1959 the physicist M. Osborne [13], followed by P. Samuelson
and R. Merton [14, 15] during the sixties, proposed a much more realistic
description which is obtained by considering a Brownian motion for the price
logarithm and replacing Eq. (1.2) with the following

dSt = µSt dt+ σSt dWt , St=t0 = S0 . (1.3)

What is Normally distributed is now the logarithmic variation2 log (St/S0)
(log-return), instead of the absolute variation, while the price itself distributes

1For an introduction to stochastic processes and Îto stochastic calculus, whose rudiments
will be used in the following pages, see or instance [12].

2We choose the convention of indicating with “log” the logarithm to the base e.
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1.2. Power laws in financial markets

according to a Log-Normal law:

St = S0 e

(
µ−σ2

2

)
∆t+σWt .

In the context of a multiplicative model such as (1.3), the parameter σ is called
the volatility of the price, and in financial analysis it is a fundamental quantity
whose empirical features are to be carefully taken into account when looking for
a realistic model of financial data, as we will see in the following section. Since
the exponential of the arithmetic mean of logarithms is the geometric mean of
actual prices, it is said that Eq. (1.3) defines a Geometric Brownian Motion.
The choice of modeling returns instead of absolute variations is common in
theoretical finance, where it is assumed that price changes are proportional
to prices themselves and the fundamental quantities to be modeled are the
relative increments3 ηt, with St = S0(1 + ηt). This approach is justified since
stock prices are somewhat arbitrary while relative increments are much more
stable across different markets and stocks; however, for high frequency data
(variations over time scales of order of minutes of less) the assumption of
a multiplicative model is much less justified (see chapter 6 in [16]). As it
will be discussed in detail later on, the dynamics (1.3) and a bunch of other
assumptions about the financial market, are the basis of the celebrated Black,
Scholes and Merton theory of rational option pricing.

1.2 Power laws in financial markets

Today, prices of financial products, ranging from stocks, commodities, ex-
change rates and derivative instruments written on these underlying assets,
are available in huge databases and price changes are recorded over time scales
of minutes or less. In recent years, the statistical analysis of this data, espe-
cially those from the stock and foreign exchange markets, has been one of the
main concerns for the Econophysics community and led to collect a number of
well defined empirical evidences, surprisingly stable across different markets,
known as “stylized facts”.

Before discussing these evidences we briefly recall some basic definitions.
For a given probability density function (PDF) p(x; t) (generally time depen-
dent), we define the characteristic function (CF) as its Fourier transform:

f(ω; t) =

∫ +∞

−∞
p(x; t) eiωxdx ; (1.4)

the cumulants can be expressed in terms to f(ω; t) through the relationship

kn(t) = (−i)n ∂
n log f(ω; t)

∂ωn

∣∣∣∣
ω=0

, (1.5)

3For time scales ∆t of the order of one trading day of less, relative variations are usu-
ally small and in this limit their modeling can be confused with that of the log-returns:
log(St/S0) ≈ (St − S0)/S0

.
= ηt.
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1. Stylized facts in financial markets

Figure 1.1: Probability density function of high frequency (one minute) changes
in the Standard & Poor 500 index from January 1984 to December 1989,
compared with the Gaussian distribution fitting the data (dotted line) and
with a fit with a Levy stable distribution. From [17].

and they define the relevant features of the shape of the PDF. Besides the mean
and the variance, the concepts of skewness ζ and kurtosis κ are particularly
relevant:

ζ(t) =
k3(t)

k2(t)3/2
, κ(t) =

k4(t)

k2(t)2
. (1.6)

Non zero skewness indicates an asymmetric PDF, the right (left) tail being
heavier than the other for ζ > 0 (ζ < 0); on the other hand, the kurtosis
is an indicator of how “fat” the tails are with respect to those of a Normal
distribution which has κ = 0 by definition.

Even before the introduction of the GBM, systematic deviations from Nor-
mality in the empirical distributions of price changes had been collected. More
precisely, the observed distribution of the differences log(St+∆t) − log(St) ex-
hibits a higher and narrower peak and much larger probabilities for extreme
events than the Gaussian distribution fitting the data (an example is shown in
Fig. 1.1) qualifying itself as a leptokurtic distribution, the degree of leptokur-
tosis being much higher for high frequency data. The first attempt to take into
account explicitly this leptokurtic nature dates back to Mandelbrot’s studies
about cotton prices [18], soon after supported also for stocks by Fama [19], who
proposed for log(St) a process whose increments are distributed accordingly to
a non Gaussian Levy stable law, whose PDF decays with power law tails of
index 0 < ν < 2:

p(x) ∼
|x|→∞

1

x1+ν
,

with X = log(St+∆t/St).
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1.3. The random nature of the volatility
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Figure 1.2: Daily log-returns for the Dow-Jones index during the period from
1992 to 2008.

With this choice, as confirmed by the example reported in Fig. 1.1, these
distributions capture the shape of the central region of the data, even though
they tend to overweight the tails. Since ν < 2 a major consequence of Mandel-
brot’s assumptions is that returns would have infinite variance, posing serious
interpretation problems when dealing with real data (from finite size samples).
A way out of this drawback is represented by the Truncated Lévy Flights [20],
introduced by R. N. Mantegna, which are processes characterized by a non
Gaussian Lévy stable distribution in the central region, but whose tails are
truncated to zero or feature a smooth exponential cutoff [21]. Nevertheless,
the power-law decay of return distributions was confirmed by more recent
studies [22], showing for stocks of individual companies that the distributions
decay in agreement with a tail index 2.5 < ν < 4 (well outside the Lévy
stable regime). In particular, this kind of decay can be well reproduced by
means of Student’s t-distributions [16, 23, 24, 17, 25], which feature power-law
tails while having finite variance whenever the number of degree of freedom is
greater than 2.

1.3 The random nature of the volatility

As discussed above, empirical return distributions decay much more slowly
than expected for the GBM model (1.3); the observed fluctuations in the sec-
ond moment of the distribution or, equivalently, the non constant behavior
of the volatility σ, represent the other prominent evidence which can not be
accounted for by such a simple model. This effect can be seen clearly by look-
ing at the typical behavior of a financial series, as in Fig. 1.2, which shows
the non constant nature of the amplitude of price fluctuations (referred to as
heteroskedasticity). More precisely, we can see that the volatility tends to con-
centrate and then to “explode” as time goes by, and the periodic alternation
of regimes of high and low volatility is known as persistence.

Before addressing this issue in more detail, let us discuss the more common
proxies by which we can access the volatility from return data. Indeed, unlike
prices, volatilities are not directly observed on the market, and suitable defini-
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1. Stylized facts in financial markets
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Figure 1.3: Time evolution of the high-frequency volatility σhf for the Spanish
company Telefonica from 2001 to 2003.

tions in term of the former are needed. Inspired by the GBM model, for which
the variance of log-returns at the scale ∆t is simply σ2∆t, the most natural
definition of the volatility is that of standard deviation of the sample. Given
the price time series S = {S0, S1, S2, . . . }, if we indicate as Lk = log(Stk+1

/Stk)
the k-th return of the sample R = {L0, L1, L2, L3, . . . , LN−1}, the historical
volatility σhist is defined by

σ2
hist =

1

(N − 1)∆t

N−1∑
k=0

(Lk − µ̂L)2 , (1.7)

where µ̂L =
∑N−1

k=0 Lk/N stays for the log-return sample mean. A slightly
different definition is the one given by Bouchaud in [16] (see also [26, 27]) of
high frequency volatility as the local average of absolute returns Rk = (Stk+1

−
Stk)/Stk over small time scales (tk+1 − tk = 5 minutes)

σhf =
1

Nd

Nd∑
1

|Rk(5
′)| , (1.8)

where Nd is the number of 5 minutes intervals within a trading day.
In a more general way than Eq. (1.3), zero mean returns dXt could be

modeled with a stochastic equation of the form

dXt =
dSt
St
−
〈
dSt
St

〉
= σt dWt , (1.9)

accounting for a non constant volatility. This way, returns and volatilities are
related by the average relation 〈σt〉 =

√
〈dX2

t 〉 /dt. In empirical analysis, when
the time resolution ∆t is small enough, we can approximate dt ≈ ∆t and dXt

with ∆Xt and, even though not justified from the analytical point of view, we
could disregard the average value, and adopt as a definition of instantaneous

10



1.4. Correlations in financial data

Figure 1.4: Distribution of σhf for the S&P500 index during the period 1990-
2001, fitted with a Log-Normal or an Inverse Gamma distribution. From [16].

volatility [28] the relation

σinst,t =

√
∆X2

t

∆t
. (1.10)

No matter what the chosen proxy is, the volatility is not constant in time and
its evolution closely resembles the path of a random variable, as illustrated
in the Fig. 1.3. If we take for serious the idea of modeling the volatility as a
random quantity, we could ask ourselves which its distribution is. Independent
analysis [16, 29] clearly show that a good fit of the volatility for small time
scales can be obtained with a Log-Normal or an Inverse Gamma distribution.
For the case of the Standard & Poor 500 (S&P500) index, the two fits of the
high frequency volatility (1.8) are compared in Fig. 1.4; even though the re-
sults are comparably good, the Inverse Gamma law better reproduces extreme
realizations. It is interesting to notice that the emerging of an inverse gamma
distribution can be motivated. Indeed, it is reasonable to postulate that the
past activity, as measured for instance by the absolute value of close to close
price differences, influences the future volatility and the Inverse Gamma dis-
tribution turns out to be the equilibrium distribution of the volatility for the
simplest case of a model incorporating this feedback effect (see Chapter 20
in [16]).

1.4 Correlations in financial data

Besides the distributions of returns or the volatility, several studies have been
devoted to quantitatively asses the nature of time correlations in financial data.
In most empirical studies, returns time series are analyzed as if they were made

11



1. Stylized facts in financial markets
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Figure 1.5: Log-linear plot of the autocorrelation function for the S&P500
index log-returns sampled at the scale ∆t = 1 min. From [30].

of independent random variables. The pairwise correlation between returns can
be investigated by looking at the return autocorrelation function

C∆t(τ) =
〈LtLt+τ 〉 − 〈L2

t 〉
〈L2

t 〉 − 〈Lt〉2
,

where the superscript ∆t stands for the time lag the return is referred to,
that is Lt = log(St+∆t/St), and it will be frequently omitted if not necessary.
As a matter of fact, C∆t(t) decays exponentially and very rapidly, vanishing
with time constants of the order of some minutes for liquid markets [31, 32,
30] as shown in Fig .1.5. The return-volatility correlation and the volatility
autocorrelation are more interesting. Taking into account that the square
of the return dX2

t is proportional to σ2
t , these quantities can be empirically

estimated through the following correlation functions [28, 33, 34]:

L∆t(τ) =

〈
dXtdX

2
t+τ

〉
〈dX2

t 〉2
(1.11)

A∆t(τ) =

〈
dX2

t dX
2
t+τ

〉
− 〈dX2

t 〉
〈
dX2

t+τ

〉
Var [dX2

t ]
. (1.12)

As for the return-volatility correlation, it is found to be compatible with zero
for τ < 0, negative and exponentially decaying [16] for positive values of the
correlation time τ :

Lempirical(τ) = −H(τ) A e−
τ

τL ,

where H stands for the Heaviside step function. However, the amplitude of the
correlation A and the decay time τL are found to be rather different for single
stocks and indexes. In Fig. 1.6 it is reported the exponential fit of the S&P
500 data from 1970 to 2010, corresponding to A = 37.5 and τL = 15.1 days
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1.4. Correlations in financial data
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Figure 1.6: Return-volatility correlation estimated from the daily returns of
the S&P500 index during the period 1970-2010.

for a time resolution of ∆t = 1 day. The same kind of analysis carried out by
averaging over 437 U.S. stock [16] shows that the amplitude is much smaller
for single stocks, A ≈ 1.9, and the correlation time much longer, τL ≈ 69 days.
The correlation (1.11) is often referred to as “leverage” correlation, since it can
be associated with the leverage effect, the financial effect by which price drops
increase the subsequent volatility. Indeed, as discussed before, correlations ex-
ist between past returns and future volatilities, but the economic underlying
mechanism is still debated. For the case of single stocks, the small amplitude
of the correlation may indicate a simple retarding effect [16]: indeed, while
price variations are independent on the price, the volatility in the representa-
tion (1.9) is proportional to the absolute value of the return

σ2
t ∝ dX2

t =
dS2

t

S2
t

,

so that past drops in the price are able to increase the future volatility since
the price enters the denominator. On the other hand, for indexes, which are
a combination of the main representative stocks in a sector of the market, the
strength of the correlation suggests the presence of a panic effect in which
down moves of the market as a whole increase the uncertainty for the future
and they trigger a rise of the activity, thus making the market sector more
volatile.

Even though pairwise correlation between price changes decays very rapidly,
it does not imply that price changes are independent random variables. In-
deed, various studies showed that non linear functions of those variables, for
instance their absolute values or their squares, have much longer memory. The
volatility autocorrelation (1.12) measures how much the volatility at time t+τ
differs from the value it had at time t. Unlike the leverage function, the em-
pirical volatility-volatility correlation can not be described in terms of a single
characteristic time. Fig. 1.7 shows that the two regions of A(τ) for small and

13



1. Stylized facts in financial markets
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Figure 1.7: Daily volatility autocorrelation for the Dow Jones index from 1928
to 2003, along with two exponential fits, considering the short and the long τ
region respectively. They show that A(τ) exhibits at least two characteristic
times and that it is a long range correlation.

large τ are nicely reproduced by an exponential fit if considered separately.
This shows that A(τ) has at least two characteristic times, one of the order
of ten days (comparable with the decay time of the leverage correlation) while
the other is much longer, approximately 500 days for the Dow-Jones index.
The multiple time scale nature of the volatility autocorrelation is quite ac-
cepted, but the functional form of the decay is still under investigation. Past
studies [35, 36, 37, 31, 27, 38] found evidence that the decay is of power law
type, but, as remarked in [16], it is not trivial to discriminate between a real
power law decay or, for instance, a superposition of exponentials with different
characteristic times and adjustable amplitudes plus an additive constant. The
presence of long term memory in the square of price changes, not showing in
the price changes themselves, is a strong indication of the fact they are not the
only relevant process. Another stochastic process may drive price variations
and it is what we call the volatility.
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Chapter 2
Multiplicative noise diffusion
process

Many different physical phenomena exhibit a complex behavior characterized
by long range correlations, memory effects and the emergence of non Gaussian,
most often power law, distributions. These systems are usually contrasted
with classical statistical systems of free massive particles, showing the Gaus-
sian distribution e−p

2/2mT in the momentum p, which are considered to be
paradigmatic of equilibrium, uncorrelated or short range correlated systems.
A microscopic description of the Maxwell Boltzmann statistics is provided by
the Langevin equation [12, 39]

ẋ+ γx = ξ ,

where x represents the statistical variable of interest (the momentum for a
system of free particles) and, as introduced originally [40], γ is a constant
damping coefficient while ξ is the additive stochastic noise term. Recently
it has been realized [41] that the Gaussian paradigm is not the most general
description of the equilibrium state and that power law tails in the equilibrium
distribution stem naturally when assuming also the damping coefficient γ to
be stochastic. From a macroscopic point of view, this superposition of an
additive and a multiplicative noise leads to the following Fokker-Planck (FP)
equation [41] with a quadratic diffusion coefficient

∂p

∂t
(x, t) = − ∂

∂x
[(ax+ b)p(x, t)] +

1

2

∂2

∂x2

[
(cx2 + dx+ e)p(x, t)

]
, (2.1)

where a, b, c, d, e are real constants. Until recently an analytical characteriza-
tion of the process (2.1) was available only at the stationary state [41], while at
finite times it could be accomplished only as a formal expansion on the eigen-
functions of the FP operator [42]. On the other hand, in [9] a finite time exact
analysis has been carried out in terms of the moments of the associated PDF. A
quite interesting point is that the dynamics (2.1), generalized for possibly time

15



2. Multiplicative noise diffusion process
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Figure 2.1: Left panel: PDF of longitudinal velocity variations in a turbulent
fluid for different length scales, from [43]. Right panel: PDF of price changes in
the U.S dollar - German mark exchange rate for different time delays, from [44].
In both the examples, real data are well reproduced by the PDF corresponding
to specific instances of the dynamics (2.2).

dependent coefficients, emerges in the study of a large and hetereogeneus set
of physical phenomena, from turbulent velocity flows [45], power law spectra
in e+e−, pp̄ and heavy ion collisions [46], anomalous diffusion processes [47],
non stationary Markov processes [48] with Hurst exponent H 6= 1/2, to heart-
beat interval fluctuations [49]. Surprisingly, it can also describe exchange rate
variations in foreign exchange markets [50, 44] and stock price variations in
option markets [51, 52].

In this chapter, an extended and detailed version of the results published
in [9] is provided. We will introduce and analyze the microscopic dynamics
associated to Eq. (2.1) and we will generalize it for a time dependence both in
the drift and the diffusion coefficients. We will carry out an analytical charac-
terization of the considered process from the point of view of the moments of
the associated PDF, detailing an original algorithmic solution for their exact
computation at all orders and for all times. We will see how this analytical
information allows to gain insight into the relaxation modes of the process,
possibly but not necessarily toward a stationary regime. More precisely, the
exact, time dependent expressions of the moments will allow to identify sets of
parameters for which all of them do converge to a stationary level, and different
sets for which higher order moments diverge asymptotically. In the latter case,
when a stationary distribution exists, we will guess that its PDF has power law
tails and the tail exponent predicted by our approach will match the results of
different analysis based on the solution of the stationary FP equation. Most
of all, the analytical information provided by our approach will turn out to be
crucial every time the process does not admit a stationary limit, for which case
no conclusion can be drawn, in general, from the analysis of the FP equation.
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2.1. The microscopic model

In particular, a simple connection between the time dependence in the micro-
scopic equation and the time scaling of the moments will emerge, allowing to
account for nearly arbitrary scaling laws.

We will devote large space to this topic since, as explained above, the
considered process has universality character in the study of complex systems.
However, in the scope of this thesis the main connection between the material
presented here and the financial modeling and analysis will be manifest only
in the next chapter dedicated to Stochastic Volatility Models. There we will
realize that the stochastic process which drives the price volatility is modeled
most often with a dynamics which is a specific, mean reverting instance of the
more general process analyzed in this chapter.

2.1 The microscopic model

At the microscopic level, the process introduced above is summarized in the
following SDE1

dXt =
aXt + b

g(t)
dt+

√
cX2

t + dXt + e(t)

g(t)
dWt , (2.2)

with initial time condition Xt0 = X0, t0 ∈ D ⊆ [0, tlim) with tlim possibly +∞;
Wt is the standard Brownian motion, a, b, c, d are real constants, 1/g(t) and
e(t) are non negative (deterministic) smooth functions of the time over D. For
the diffusion coefficient to be meaningful, it has to satisfy d2 − 4ce(t) ≤ 0
with c ≥ 0. Due to the correspondence between SDEs and FP equation (see
[39]), the general dynamics (2.2) exactly corresponds to the macroscopic equa-
tion (2.1) when g(t) is a constant (time homogeneous process), and generalizes
it introducing a time inhomogeneity otherwise, possibly through a time de-
pendence in the coefficient e(t). Application of the Itô Lemma to the function
f(Xt) = Xn

t leads to the following integral relation

Xn
t =Xn

0 +

∫ t

t0

Xn−2
s

g(s)

[
FnX

2
s + AnXs +Bn(s)

]
ds

+ n

∫ t

t0

Xn−1
s√
g(s)

√
cX2

s + dXs + e(s) dWs ,

whose expectation readily provides the ordinary differential equation satisfied
by the n-th order moment µn(t) = 〈Xn

t 〉 for n ≥ 1

g(t)
d

dt
µn(t) = Fnµn(t) + Anµn−1(t) +Bn(t)µn−2(t) , (2.3)

with boundary condition µn(t0) = 〈Xn
0 〉. The coefficients read Fn = na +

1
2
n(n − 1)c, An = nb + 1

2
n(n − 1)d, Bn(t) = 1

2
n(n − 1)e(t), and we assume

1Here and then we assume the Îto prescription for the interpretation of SDEs.
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2. Multiplicative noise diffusion process

µ0(t) = 1. When the starting PDF p(x, t0) has finite moments at all orders,
the smoothness of 1/g(t) and e(t) ensures the existence of a unique solution
µn(t) over an arbitrary interval D′ = [ti, tf ] ⊆ D with t0 ∈ D′. After introduc-

ing a “rescaled” time τ(t) =
∫ t
t0

1/g(s)ds, which is a monotonously increasing
function of t due to the hypothesis on g(t), the solution of Eq. (2.3) reads

µn(t) = eFnτ(t)

[
〈Xn

0 〉+

∫ τ(t)

0

e−Fnτ1Anµ̃n−1(τ1) dτ1

+

∫ τ(t)

0

e−Fnτ1B̃n(τ1)µ̃n−2(τ1) dτ1

]
, (2.4)

where µ̃n(τ) = µn(t(τ)) and B̃n(τ) = Bn(t(τ)). Now we will show that the
previous expression lends itself to an expansion over

〈
Xn−j

0

〉
, for j = 0, . . . , n

by iteratively substituting the moments entering the r.h.s. with their closed-
form solutions. For sake of simplicity, we will detail the procedure for the case
g(t) = 1 and constant e(t) = e ≥ 0.

2.2 Moments: exact solution

Starting form the implicit solution (2.4), we can replace µn−1 and µn−2 with
their expressions involving µn−2, µn−3 and µn−4 obtaining

µn(t) = 〈Xn
0 〉 eFnt

+ eFnt
{
An
〈
Xn−1

0

〉 ∫ t

0

e−(Fn−Fn−1)t1 dt1 +Bn

〈
Xn−2

0

〉 ∫ t

0

e−(Fn−Fn−2)t1 dt2

+AnAn−1

∫ t

0

e−(Fn−Fn−1)t1

∫ t1

0

e−Fn−1t2µn−2(t2) dt1 dt2

+BnBn−2

∫ t

0

e−(Fn−Fn−2)t1

∫ t1

0

e−Fn−2t2µn−4(t2) dt1 dt2

+AnBn−1

∫ t

0

e−(Fn−Fn−1)t1

∫ t1

0

e−Fn−1t2µn−3(t2) dt1 dt2

+BnAn−2

∫ t

0

e−(Fn−Fn−2)t1

∫ t1

0

e−Fn−2t2µn−3(t2) dt1 dt2

}
.

This procedure can be iterated, keeping on to replace the moments entering
the r.h.s. with their expressions involving lower order moments, until you
arrive to the explicit expressions of µ0 = 1. In this way, by direct inspection it
can be recognized that the expression of µn(t) reduces to an expansion on the
moments at t0

µn(t) = eFnt


n∑
j=0

〈
Xn−j

0

〉 ∑
NA+2NB=j

∑
ΠNANB

∆n(πNANB ; t)

 . (2.5)
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2.2. Moments: exact solution

In a naive way, the contribution ∆n(NA, NB, πNANB ; t) can be associated to an
oriented string of two types of “knots”, let us name them type-A and type-B
knots. Every knot has a subscript k and the move from one knot to the next
reduces progressively the value of k, keeping to the following rule:

Ak
↗ Ak−1

↘ Bk−1

Bk

↗ Ak−2

↘ Bk−2

(2.6)

The number of type-A knots, NA, and of type-B knots, NB, must satisfy the
constraint NA + 2NB = j and the order of the first knot must always be equal
to n. Every knot A or B gives a contribution equal to

Ak = Ak

∫ t

0

e−(Fk−Fk−1)s ds

Bk = Bk

∫ t

0

e−(Fk−Fk−2)s ds , (2.7)

and the integrals corresponding to “higher order” (k) knots are nested into the
ones corresponding to lower values of k. For instance, the pattern of two knots
BkAk−2 brings a contribution2 equal to

BkAk−2 =

∫ t

0

e−(Fk−Fk−2)t1

∫ t1

0

e−(Fk−2−Fk−3)t2 dt1 dt2

Given n, the coefficient of
〈
Xn−j

0

〉
is obtained considering all the patterns

satisfying the above rules, that is considering the set ΠNANB of permutations
without repetitions of NA type A elements and NB type B elements, picking
up the strings associated to every element πNANB ∈ ΠNANB and then adding
up the corresponding contributions; for example, when j = 2 the following
patterns have to be taken into account

An• → An−1•
Bn◦

corresponding to a numerical contribution equal to

AnAn−1

∫ t

0

e−(Fn−Fn−1)t1

∫ t1

0

e−(Fn−1−Fn−2)t2 dt1 dt2 +Bn

∫ t

0

e−(Fn−Fn−2)t1 dt1 ,

2With a slight abuse of notation, we identify the abstract object“knot”with its numerical
contribution to the computation of the ∆ in the expansion (2.5).
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2. Multiplicative noise diffusion process

while for j = 4 the diagrams to be considered are the following five:

A• → An−1• → An−2• → An−3•
A• → An−1• → Bn−2◦
A• → Bn−1◦ → An−3•
B◦ → An−2• → An−3•
B◦ → Bn−2◦ .

The special case j = 0 corresponds to the null pattern, without any knot, and
we assume the corresponding contribution to be equal to 1.

We now turn to the case of constant coefficients in the model (2.2) with
possibly non constant g(t). The solution of Eq. (2.3) reads

〈Xn〉t = e
Fn
∫ t
t0

1
g(t′)dt

′

{
〈Xn

0 〉+

∫ t

t0

e
−Fn

∫ t1
t0

1
g(t′)dt

′

g(t1)
[Anµn−1(t1) +Bnµn−2(t1)] dt1

}
;

previous considerations extend to this case and the knots’ contributions become

Ak

∫ ti

t0

e
−(Fk−Fk−1)

∫ ti+1
t0

1
g(t′)dt

′

g(ti+1)

∫ ti+1

t0

. . . dti+2 dti+1 . . .

Bk

∫ ti

t0

e
−(Fk−Fk−2)

∫ ti+1
t0

1
g(t′)dt

′

g(ti+1)

∫ ti+1

t0

. . . dti+2 dti+1 . . .

After changing to the rescaled time variable τ , we recover the more familiar
expressions

Ak

∫ τi

0

e−(Fk−Fk−1)τi+1

∫ τi+1

0

. . . dτi+2 , dτi+1 . . .

Bk

∫ τi

0

e−(Fk−Fk−2)τi+1

∫ τi+1

0

. . . dτi+2 , dτi+1 . . .

and taking into account that the internal τi are mute variables, we guess that
the expansion (2.5) still applies with the substitution t→ τ(t) =

∫ t
t0

1
g(t′)

dt′

µn(t) = eFnτ(t)


n∑
j=0

〈
Xn−j

0

〉 ∑
NA+2NB=j

∑
ΠNANB

∆n(πNANB ; τ(t))

 . (2.8)

With the same procedure we can deal with the more general case of a time de-
pendent e(t). For instance, in [44] it has been shown that U.S. dollar - German
mark exchange rate variations over different time scales can be regarded as a
Markov process described by Eq. (2.2) with g(t) = 1, e(t) = e+ ẽ exp(εt) and
constant a, b, c, d, ẽ. Walking through the previous steps, it is easy to convince
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2.3. String amplitude computation

ourselves that this exponential time dependence makes every type-B knot split
into the sum of the two following contributions

Bk = Bk

∫ τ

0

e−(Fk−Fk−2)τ ′dτ ′ and B̃k = B̃k

∫ τ

0

e−(Fk−Fk−2−ε)τ ′dτ ′ ,

where it has been defined B̃k = 1
2
k(k − 1)ẽ exp(εt0). For example, the pattern

ABAB
An• → Bn−1◦ → An−3• → Bn−4◦ ,

is now supplemented by the strings

An• → B̃n−1◦ → An−3• → Bn−4◦
An• → Bn−1◦ → An−3• → B̃n−4◦
An• → B̃n−1◦ → An−3• → B̃n−4◦

plus all their possible permutations, and the two sums in expansion (2.8) co-
herently generalize to∑

NA+2(NB+NB̃)=j

∑
ΠNANBNB̃

∆n(πNANBNB̃ , t− t0) .

2.3 String amplitude computation

A careful analysis of the quantities ∆n(πNANB , τ(t)) shows that they can always
be computed analytically by means of the algorithmic strategy we detail below.

The total number of knots N = NA+NB of a string is equal to the number
of nested integrations and the string numerical contribution always has the
form

I(τ ; c1, . . . , cN) =

∫ τ

0

ec1τ1
∫ τ1

0

ec2τ2 . . .

∫ τN−1

0

ecN τNdτN . . . dτ2dτ1 (2.9)

where, in the notation of the previous section, ci = −(Fk − Fk−1) or ci =
−(Fk′ − Fk′−2) for some k, k′. Let us suppose 3 that ci 6= 0 for every i; the
innermost integration amounts to the sum of a constant and an exponential
with the coefficient cN corresponding to the current integration index (N)

− 1

cN
(1− ecN τN−1) . (2.10)

In this sense every integration produces a “splitting” in two terms. This com-
bination is weighted (apart from the sign) with the inverse of the exponential

3It is worth noticing that due to the definition of Fk, only one coefficient cn may vanish,
which occurs when the ration |a|/c is integer or semi-integer. This special case requires
nested integrations by parts, but it is otherwise dealt with in a similar manner.
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2. Multiplicative noise diffusion process

−c3

−c2 +(c2 + c3)

−c1 +(c2 + c1) −c1 +(c3 + c2 + c1)

Figure 2.2: Binomial tree corresponding to N = 3 integrations; its output is
the result (2.11).

coefficient. When this quantity is plugged into the second integral, −1/cN be-
comes an overall coefficient, the integration of the constant and the exponential
terms give respectively

1→ − 1

cN−1

(1− ecN−1τN−2)

exp→ − 1

cN + cN−1

(1− e(cN+cN−1)τN−2)

that is, the constant term gives back the basic combination (2.10) with the
coefficient ci linked to the integration index i (i = N − 1 here), while the
exponential term gives the basic combination with the coefficient given by the
sum of ci and the coefficient of the previous integration. The combinatorics
of this cascade integrations can be visualized by means of a binomial tree, in
which every level of knots (top down) corresponds to a different integration
in (2.9), from the innermost to the outermost. The absolute value of the
label attached to every knot is the coefficient involved in the corresponding
integration, while its sign is the overall sign of the basic combination produced
by the integrations performed up to the current level. At the end, we have
2N−1 basic combinations corresponding to the 2N−1 branches of the tree. The
sign of a given basic combination is obtained by multiplying the signs of all the
nodes of the branch, and the its characteristic coefficient is the one attached
to the final node. As an example, let’s consider the case N = 3. It is easy to
verify that applying the above rules to the binomial tree of Fig. (2.2), we obtain
the same result following from the explicit calculation of the expression (2.9)

I =− 1

c3

1

c2

1

c1

(1− ec1τ ) +
1

c3

1

c2

1

c1 + c2

(1− e(c1+c2)τ )

+
1

c3

1

c2 + c3

1

c1

(1− ec1τ )− 1

c1 + c2 + c3

1

c2 + c3

1

c3

(1− e(c1+c2+c3)τ ) .

(2.11)

Equivalently, the analytical expression of I can be obtained by setting up
a signs matrix S and a coefficient matrix C as follows. Both of them are
N×(2N−1) matrices, in which every row i = 1, . . . , N has a number of “phases”
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2.3. String amplitude computation

nph(i) = 2i−1 of length lph(i, N) = 2N−i. The elements (i, j) for fixed i share
the same value for all the js in the same phase. The S matrix elements can
take values ±1 and for p = 1, . . . , nph(i) the common value is given by (−1)p.
The construction of the C matrix is a bit more tricky. Considering a fixed row
i, the common value is C(i, j) = 1 when the phase number p is odd and j is
in the p−th phase, while it is equal to C(i, j) = C(i − 1, j) + 1 if p is even,
with C(1, j) = 1 for every j by definition. An explicit example of the S and
C matrices is reported below for the case N = 4

S =


−1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 1 1 1 1
−1 −1 1 1 −1 −1 1 1
−1 1 −1 1 −1 1 −1 1


i = 1
i = 2
i = 3
i = 4

⇓

s =
[

+ − − + − + + −
]

C =


1 1 1 1 1 1 1 1
1 1 1 1 2 2 2 2
1 1 2 2 1 1 3 3
1 2 1 3 1 2 1 4


i = 1
i = 2
i = 3
i = 4 .

Once S has been computed, the signs of the 2N−1 basic combinations of the
final result are obtained by multiplying the elements of S column by column,
thus obtaining a sign vector s. The coefficients c(i, j) of the basic combinations
produced up to the i-th integration can be recovered by reading the elements
of the C matrix, through the following formula:

c(i, j) =

N−i+C(i,j)∑
k=N−(i−1)

ck .

The basic combinations have to be multiplied by the inverse of the character-
istic coefficient corresponding to the N − 1 previous integrations, so that the
final analytical expression of I is given by

I(τ ; c1, . . . , cN) =
2N−1∑
j=1

s(j)K(j)
(
1− ec(N,j)τ

)
, K(j)

.
=

N∏
i=1

1

c(i, j)
. (2.12)
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2. Multiplicative noise diffusion process

2.4 Scaling and power law distributions

With the formulas (2.12) it is possible to implement a numerical algorithm4

computing exactly all the contributions ∆(πNA,NB ; τ). From the previous ex-
pressions it is clear they are combinations of exponentials in the time variable
τ . It follows that Eq. (2.8) can be rewritten in the form

µn(t) =
n∑
j=0

cnj e
Fn−jτ(t) , (2.13)

the cnj being real possibly vanishing functions of the Ak’s, Bk’s, Fk’s and
〈
Xk

0

〉
.

The functional form of g(t) determines the type of scaling emerging from the
multiplicative noise process. For a constant g(t) = 1, as in [41], we have
τ = t− t0 and the n-th order moment is characterized by the superposition of
n exponentials with time constants {1/|Fn|, . . . , 1/|F1|}. When g(t) = t, as in
[53, 54], the moments exhibits a power law scaling

eFn−jτ(t) = tFn−j t
−Fn−j
0 .

More generally, for g(t) = tβ (β 6= 1) the time dependence turns out to be a
stretched exponential with stretching exponent 1− β:

eFn−jτ(t) = eFn−j
1

1−β (t1−β−t1−β0 ) .

Eq. (2.13) also allows us to gain insight into the nature of the stochastic process
described by the model (2.2), both at finite t and for t approaching tlim. We
limit the discussion to the case of constant coefficients and observe that in
terms of the rescaled time τ(t) the PDF p̃(x, τ)

.
= p(x, t(τ)) satisfies the FP

equation

∂

∂τ
p̃(x, τ)=− ∂

∂x
[D1(x)p̃(x, τ)] +

1

2

∂2

∂x2
[D2(x)p̃(x, τ)] , (2.14)

with D1(x) = ax+ b and D2(x) = cx2 + dx+ e and initial condition p̃(x, 0) =
p̃0(x). In general, from the analysis of the previous equation we can’t draw
any conclusion about the shape of pst(x). Nevertheless, whenever τ(t) → ∞
for t → tlim, the behavior of p̃st(x) emerging from the analysis of Eq. (2.14)
applies to p(x, t) asymptotically. Indeed, τ being a smooth function of t we
have that limt→t−lim p(x, t) = limτ→+∞ p̃(x, τ) = p̃st(x). Following [39, 41], the

stationary solution p̃st(x) of Eq. (2.14) can be computed analytically in the
form

log
p̃st(x)

N
= −

(
1− a

2c

)
log

2D2(x)

e
− α

ϑ
arctan

(
ϑx

e+ d
2
x

)
(2.15)

4All the numerical results presented in the following figures have been obtained with
routines written in C++ implementing the diagrammatic technique developed here.
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2.4. Scaling and power law distributions
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Figure 2.3: Typical shape of the functions Fn−j. The presence of positive
values for a fixed n determines the divergence of every µn′ for n ≥ n′.

where N is a normalization factor, ϑ =
√
c e− d2/4 and α = a d/2c − b.

This solution provides evidence of the possible emergence of power law tails
and Eq. (2.13) precisely characterizes the way the moments converge to the
stationary level.

The previous results can be employed to characterize the stochastic process
described by the SDE (2.2) for different choices of a, b, c, d, and e. Indeed,
Fn−j is a convex function of j vanishing for j = n and j = n − n1, with
n1 = 1 − 2a/c, see Fig 2.3; it follows that if Fn ≤ 0, all the contributions in
the sum (2.13) do converge, otherwise µn(t) diverges for t → tlim. Moreover,
if Fn > 0 then Fn′ > 0 for n′ > n and the divergence of the n-th moment
implies the divergence of the higher orders. Equivalently, if n1 < 0 all the
moments diverge while if n1 > 0, all µn’s for n < n1 are convergent, otherwise
not. In the following we detail the analysis of all possible cases, based on the
solution (2.15) and on the signs of the coefficient Fn−j in (2.13).

Case a > 0 and c > 0. All the moments diverge, since Fn > 0 ∀n > 0. In
order for the solution (2.15) to be properly normalized it has to be 0 < a < c/2
and e > 0 and pst(x) is a generalized Student-t with tail exponent ν = 1 + n1.
For a ≥ c/2 and finite t, all the moments are well-defined but no conclusions
can be drawn about the exact form of the PDF. An example of the latter case
is shown in Fig. 2.4, with all the µn diverging for large t.

Case a = 0 and e > 0. If c = 0, then also d is 0 and Eq. (2.2) describes
an ABM with time dependent coefficients. If c > 0, then a1 = F1 = 0 and
A1 = bτ , but integration by parts reveals that no moment converge, while the
stationary solution is a power law with tail exponent ν = 2.

Case a < 0, c > 0, and e > 0. Fn > 0 for n ≥ n1, thus only the first n < n1

moments converge to a stationary level. The special case a = −c/2 implies
n1 = 2, b2 = F2 = 0 and B2 = eτ and previous conclusions are unchanged.

25
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Figure 2.4: Scaling of the moments for a = b = 9.5 × 10−2 and c = d = e =
8.3× 10−2; p̃0(x) is a zero mean Gaussian with 〈X2

0 〉 = 0.01. The Monte Carlo
estimates of the µn’s within 68% error bars are superimposed to the analytical
curves, exhibiting full agreement.

Coherently the solution of the FP equation predicts the emergence of power
law tails with ν = 1 + n1. In the left panel of Fig. 2.5 a case corresponding
to n1 ' 9.9 is shown for a stretched exponential time scaling, while the right
panel corresponds to the case g(t) = (t− tlim)2, for a finite tlim.

Case a 6= 0, c = 0, and e > 0. Eq. (2.2) describes an Ornstein-Uhlenbeck
process [55]. Fn becomes a linear function of n and the moments reach a
stationary value only if a < 0. For a > 0 the Gaussian PDF has time dependent
unbounded mean and variance.

Case e = 0 and c > 0. As above the boundedness of the moments can
be deduced from the value of n1 and for a < 0 the stationary solution is
an Inverted Gamma law with shape parameter n1 > 0 and scale parameter
2|b|/c > 0. If b > 0 the Inverted Gamma is defined for x ∈ [0,+∞), while
for b < 0 the support is (−∞, 0]. A similar situation occurs for d − 4ce = 0
and d > 0, c > 0, and e > 0, but the support boundary point corresponds to
−d/2c.

2.5 A limit case

A different but interesting case is that corresponding to g(t) = t, a = b = d = 0,
e(t) = e tβ, assumed in [51, 52] to model the dynamics of detrended log-returns
Xt = log (St/S0)− 〈log (St/S0)〉. Indeed Eq. (2) in [51] exactly corresponds to
those choices provided to express c = (q−1)/[(2−q)(3−q)] and β = 2/(3− q)
in terms of the Tsallis entropic index q, and to impose

e = σ2 [c(2− q)(3− q)]
q−1
3−q .
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Figure 2.5: Left panel: lowest order moments for a = −20, b = d = e = 0.1,
c = 4.5, with g = tβ, β = 2 and p̃0(x) = δ(x). In the inset the last converging
moment is compared to the first diverging one. Right panel: lowest order
moments for a = −24.3, b = 5, c = 12.2, d = e = 0.1, for g = (t − tlim)2

with tlim = 1 and p̃0(x) = δ(x). The first diverging moment µ5 is shown in the
inset.

The quantities σ2 and c are positive constants and the index q necessarily
belongs to (1, 5/3) to ensure the existence of mean and variance [56]. The
condition b = d = 0 implies that every type-A knot is identically zero and so
are all the odd moments, while the type-B knot reads

Bk =
1

2
k(k − 1)e e

2
3−q log t0

∫ τ

0

e(bk+ 2
3−q )τ ′dτ ′ .

Moreover, if the initial condition is a Dirac delta centered in 0, we have 〈Xn
0 〉 =

0 and the only j contributing to the expansion (2.8) is j = n. In this case, the
expansion reduces to eFnτ(t)∆n(π0n

2
, τ(t)) with τ = log t − log t0 and n = 2p,

p > 1 and the same analysis leading to (2.13) allows us to conclude that

µ2p(t) =

p∑
j=0

c2p
j t

F2(p−j)+
2j

3−q t
−[F2(p−j)+

2(j−p)
3−q ]

0 ,

where the c2p
j are all non-vanishing constants. The authors in [51] assume the

delta condition at t0 = 0 but, from the point of view of our analysis, t = 0 is
a singular point for 1/g(t) and a limit for t0 → 0+ is mandatory in order to
obtain sensible results. As a function of j, F2(p−j) + 2(j − p)/(3− q) is convex
and for j = p its value is zero, so that we only have to check the behavior
for j = 0: if F2p + 2p/(q − 3) > 0 then limt0→0+ µ2p = +∞, otherwise all the
exponents of t0 are non-negative and no divergence is possible. Recalling the
expression of c, the former condition amount to q > (2p + 3)/(2p + 1), which
is precisely the one quoted in [51] to obtain a divergent 2p-th order moment.
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Chapter 3
Modeling with stochastic
volatility

In the previous chapter, we reviewed some evidences of the random nature of
the volatility and the main correlations which can be investigated in the empir-
ical analysis of financial data. In particular, the existence of long term memory
effects in those correlations also supports the idea that the volatility itself can
be considered a stochastic process as fundamental as that of price changes.
These ideas can be formalized in a consistent way in terms of SDEs, giving rise
to stochastic volatility models1 (SVMs). They can be viewed as a continuous
time version of a specific Generalized Autoregressive Conditional Heteroskedas-
tic Model (see e.g. the introduction provided in [17]), but the continuous time
framework makes it possible to exploit the power of Îto stochastic calculus.
SVMs generalize the GBM dynamics assuming that the volatility itself can
fluctuate randomly. The price SDE is coupled to a secondary Îto process and
the volatility depends functionally on the latter. In this way, a second source
of randomness enters the stochastic dynamics, and the correlation between the
Brownian motions of the two SDEs reflects in correlations between the price
and the volatility processes. This feature allows to reproduce the exponen-
tial decay of the leverage function and the existence of non trivial correlations
between the volatility at different times. Moreover, a volatility which evolves
stochastically generates non Gaussian tails in the return PDFs, accounting for
the excess of kurtosis observed in the distribution of high frequency data.

In this chapter, we will review the general structure of a SVM focusing
on the case in which the process driving the volatility follows an Ornstein-
Uhlenbeck mean reverting process, and we will revise briefly some of the models
most studied in the literature, especially the realistic exponential Ornstein-
Uhlenbeck model. Then we will consider an important limit of this model,
which is derived when the volatility is weakly random, and for which we will

1A more extensive introduction as well as advanced topics on stochastic volatility models
can be found in [57].
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3. Modeling with stochastic volatility

provide an analytical characterization in terms of the process characteristic
function and of the first moments of its probability density function. We will
conclude with some recent results about a different linear model in which the
volatility is driven by a specific mean reverting limit of the general diffusion
process analyzed in Chapter 2 and whose stationary distribution is an Inverse
Gamma law. We will characterize analytically the moments of the return
PDF providing information about the power law decay of its tails, the return-
volatility correlation and the volatility autocorrelation functions. We will also
detail the empirical analysis of this model, estimating its parameters from the
daily returns of the Standard & Poor 500 index and we will test to what extent
the proposed dynamics is able to capture the scaling properties of the empirical
return distribution.

3.1 SVMs: general framework

The models we are going to consider take the moves from the GBM dynam-
ics (1.3), relaxing the assumption of a constant volatility and considering it
to be, on the contrary, a Markov stochastic process itself 2. This way, such a
model can represented by the following system of coupled SDEs

dSt = µSt dt+ σ(Yt)St dW1,t (3.1)

dYt = a(Yt) dt+ b(Yt) dW2,t (3.2)

where we introduced a secondary stochastic process Yt driving the volatility
σ(Yt) and assumed its drift and diffusion coefficients to be generic functions of
Y but not of t explicitly, in order to limit the discussion to time homogeneous
processes. Here, W1 and W2 are two Wiener processes with the following
correlation structure

d 〈W1,t,W2,t′〉 = ρ δ(t− t′) dt ,

with ρ ∈ [−1, 1]; this assumption introduces a correlation between prices and
the volatility which, as will be clear in the following, is necessary to account
for the leverage effect. Unlike prices, it is quite reasonable to assume that the
volatility can not diffuse indefinitely and the financial belief of a “normal level”
of the volatility is often incorporated assuming the secondary process to follow
a mean reverting process

dYt = −α(γ − Yt) dt+ b(Y ) dW2,t , (3.3)

where α is a positive constant. In this case, the mean of Yt converges ex-
ponentially toward its long run value γ thus justifying the denomination of
the process (3.3). A common choice for the diffusion coefficient is to take it

2The Markovian assumption is not mandatory and σt could be modeled with jump pro-
cess, or in general non Markovian processes as well.
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Figure 3.1: Sample path for an Ornstein-Uhlenbeck process, corresponding to
parameters α = 7.8, γ = 0.6 and k = 0.3 (arbitrary units).

constant, b(Y ) = k, recovering the Ornstein-Uhlenbeck process [55]. Direct
integration of Eq. (3.3) for this specific case shows that the PDF of the process
is the one of a Normal distribution with time dependent mean and variance

〈Yt〉 = Y (t0)e−α(t−t0) + γ
[
1− e−α(t−t0)

]
Var[Yt] =

k2

2α

[
1− e−2α(t−t0)

]
;

over a time interval of the order of 1/α the process relaxes toward the value γ,
keeping to fluctuate around this value with an amplitude given by the value
of the stationary variance k2/2α, an example of which is shown in Fig. 3.1.
This process, well known in physics for providing the realistic description of
the Brownian motion, in this financial context is chosen as a prototype of a
noisy relaxation process.

3.2 SVMs: three examples

Given the Eq.s (3.1)-(3.2), different models are obtained for every possible
choice of the functions a(Y ), b(Y ) and σ(Y ). In the financial literature, the
choice is often guided by the analytical tractability of the corresponding model,
rather that its degree of realism and here we would like to compare briefly three
deeply studied examples, focusing on their ability or inability in reproducing
the empirical evidences discussed in Chapter 1.

The Heston model (H). One of the most studied models, widely exploited
by practitioners, is the Heston model [58]. The dynamics chosen for Y is a Cox-
Ingersoll-Ross (CIR) process [59], originally applied to interest rates modeling
and defined by the SDE

dYt = −α(Yt − γ) dt+ κ
√
Yt dW2,t , (3.4)
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3. Modeling with stochastic volatility

while the volatility entering Eq. (3.1) is defined as σ(t) =
√
Yt. Feller [60]

proved that for γ > 0 the Fokker-Planck equation associated to (3.4) is well
defined over Y ∈ [0,+∞) and admits as a stationary solution a Gamma PDF

Πst(Y ) =
AA

Γ(A)

Y A−1

γA
e−

A
γ
Y , A =

2αγ

κ2
. (3.5)

A closed form expression for the PDF of the returns p(x; t) is not available for
this model, but the analytical expression of its characteristic function fω; t has
been worked out in [61], so that p(x; t) can be evaluated numerically through

p(x; t) =
1

2π

∫ +∞

−∞
dω eiωxf(ω; t) .

A careful expansion [61] of f(ω; t) for large x shows that the tails of the PDF
are exponential at all times

p(x; t) =

{
e−xq

+(t) x > 0

exq
−(t) x > 0

, q±(t) = ∓ip±1 (t) ,

the slopes q±(t) of the exponential tails, real and positive, being determined
by the singularities p±1 (t) closest to the real axis of the extension of f(ω; t) to
the complex plane of ω. The exponential decay corresponds to an excess of
kurtosis which decreases with time; indeed, it can be shown that the fraction
of probability contained in the non Gaussian tails becomes negligible for long
times, in agreement with the Normal shape of return distributions over large
time scales. As long as ρ 6= 0 those slopes are different each other, making
p(x; t) asymmetric and corresponding to non zero skewness.

The Stein-Stein model (S2). This model assumes a volatility linear in Y ,
σ(t) = Yt, with the secondary process obeying an Ornstein-Uhlenbeck dynam-
ics; it was first studied by Stein and Stein [62] for the case ρ = 0, and then
generalized in [63] for non zero correlation. More recently, its statistical char-
acterization has been addressed in [28], where, in particular, the model Fokker
Planck equation is solved in the Fourier space for the conditional characteristic
function ft(ω|σ0).

Much as for the Heston model, the PDF turns out to have exponential
decay which is asymmetric as long as ρ 6= 0. Skewness and kurtosis vanish for
long times with a scaling in agreement with the Central Limit Theorem (CLT)

ζ ∼ 1√
αt

, κ ∼ 1

αt
(for αt� 1) ;

nevertheless the stationary distribution converges to a Normal one only for
k/α� 1, that is when the volatility is only weakly random, see [28].

32



3.2. SVMs: three examples

The exponential Ornstein-Uhlenbeck model (ExpOU). Keeping on to
describe Y through the Ornstein-Uhlenbeck dynamics (3.3), we may explore
choices for σ(Y ) more complicated than the linear assumption made by the
Stein-Stein model. An interesting one is the exponential form

σ(t) = meYt (3.6)

where m is a positive strength parameter providing an additional degree of
freedom. The corresponding model, first pioneered by Scott [64], has found
renewed interest from the Econophysicists’ community [34, 65, 66] where it is
referred to as the exponential Ornstein-Uhlenbeck model. As it will be clear in
a while, the reason of that interest is its ability to take into account realistically
almost all the stylized facts mentioned in Chapter 1.

Since the process (3.3) is Gaussian at all times, the volatility (3.6) is Log-
Normal; in particular the stationary distribution of the volatility reads

Πst(σ) =
1

σ
√

2πβ
exp

{
− [log(σ)− log(σ0)]2

2β

}
(3.7)

where β
.
= k2/2α is the stationary variance of the Y process and σ0

.
= meγ.

Unlike the previous models, analytical information about the return distri-
bution (or at least its CF) of this model is still lacking and so far no analytical
approximation allows to exactly say whether the ExpOU tails decay exponen-
tially rather than as a power law. Nevertheless Monte Carlo simulations clearly
show [67, 7] positive/negative skewness depending on ρ ≷ 0 and an excess of
kurtosis governed by the level β of stationary variance.

Correlations. The return-volatility correlation (1.11) is known in closed
form for all the previous models, while the volatility autocorrelation func-
tion (1.12) can be computed only for the S2 and ExpOU models [68]. They
all succeed in predicting an exponential decay of L(τ), proportional to ρ, with
time scales of order ten days but the ExpOU turns out to be the more realis-
tic of the three, featuring multiple time scales [34] for A(τ). Indeed, for long
times with respect to 1/α, it exhibits an exponential scaling governed by the
characteristic relaxation time of the secondary process

AExpOU(τ) ≈ 4β

3e4β − 1
e−ατ (ατ � 1) ,

while on the long run the decay exponent depends on the “strength of the
randomness” k of the Y process

AExpOU(τ) =
1

3e4β − 1

[
e4β−2k2τ − 1

]
+O(α2τ 2) (ατ � 1) .

A calibration of the ExpOU model over DJIA index [34] reveals τlong = 1/α ≈
550 days and τshort = 1/2k2 ≈ 35 days, consistently with the regime separation
for A(τ) discussed at the end of Chapter 1.
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3. Modeling with stochastic volatility

We avoid resorting to a more detailed review of empirical analysis (available
in the cited references) and we limit ourselves to claim that the ExpOU model
provides the more realistic description of stocks or stock indexes returns among
the three considered cases, since it

• provides a realistic Log-Normal description for high frequency volatility;

• reproduce the fast exponential decay of L(τ);

• features a multiple time scale decay of A(τ) as observed empirically.

3.3 The linearized ExpOU model

Now we will describe limit of low volatility fluctuations of the ExpOU model,
studied in [67, 7, 8]; it corresponds to requiring that the stationary variance of
the secondary process would be small, β = k2/2α� 1.

In terms of centered log-returns, Xt = log(St/S0) − µ(t − t0), the asset
dynamics for the ExpOU model can be rewritten as

dXt = −1

2
m2e2Yt dt+meYtdW1,t (3.8)

which follows by application of Itô lemma to the variable Xt. As long as Y is
weakly random, the two exponential functions can be approximated by a first
order Taylor expansion around its stationary mean γ. Introducing the shifted
process Z = Y − γ + 1 and the rescaled constant m̄ = meγ, the linearized
dynamics, referred to as the LinExpOU model in the following, reads

dXt = −m̄
2

2
(2Z(t)− 1) dt+ m̄Z(t) dW1,t (3.9)

dZt = α(1− Z(t)) dt+ k dW2,t , (3.10)

with initial conditions Xt0 = X0 = 0 and Zt0 = Z0 = Y0− γ+ 1. Following the
original technique by Heston, we can express the PDF of X in terms of its CF

p(x, τ |x0, z0) =
1

2π

∫ +∞

−∞
e−iωxf(ω, τ ;x0, z0)dω (3.11)

with τ
.
= t− t0 and, if assuming the final condition eiωx, the backward Fokker

Planck equation [39] associated to Eq.s (3.8)-(3.10) is readily translated into
a partial differential equation for f(ω, τ ;x0, z0); as shown in a detailed way
in [67], the latter can be solved exactly by means of the trial guess

f(ω, τ ;x0, z0) = exp
{
A(ω, τ) + B(ω, τ)z0 + C(ω, τ)z2

0 + iωx0

}
. (3.12)
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Figure 3.2: Analytical expressions for the skewness (left) and kurtosis (right)
for the LinExpOU model, compared with the corresponding cumulants from an
intensive Monte Carlo simulation (107 paths) of Eq.s (3.9),(3.10). Parameters:
α = 6.2, β = 0.13, γ = 0, m̄ = 0.266 and y0 = 0.

The explicit expressions [8] of the three functions A,B, C, representing an
important and in applications useful result, read

A(τ, ω) =

[
h

2
+ 2α

n− h
d

+ 2k2

(
n− h
d

)2

+
b− d

4

]
τ

− 1

2

[
log
(
1− ge−dτ

)
− log (1− g)

]
− 2k2 e−dτ − 1

(1− g) (1− ge−dτ )

{
g

d3

[ α
2k2

(b+ d)− h
]2

+
((g + 1)h− 2n)2 + 2(n− gh)(n− h)

d3
+

g

d3
(n− h)2

}

− 4k2 (g + 1)h− 2n

d3

( α
k2
b− 2h

) (1 + ge−
d
2
τ
)(

e−
d
2
τ − 1

)
(1− g) (1− ge−dτ ) (3.13)

B(τ, ω) = 2
e−

d
2
τ [(g + 1)h− 2n] + n+ e−dτ (n− gh)− h

d(1− ge−dτ ) (3.14)

C(τ, ω) =
b− d
4k2

1− e−dτ
1− ge−dτ , (3.15)

where the auxiliary dimensionless functions b
.
= 2α(1−iρΦ), d

.
=
√

2α2Φ2 + b2,
g
.
= (b − d)/(b + d), h

.
= iαm̄Φ/k, n

.
= α(b − d)/(2k2), and Φ

.
= km̄ω/α have

been introduced. It is worth noting that the difference of principal logarithms
in (3.13) has not been contracted; indeed, this operation can be performed
only if taking into account a suitable phase correction (see Eq. (2.4) in [69]).
Given the previous analytical expressions, and remembering the relation (1.5)
linking the CF and the order n cumulant kn(τ), it is possible to compute the
cumulants for the LinExpOU model exactly up to arbitrary orders. However,
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Figure 3.3: Linear and semi-log plots of the PDF of the returns over 25 days
of the DAX30 index, compared with the PDFs of the LinExpOU model and
the ExpOU model with parameters calibrated from the data, and with the
Gaussian fit. Also reported an Edgeworth expansion approximation, (see [67]
for more details).

most of the interesting information about the PDF requires the knowledge of
just the first four cumulants. Their quite involved expressions are reported
in Appendix A, and they have been obtained performing a 4-th order Taylor
expansion of f by means of MATHEMATICA R© software, and then extracting its
four coefficients [8] and multiplying them by the appropriate constant factors.
Typical shapes for ζ and κ as functions of τ are reported in Fig 3.2, where the
obtained analytical expressions are confirmed by the Monte Carlo simulation.
In the limit of small times, τ → 0, they vanish with the following scalings

ζ ∼ 3
kρ

Z0

√
τ , κ ∼ 4

k2(1 + 2ρ2)

Z2
0

τ ,

while for τ →∞ it is the CLT which regulates convergence to zero [7]
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.

So, we conclude that pLinExpOU(x) is leptokurtic at all finite time horizons
(κ(t) ≥ 0), and it converges toward a Gaussian regime asymptotically.

In [67, 7], it has been shown that the approximation leading to (3.9) is
justified for β . 10% and that this value roughly matches what is found
empirically for stock indexes. Fig. 3.3 shows the distribution of the returns
Xt of the DAX30 index for a time horizon of 25 days, along with the PDFs
of the LinExpOU and ExpOU models with parameters calibrated with the
procedure explained in [67] and corresponding to β = 0.116. It is clear that the
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3.4. A minimal linear model

agreement between pLinExpOU and pExpOU gets worse on the tails; nevertheless,
the LinExpOU model is still a much better approximation with respect to
the Gaussian fit, also reported in the figure, which grossly underestimate the
central region of the data and is unable to account for the different weights
of the tails. The better performing model is the ExpOU, giving a higher level
of kurtosis with this value of β; despite of its good properties and as indeed
deducible from the log-linear plot, it is not able to reproduce extreme kurtosis
as those observed in high frequency (intraday) data, which, as discussed in
Chapter 1 are likely to be described by a power law distribution.

3.4 A minimal linear model

We now aim to establish a link between SVMs and the multiplicative noise
diffusion process extensively studied in Chapter 2. There we saw explicitly that
the Ornstein-Uhlenbeck process (3.3) is a specific case of the dynamics (2.2)
corresponding to e > 0, c = 0 with a < 0 (necessary for the process to be
mean-reverting). On the other hand, when a < 0, for d = e = 0 we also
recover the CIR process (3.4). In some sense, the MNDP seems to generalize
the standard assumptions for the dynamics of the secondary process Y and
we could ask what are the properties of the SVM assuming it to describe the
volatility

dXt = σ(Yt) dW1,t , σ(Yt) =
√
c Yt

dYt = (aYt + b) dt+
√
cY 2

t + dYt + e dW2,t ,

where Xt is the detrended log-return and we are going to require a < 0 with the
usual conditions on the other coefficients. Unfortunately, the analysis of the
previous model is highly complicated, unless to proceed in a full numerical way.
On the other hand we could ask if it exhibits any realistic and sensible limit
which is analytically tractable. Actually, in Chapter 2 we also analyzed the case
d = e = 0, and we found that for b > 0 the stationary distribution of the process
is an Inverse Gamma whose support is [0,+∞), which, from Chapter 1 we know
to be probably the more realistic description of the empirical distribution of
the high frequency volatility. So, provided to identify the definition (1.8) with
σ(Yt) we are led to consider the following linear model

dXt = σ(Yt) dW1,t , σ(Yt) =
√
c Yt

dYt = (aYt + b) dt+
√
c Yt dW2,t (3.16)

with the volatility σt relaxing for t� |a|−1 toward an Inverse Gamma

Πst(σ) =
νλ

Γ(λ)

e−ν/σ

σλ+1
, (3.17)

with shape parameter λ and scale parameter ν given by

λ = 1− 2a

c
ν =

2b√
c
. (3.18)
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3. Modeling with stochastic volatility

It follows that in this model the stationary volatility exhibits power law tails,
the moments µn,st of Y diverging for n ≥ λ. Even though under investigation,
we are going to show that the above model features rather interesting proper-
ties, despite its simplicity and linearity, making it a potentially good candidate
to model high frequency data, as we hope it will be confirmed by our ongoing
empirical analysis.

3.4.1 Power law tails

The structure of the model (3.16) allows to exactly compute the moments of the
distribution of Xt, in the same spirit of what made in the previous chapter for
the MNDP, and the power law tail of the volatility distribution (3.17) induces
a power law scaling in the distribution of Xt. The proof of this statement relies
in the following equation relating the moments of X and those of Y

〈Xn
t 〉 =

〈
Xn
t0

〉
+

1

2
n(n− 1)c

∫ t

t0

ds
〈
Xn−2
s Y 2

s

〉
(3.19)

which is easily proved by application of Îto lemma to Xn
t and taking its ex-

pected value. On their side, the correlations entering previous equation satisfy
the following recursive equation

d

dt
〈XmY n〉 = Fn 〈XmY n〉+ An

〈
XmY n−1

〉
+ cρmn

〈
Xm−1Y n+1

〉
+

1

2
m(m− 1)c

〈
Xm−2Y n+2

〉
. (3.20)

It is not trivial to write down the general solution 〈Xmσn〉, but since the
moments µn(t) of σ are known analytically for every n and t, Eq. (3.20) can
be solved recursively from the lowest order up. To convince ourselves let us
consider the first non trivial case, that is the third moment; its expression
involves the correlation between X and σ2

〈
X3
t

〉
=
〈
X3
t0

〉
+ 3c

∫ t

t0

〈
XsY

2
s

〉
ds . (3.21)

The quantity 〈Xsσ
2
s〉 is solution of the following differential equation

d

dt

〈
XtY

2
t

〉
= F2

〈
XtY

2
t

〉
+ A2〈XtYt〉+ 2ρcµ3(t) ; (3.22)

in turn, 〈Xtσt〉 satisfy its own ODE

d

dt
〈XtYt〉 = F1〈XtYt〉+ ρc µ2(t) (3.23)

which is readily solved

〈XtYt〉 = ea(t−t0)

{
〈Xt0Yt0〉+ ρc

∫ t

t0

e−a(s−t0)µ2(s)ds

}
.
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Figure 3.4: Simulation corresponding to parameters a = −0.665, b = 0.133,
c = 1, ρ = −0.3 with Π0(y) = δ(y). Left panel: simulated Inverse Gamma
stationary distribution of Y (points) and analytical curve (line); right panel:
simulated PDF of X for t = 1 (arbitrary units).

Once this solution is substituted back, Eq (3.22) becomes itself an ODE whose
explicit solution could be plugged in (3.21). Reminding that the µns are simple
combinations of exponential functions, we see that the last integral could be
solved for fixed t, for instance with the algorithmic methodology discussed in
Chapter 2. Even without performing this tedious calculation, we see the key
point: the asymptotic behavior of 〈Xn〉 descends on that of moments µj for
j ≤ n of the volatility process. In particular, power law tails in the volatility
distribution can induce power law tails in the returns distribution: if µn is not
finite, the same will be true for 〈Xn〉. When the starting distribution Πt0(σ)
of the volatility is not a power law distribution, for finite t all the moments of
p(x; t) will be finite, but as t increase, p(x; t) will approach a power law regime
more and more. Let us see that with a numerical example. In the left panel of
Fig. 3.4 it is shown the stationary PDF of Y for Π0(y) = δ(y) and for a choice
of parameters corresponding to

Πst(Y ) ∼ 1

y3.33
for y � 1 ;

from the above reasoning, we expect asymptotically a power law scaling for X
too, and we are able to give a range for its tail index

p(x) ∼ 1

x1+ν
with 2 < ν ≤ 3 .

The right panel of Fig. 3.4 shows p(x; t) for t = 1 which exhibits, despite the
stationary state of Y is far from having been reached (1/|a| ' 1.5), a high
degree of leptokurtosis. On the other hand, if we choose a power law initial
condition for Πt0(y), this would reflect in a power law distribution for X at
finite times.

39



3. Modeling with stochastic volatility

3.4.2 Return-volatility correlation

Now we will compute exactly the return-volatility correlation for the linear
model (3.16). The basic tool we will use is the Novikov theorem, which we
briefly review here. Let ζ(t) = (ζ1(t), . . . , ζn(t)) be an n-dimensional Gaussian
white noise, with correlation structure given by

〈ζi(t)ζj(t′)〉 = ρijδ(t− t′) .

The Novikov theorem is useful in calculating expectations of functionals f(t, |ζ|)
of ζ and one of its alternative forms [70, 33] is the following

〈f(t, |ζ|)ζj(t′)〉 =
n∑
i=1

ρij

〈
δf(t, |ζ|)
δζi(t′)

〉
. (3.24)

Taking into account that it is always possible to express a Wiener variation as
dWt = ζt dt, and that 〈dW 2

t 〉 = dt, the numerator of the definition (1.11) can
be written as 〈

dX2
t+τdXt

〉
=
〈
σ2
t+τσt dW1,t

〉 〈
dW 2

t+τ

〉
=
〈
σ2
t+τσt ζW1(t)

〉
dt2

= c3/2
〈
Y 2
t+τYt ζW1(t)

〉
dt2 ; (3.25)

while the denominator is equal to 〈dX2
t 〉

2
= c2µ2(t)2 dt2. Due to the Novikov

theorem, the expectation can be computed as

〈
Y 2
t+τYt ζW1(t)

〉
=

〈[
δ(Y 2

t+τYt)

δζW1(t)

]〉
=

〈[
δζW2(t)

δζW1(t)

δ(Y 2
t+τYt)

δζW2(t)

]〉
= ρ

〈[
δ(Y 2

t+τYt)

δζW2(t)

]〉
= ρ

〈[
Y 2
t+τ

δYt
δζW2(t)

+ 2Yt+τYt
δYt+τ
δζW2(t)

]〉
.

(3.26)

The functional derivative of Y reads [33]

δYt+τ
δζW2(t)

=
√
c H(τ)eaτYt exp

{√
c

∫ t+τ

t

dW2,s

}
, (3.27)

where H(τ) is the Heaviside step function defined as

H(τ) =

{
0 for τ ≤ 0

1 for τ > 0 .

Due to H, the functional derivative (3.27) gives no contribution for τ = 0 and,
after defining

∫ t+τ
t

dW2,s
.
= ∆tW2(τ), we are left with〈

dX2
t+τdXt

〉
= 2c2H(τ)ρ

〈
eaτY 2

t Yt+τe
√
c∆tW2(τ)

〉
dt2 .
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A tricky calculation (see Appendix B) shows that the function f(Y ; t, τ)
.
=〈

Y 2
t Yt+τe

√
c∆tW2(τ)

〉
is solution of a Volterra equation of the second kind and it

reads

f(Y ; t, τ) = µ3(t)e( 3
2
c+a)τ +

b

a+ c
µ2(t)

[
e( 3

2
c+a)τ − e c2 τ

]
(3.28)

so that the leverage correlation finally reduces to

L(t; τ) =
2ρ

µ2(t)2
H(τ)

{[
µ3(t) +

b

a+ c
µ2(t)

]
eα1τ − b

a+ c
µ2(t)eα2τ

}
(3.29)

with α1
.
= (4a+ 3c)/2 and α2

.
= (2a+ c)/2. This expression explicitly depends

on the time t starting from which we compute the correlation; nevertheless,
when analyzing time series, we usually make the assumption of stationarity of
the series, which implies to replace µ2(t) and µ3(t) in the previous expressions
with their values at the stationary state. In order for L to be a finite quantity
we have to assume that the stationary distribution of the volatility have finite
third moment at least, that is |a|/c > 1 (see Chapter 2). The stationary values
µ2,st and µ3,st are obtained as the limit for t→∞ of the expansion (2.5):

µ2,st =
2b2

a(2a+ c)
(3.30)

µ3,st = − 2b3

(2a+ c)(a+ c)a
. (3.31)

When substituted in Eq. (3.29) we obtain the expression of the leverage cor-
relation to be compared with real data:

L(τ) = −ρH(τ)
a(2a+ c)

b(a+ c)
e−τ/τ

L
, (3.32)

where we defined the leverage time scale τL = 1/(|a| − c/2). So we see that
the model we are considering is able to reproduce the exponential time decay
of the leverage correlation for positive correlation times and its vanishing for
τ < 0.

3.4.3 Volatility autocorrelation

Turning to the volatility autocorrelation (1.12), we have〈
dX2

t dX
2
t+τ

〉
=
〈
σ2
t σ

2
t+τ dW1,tζt

〉
dt2

=

{
2ρ

〈[
σ2
t σt+τ

δσt+τ
δζZ,t

dW1,t

]〉
+

〈[
σ2
t σ

2
t+τ

δ dW1,t

δζt

]〉}
dt2 ,

where previous equality follows after application of the Nokivov theorem and
recalling that δσt/δζZ,t = 0. Recalling the relation (3.27) and the following
result

δ dW1,t

δζt
=

δ

δζt

∫ t+dt

t

ζsds = 1
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3. Modeling with stochastic volatility

we get to〈
dX2

t dX
2
t+τ

〉
=
{

2ρ c5/2H(τ)eaτ
〈[
Y 3
t Yt+τe

√
c∆tW2(τ) dW1,t

]〉
+ c2

〈
Y 2
t Y

2
t+τ

〉}
dt2 .

(3.33)
Due to the presence of dW1,t, the first term is of order O(dt3) and can be
neglected, leaving us with〈

dX2
t dX

2
t+τ

〉
= c2

〈
Y 2
t Y

2
t+τ

〉
dt2 +O(dt3) .

The autocorrelation
〈
Y 2
t Y

2
+t+τ

〉
can be computed exactly as shown in Ap-

pendix B, and the complete expression of the volatility autocorrelation be-
comes

A(t; τ) =
1

3µ4(t)− µ2(t)2

{
−eaτ 2b

a+ c
[µ3(t)− µ1(t) µ2(t)]

+e(2a+c)τ

[
µ4(t) +

2b

a+ c
µ3(t)− µ2(t)

(
µ2(t) +

2b

a+ c
µ1(t)

)]}
,

(3.34)

where we approximated
〈
dX2

t+τ

〉
with 〈dX2

t 〉 in the denominator of (1.12) from
stationarity arguments. As expected, A(t; τ) depends on the µn up to n = 4,
which we are going to assume to be finite at all times, imposing the consistency
relation

|a|
c
> 3/2 . (3.35)

The fourth moment of Y is readily computed as

µ4,st =
4b4

(2a+ 3c)(a+ c)(2a+ c)a
(3.36)

and after substitution of all the stationary µn we get to

A(τ) =
1

D

[
N1 e

−τ/τA1 +N2 e
−τ/τA2

]
(3.37)

where we have defined the three coefficients

D =
(4a2 − 2ac− 3c2) (a+ c)

c2

N1 = −(2a+ 3c) (2a+ c)

c
N2 = a

and the two volatility autocorrelation time scales

τA1 =
1

|a| , τA2 =
1

2|a| − c . (3.38)
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At this point we foresee a potential drawback of the model: due to the condition
|a|/c > 3/2 we have the following strict ordering among correlation times:

τA2 < τA1 < τL , with τA1 >
2

3
τL ;

that is, the volatility autocorrelation would decay faster than the leverage
correlation, contradicting the empirical evidence of a long range memory effect
of the former (see Chapter 1). Nevertheless, we are considering a model which
is possibly able to suitably describe high frequency data, still being linear, and
we do not expect it to be able to capture such long term effects. On the other
hand, the second inequality above reproduces the empirical evidence of a short
range correlation time scale which is approximately the same for the leverage,
τL, and the volatility autocorrelation, τA1 .

3.4.4 Estimation of parameters

Now we will provide a systematic methodology for estimating the parameters
of our model, which are the constants a, b, c entering the dynamics of Yt, plus
the correlation coefficient ρ. We will perform the estimation of the Standard
& Poor 500 index daily returns from 1970 to 2010, approximating dXt with
∆Xt = Xt+∆t −Xt, namely

dXt ≈ ∆Xt = log

(
St+∆t

St

)
−
〈

log

(
St+∆t

St

)〉
, (3.39)

where ∆t = 1/250 yr (one trading day). Taking into account that dW1,t

is independent of σt and that |∆W1| is distributed accordingly to a Folded
Normal law, the following relations hold for the model (3.16):

A
.
=
〈|∆X|〉
〈|∆W1|〉

=

√
π

2∆t
〈|∆X|〉 = −√c b

a
(3.40)

B
.
=
〈∆X2〉
〈∆W 2

1 〉
=
〈∆X2〉

∆t
= c

2b2

(2a+ c)a
(3.41)

C
.
=

〈
|∆X|3

〉〈
|∆W1|3

〉 =

√
π

(2∆t)3

〈
|∆X|3

〉
= − 2b3 c3/2

(a+ c) (2a+ c) a
(3.42)

The constants A and B can be estimated directly from the data, providing us
an estimation of the ratio a/c through the relation

D
.
=

B

2 (A2 −B)
=
a

c
. (3.43)

The value of these estimators extracted from the series of the daily log-returns
of the S&P500 index are reported in Table 3.1. It is crucial to observe that
the value obtained for the ratio |a| /c is compatible with the constraint (3.35),
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3. Modeling with stochastic volatility

Estimators S&P500 daily returns

A 0.1457 yr−1/2

B 0.0295 yr−1

C 0.0107 yr−3/2

|a| /c 1.7895

Table 3.1: Estimates from return sample averages. We compute the value of
the estimators A, B, C and D for the daily log-returns of the S&P500 index
during the period 1970-2010, exploiting the averages of |∆X|, ∆X2 and |∆X|3.
Yearly units (∆t = 1/250 yr).

Estimators S&P500 daily returns

τL 0.0864 yr
L(0+) -30.9515

Table 3.2: Estimation of the leverage time scale and the leverage amplitude
obtained from the fit of the empirical leverage correlation (1.11) for the daily
log-returns of the S&P500 index with the model predicted expression (3.32).

supporting the consistency of our model and the convergence of the volatility
autocorrelation. Moreover, if we define j∗ = max{j ∈ N, j ≥ 1 | j < 1 +
2 |a| /c}, we have j∗ = 4, and in the light of the analysis made in Chapter 2
we conclude that µ4(t) is the highest converging moment of Yt. As explained
early, the divergence of µ5 induces the divergence of 〈X5〉 and tail index β of
the return PDF must stay in the following range:

p(x) ∼
|x|→∞

1

|x|1+β
, 4 < β ≤ 5 .

The leverage correlation, as given by Eq. (3.32), provides a way to obtain
the two further relations needed to fix the four free parameters of the model.
Indeed, a two parameters fit of the function L(τ) provides an estimation of the
time scale τL and the coefficient

L(0+)
.
= −ρ a(2a+ c)

b(a+ c)
. (3.44)

with the results reported in Table 3.2 and left panel of Fig. 3.5. In particular,
the value obtained for the leverage time scale, τL ≈ 21 days, and for its
amplitude L(0+), are consistent with those quoted in past analysis of stock
indexes such as the Dow Jones Industrial Average [28, 33], and they confirm
the short range nature of this effect.

At this point all the parameters can be recovered through the following
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Figure 3.5: Left panel: best fit of the empirical leverage correlation with the
model prediction (3.32) as a function of the two parameters τL and L(0+).
Right panel: theoretical prediction for the volatility autocorrelation function
of the daily returns of the S&P500 index 1970-2010, Eq. (3.37).

Parameter Estimate from S&P 500

a −16.0608 yr−1

b 0.8627 yr−1

c 8.9749 yr−1

ρ −0.5089

Table 3.3: Model parameters estimated from the daily log-returns of the
S&P500 index during 1970-2010 through the relations (3.48).

relations with the results reported in Table 3.3.

c = −
[
τL
(
D +

1

2

)]−1

(3.45)

a = c×D (3.46)

b = −a+ c√
c

C

B
(3.47)

ρ = − b (a+ c)

a (2a+ c)
L(0+) . (3.48)

The correlation coefficient is negative, in agreement with the known left-
skewed shape of daily return distributions and the relaxation time of the volatil-
ity process is τσ

.
= −1/a ≈ 15 days. This somewhat large value supports the

lacking of evidence of mean reversion of the volatility at high frequencies (see
e.g. [71, 72]) and, as a consequence, the need of assuming that it has already
reached the stationary state at the time of observation.

While the fitted values of τL and L(0+) provides a good description of
real data, as shown by the left panel of Fig. 3.5, the theoretical volatility
autocorrelation for the estimated values of the parameters, Eq. (3.37), has not
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3. Modeling with stochastic volatility

a satisfactory agreement with the data. Indeed, as clear from the right panel
of Fig. 3.5, it decays too rapidly and it is not able to capture the long range
memory exhibited by the empirical curve. As observed early, this was expected
because of the constraint (3.38). However, Eq. (3.38) was derived in the limit
of dt → 0 while here we approximated an infinitesimal time difference with a
finite one and the logarithmic variation ∆X with σ∆t:

dXt ≈ ∆Xt =

∫ t+∆t

t

dXt .

The rational behind this approximation is that 1 day is small in yearly units,
but it is not so with respect to ultra high frequency scales (minutes or less). In
particular, the exact expression of ∆Xt would reveal the (ρ-dependent) effects
of the correlated evolution of X and Y form t to t+ τ which, a priori, may be
non negligible in determining the correlations (3.32),(3.37).

At this point, it is important to compare the return PDF predicted by the
model with the data sample from which the model parameters have been esti-
mated. Since the model is dynamic, it is even more important to asses to which
extent the diffusion process (3.16) is able to capture the scaling properties of
the empirical distribution over different time horizons. At this aim, with the
parameters fixed from the daily S&P500 series, we reconstructed the theoreti-
cal PDFs simulating the process at different time scales, ∆t = 1, 3, 7, 14 days,
then comparing them with the corresponding empirical distributions obtained
aggregating the daily returns. This comparison is shown in Fig. 3.6. The daily
distribution is very well reproduced by the theoretical PDF, which is able to
fully capture the leptokurtic nature of the daily data. Most of all, the plots
show that the diffusive dynamics of our model, once the parameters have been
fixed at the daily scale, follows closely the evolution of the empirical curves
for larger ∆t, capturing the progressive increasing of the asymmetry and the
convergence of the central region of the distribution to a Gaussian regime, as
dictated by the Central Limit Theorem. In this regard, it is especially impor-
tant to notice that the theorem does not state that tails become Gaussian,
which is particularly clear in this case as the variance of p(x) grows linearly as
the distribution becomes wider and wider while the tails decay as a as a power
law at all finite time scales.

Concluding, the analytical characterization of the minimal model (3.16)
reveals quite interesting features. It captures the Inverse Gamma nature of
the high frequency volatility, which is responsible for the emergence of power
law tails in the distribution of Xt, and it correctly forecasts the exponential
decay of the leverage correlation. A possibly unpleasant feature is the exis-
tence of strict ordering relations between time scales which makes the volatility
autocorrelation function decay faster than the return-volatility correlation. A
simple procedure was described which allows to estimate the model parame-
ters from the empirical series. The results of this estimation for the case of the
S&P500 support the model consistency and they highlight its ability to capture
the scaling properties of the distribution of the empirical data over different
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Figure 3.6: Linear plot showing the comparison between the return PDFs
predicted by the model (lines) and the data for the S&P500 index, for different
time scales.

time horizons. We conclude that the diffusione process (3.16) provides a quite
realistic representation of the actual dynamics of the instantaneous volatility
and of price returns at the daily time scale, also being able to account for the
correlation between these processes, and, at the same time, it proves to model
with good accuracy the return distributions for longer time horizons.

47



3. Modeling with stochastic volatility

48



Chapter 4
Modeling with Product
Partition Models

In the previous chapters we considered the modeling of financial time series by
means of SDEs, especially the class of SVMs. This kind of description focuses
on the time evolution of the random paths of the volatility and the returns
over a given time horizon; the corresponding PDFs aim to be non Gaussian
functions able to account for the fat tailed, possibly power law, decay observed
in high frequency returns and for the random behavior of the volatility. This
approach overcomes the rough Gaussian hypothesis and it brings in a coupled
dynamics of returns and volatility, this way introducing correlations which can
not be taken into account easily in a static framework. However, when we look
at the return empirical time series we are forced to assume that the series is
stationary and that the returns are identically distributed variables in order to
justify the identification of the return PDF at a given time horizon with the
sample distribution. Loosely speaking, this approach is supported by the fact
that returns, even though not independent, are nearly uncorrelated, as testified
by the analysis of the return autocorrelation function (see Chapter 1); more-
over, from the point of view of the modeling, it leads to the usual assumption
that the volatility process has already reached its stationary state, as we did
in performing the empirical analysis for the minimal linear model presented at
the end of the previous chapter. Indeed, only if σt has thermalized, meaning
that its distribution has become invariant (t-independent), we can say that the
increments dXt = σt dW1,t are uncorrelated and identically distributed random
variables.

A different approach is to consider returns as independent but not iden-
tically distributed and focus only on the statistical properties of the single
observations, without investigating the possible dynamics linking observations
at different times. From this viewpoint, we may look for similarities in these
observations at the aim of identifying clusters of data sharing some statistical
features. This would allow to gain insight into the underlying clustering struc-
ture, if any, and to test for the presence of outlying points. A useful statistical
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4. Modeling with Product Partition Models

framework to implement such a strategy is represented by the Bayesian Hierar-
chical Models. The Bayesian parametric approach makes an assumption about
the form of distributions of the observations, and the parameters of these dis-
tributions, which determine the statistical properties of the data, are not fixed
but they are drawn from prior distributions incorporating our degree of belief
in that assumption. When these priors depend on other parameters to which
a further prior is assigned, the Bayesian model becomes hierarchic and more
flexible in reflecting the specific problem at hand. In this sense, Parametric
Product Partition Models (PPM) are a special case of parametric Bayesian
model in which a prior probability is assigned to the existence of clusters of
observations whose distributions share the same values of some parameters.
The aim of the inference process is to compute the posterior distributions,
that is the distributions of the parameters conditioned to the observed sample
of data, which should reflect the response of the model to the experimental
evidence.

In this chapter we will describe the general form of a PPM, and we will
introduce the Gibbs sampler, a special case of Markov Chain Monte Carlo
algorithm which is needed to generate the posterior distributions. Then we
will consider two specific models we devised for application to financial return
series. Both of them assume a priori that returns are Normally distributed but
they relax the assumption of identical distribution for the entries of the series;
in the first one the returns share the same value of the variance and a partition
structure is considered for their means, while in the second one clusters of
observations can be identified depending on the value of their variance and
the mean is assumed to be the same for all the observations. We will describe
the sampling algorithms implementing these models and we will detail a data
analysis performed over an Italian stock index and some of its components. In
particular, the posterior distributions of the parameters will be shown, and we
will see that the Bayesian estimates of these parameters usually modify the
frequentist values, especially for variances. Finally, we will comment on the
partition structures emerging during the sampling and we will introduce an
original algorithm for the efficient identification of outliers in the series.

4.1 PPMs: general framework

Given a vector of observations y = (y1, y2, . . . , yT ), the process of parametric
Bayesian inference consists of assuming the data to be distributed according
to a PDF p(y|θ) conditionally on a specific realization of some parameters
Θ = (Θ1,Θ2, . . . ,Θm)′. This conditional density is called the likelihood of ob-
servations. The parameters are assigned a prior distribution gΘ(θ), represent-
ing our degree of belief in the hypothesis: a different hypothesis corresponds
to every possible value of Θ. Ideally, the prior should reflect some rational
and coherent a priori information owned by the investigator. Basically, the
aim of inference is the parameters estimation; in the Bayesian approach this is
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4.1. PPMs: general framework

provided in terms of a posterior distribution (briefly the posterior) p(y|θ) of
the parameters conditionally on the observed data, through the Bayes theorem

p(θ|Y = y) =
p(y|Θ = θ)gΘ(θ)∫
p(y|Θ = ϑ)gΘ(ϑ) dϑ

; (4.1)

in much the same way as the prior is considered a coherent degree of belief in
the hypothesis, the posterior by Eq. (4.1) is considered a sort of response to
evidence by an ideally rational observer.

If the prior p(θ) depends on some other parameters φ and we are able to
incorporate a priori information for them, the Bayesian model can be made
hierarchical by posing a likelihood for Θ conditionally on a given realization
Φ = φ and assigning to every possible scenario a prior gΦ(φ). This time, the
joint posterior density for the parameters specifying the problem reads

p(θ,φ|Y = y) =
p(y|Θ = θ)p(θ|Φ = φ)gΦ(φ)∫
p(y|Θ = θ)p(θ|Φ = ϕ)gΦ(ϕ) dϕ

. (4.2)

Product Partition Models were introduced in the nineties by Barry and
Hartigan [73, 74], and can be thought of as Bayesian models in which the
hypothesis which is given a prior belief is the existence of a given clustering
structure on the vector of the data. Given a set of objects S0 = {1, 2, . . . , n}
we define a partition ρ = {S1, S2, . . . , Sk} by the two properties

• Si ∩ Sj = 0 if i 6= j

• ⋃k
i=1 Si = S0

and we assign the partition a product probability (PD) specified as follows

P (ρ = {S1, S2, . . . , Sk}) = K
k∏
i=1

C(Si) (4.3)

where K is a normalization factor and the functions C(Si) > 0, named cohesion
functions, represent a prior probability on the formation of a given cluster and
they can be chosen in different ways. Let us suppose that a random observation
Yi is associated to every object i and let pSi(Y Si |ρ) the conditional probability
(likelihood) of the observations associated to the cluster Si given that Si ∈ ρ.
We will also assume the observations Y S1 ,Y S2 , . . . ,Y Sk to be independent
conditionally on ρ and that the conditional probability of the observations in
a given cluster do not depend on how the other cluster of ρ configure; in this
case Y has a conditional product probability itself

p(Y |ρ = {S1, S2, . . . , Sk}) =
k∏
i=1

pSi(Y Si |ρ) . (4.4)
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4. Modeling with Product Partition Models

Given Eq.s 4.3-4.4 the posterior probability of partitions is given by

p(ρ = {S1, S2, . . . , Sk}|Y ) =
K

ν(Y )
=

k∏
i=1

C(Si)pSi(Y Si |ρ) (4.5)

where ν(Y ) stands for the marginal density of the observations. When the
partitions refers to the vector of parameters Θ of a hierarchical model, these
models are referred to as parametric Product Partition Models. We will assume
that the distribution of the observations depends on a parameters vector Θ
and some parameter Φ which is common to all experimental units and we can
consider the partition structure

θ = (θ1, θ2, . . . , θn)
.
= (θ∗S1

, θ∗S2
, . . . , θ∗Sk ; ρ) ,

indicating with θ∗Sd = θ∗d for d = 1, . . . , k the common value for the parameters
in the cluster Sd and with θ∗ the vector (θ∗1, . . . , θ

∗
|ρ|). We will consider models

in which the observations are independent conditionally on the partition ρ,
and the parameters θ∗d are independent and identically distributed (i.i.d.) with
likelihood depending on φ. Such a model can be summarized as follows

yi|(ρ, (θ∗S1
, θ∗S2

, . . . , θ∗Sk), φ)
ind∼ p(yi|θi, φ)

θ∗S1
, θ∗S2

, . . . , θ∗Sk |(ρ, φ)
i.i.d.∼ p(·|φ)

ρ ∼ product distribution (4.3)

φ ∼ g(φ) . (4.6)

The marginal posteriors of the parameters can be computed analytically only
in simple cases, but powerful Markov Chain Monte Carlo (MCMC) algorithms
exist which allow to sample from them. Especially useful for our applications
is the Gibbs sampling scheme reviewed in the following section.

4.2 The Gibbs sampler

The Gibbs sampler was introduced in [75, 76] and it is a specific instance of
a MCMC. These algorithms have their roots in mathematical physics, dating
back to the algorithm of Metropolis [77] and its later generalization by Hast-
ings [78]. Let us consider the problem of generating a sample of realizations
of the random variable X from a density f(x) obtained marginalizing out p
variables y1, . . . , yp. In many problems the marginal distribution

f(x) =

∫
. . .

∫
f(x, y1, . . . , yp) dy1 . . . dyp

is not known analytically either because p is large or the above integral cannot
be solved exactly. The Gibbs sampler solves this problem allowing to generate
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4.2. The Gibbs sampler

a sample X1, X2, . . . , Xm ∼ f(x) without requiring the knowledge of f(x),
provided the conditional distributions are known or it is possible to generate
from them at least.

In order to illustrate the algorithm logic, we consider the simple bivariate
case of two discrete variable X and Y with known conditional probability
density functions p(x|Y = y) and p(y|X = x). A Gibbs sequence is a sequence
of random variables

Y ′0 , X
′
0, Y

′
1 , X

′
1, . . . , Y

′
k , X

′
k

where, given the starting values Y ′0 = y′0, the rest of the sequence is obtained
sampling alternatively according to the scheme

X ′j ∼ p(x|Y ′j = y′j)

Y ′j+1 ∼ p(y|X ′j = x′j) .

The iteration X ′j −→ X ′j+1 defines a Markov chain to which the following
transition probability is associated

P (xj+1|X ′j = xj) =
∑
y

P (xj+1|Y ′j+1 = y)× P (y|X ′j = xj) .

We can therefore define a transition matrix Ax|x = Ax|yAy|x such that for every
k it holds the relation

fk = fk−1Ax|x (4.7)

where fk is the marginal probability distribution of X ′k. Regardless of what
the initial distribution f0 is, it can be proved [79] that fk tends to a unique
distribution as k →∞, that this distribution is a stationary point of Eq. (4.7),
namely fk = fkAx|x, and coincides with the true marginal f(x).

With reference to a model of the type (4.6), the marginal densities of inter-
est are the posteriors p(θi|Y ) and p(φ|Y ) of parameters given the observations
and the Gibbs sampler proceed by sampling from the conditional distributions
of the problems, which are p(φ|θ,y) and p(θj|θ−j, φ,y) for j = 1, . . . , k, where
θ−j is the vector obtained removing the j-th entry from θ. It has to be noticed
that the partition ρ is not sampled itself, but it is the updating of the values θi
which possibly generates new clusters or induces a shuffling of the observations
in the existing ones. This relies on a quite subtle result regarding the deep
connection existing between PPMs and the class of non parametric Bayesian
models with Dirichlet process prior [80, 81]. More precisely, a non parametric
model can be viewed as a specific case of a PPM with the cohesions C(S)
specified as

C(Si) = c× (|Si| − 1)! (4.8)

where |Si| stands for the cardinality of the cluster Si and c is a positive con-
stant. This definition of C(S) is quite general, supporting the formation of a
small number of clusters and avoiding excessive fragmentation. This connec-
tion allows to adapt directly algorithms developed for the class of non para-
metric models such as that in [82]. In particular, it can be proved [83, 84]
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4. Modeling with Product Partition Models

that the full conditional density p(θi|θ−i, φ, ρ) can be expressed as a mixture
of point masses at the values θj and a distribution that is proportional to
p(yi|θi, φ)p(θi|φ)

p(θi|θ−i, φ, θ) ∝
∑
j 6=i

qijδθj(θi) + qi0p(yi|θi, φ)p(θi|φ) , (4.9)

where, after defining p0(yi|φ)
.
=
∫
p(yi|θi, φ)p(θi|φ) dθi, the probabilities qij for

i 6= j and qi0 read

qij =
p(yi|θj, φ)

cp0(yi|φ) +
∑

l 6=i p(yi|θl, φ)

qi0 =
c p0(yi|φ)

cp0(yi|φ) +
∑

l 6=i p(yi|θl, φ)
. (4.10)

They represent, respectively, the probability of overwriting θi with an existing
value, and the probability of drawing a fresh new value for θi, thus generat-
ing a new cluster. Given the representation (4.9), the other full conditional
density needed to run the Gibbs scheme is p(φ|y,θ). This one can be worked
out after computing the joint density of the observations and the parameters
f
(
y,θ, ρ = {S1, . . . , S|ρ|}, φ

)
and exploiting the Bayes rule 1.

4.3 The µ-PPM and σ2-PPM models

Now we will describe a possible application of parametric PPMs to financial
series as in [5, 6], where the elicitation of a partition structure on the vector
of variances allows to stay in a Normal setting while relaxing the hypothesis
of identical distribution. Let y be the vector of returns of a financial asset;
we will assume the returns to be Normally distributed with parameters (θ, φ)
and compare two different models. In the first one we will induce a partition
structure on the vector of the means θ = µ, while φ will be the common
variance of the returns, φ = σ2. In the second one the partition will refer to
the vector of the variances θ = σ2, φ = µ being the returns common mean.
We will refer to the two cases as the µ-PPM model and the σ2-PPM model
respectively. As far as the priors are concerned, we consider a Normal prior for
the means and an Inverse Gamma prior for the variances. The latter choice
can be motivated by observing that marginalizing a Gaussian likelihood with
respect to an Inverse Gamma upon its variance gives a Student-t PDF for the
observations, which is known to provide a good fit of return market data, as
discussed in Chapter 1.

1In the following we will omit the tedious derivation of the explicit expressions of the full
conditional distributions. They directly follow from the structure (4.6) exploiting the Bayes
rule and integrating out when marginalization is required.
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4.3. The µ-PPM and σ2-PPM models

The hierarchical structure for the µ-PPM model reads

yt|(ρ, (µ∗1, . . . , µ∗|ρ|)σ2)
ind.∼ N(µt, σ

2)

µ∗1, . . . , µ
∗
|ρ||(ρ, σ2)

i.i.d.∼ N(m, τ 2
0σ

2) (4.11)

ρ ∼ PD, with C(Sd) = c× (|Sd| − 1)!

σ2 ∼ IG(ν0, λ0) , (4.12)

where IG(ν0, λ0) is an Inverse Gamma distribution with scale parameter λ0

and shape parameter ν0. We sample from the marginal posterior distributions
of the above model with the following Gibbs sampling scheme.

1. Sample σ2 from its full conditional distribution

σ2|µ,y ∼ IG

ν0 +
T

2
+
|ρ|
2
, λ0 +

1

2τ 2
0

|ρ|∑
d=1

(µ∗d −m)2 +
1

2

T∑
t=1

(yt − µt)2

 .

(4.13)

2. Update each µt, t = 1, . . . , T , by sampling from the mixture

µt|µ−t, σ2,y ∼
∑
j 6=t

qtjδµj(µt) + qt0 ×N
(
ytτ

2
0 +m

1 + τ 2
0

,
σ2τ 2

0

1 + τ 2
0

)
, (4.14)

where the weights are given by Eq.s (4.10)

qtj ∝ exp

{
− 1

2σ2
(yt − µj)2

}
qt0 ∝

c√
1 + τ 2

0

exp

{
− (yt −m)2

2σ2(1 + τ 2
0 )

}
∑
j 6=t

qtj + qt0 = 1 . (4.15)

3. Before proceeding to the next Gibbs iteration we update the vector µ∗,
given the partition ρ, sampling from

µ∗d ∼ N

(∑
t∈Sd yt +m/τ 2

0

|Sd|+ 1/τ 2
0

,
σ2

|Sd|+ 1/τ 2
0

)
d = 1, . . . , |ρ|. (4.16)

This step is not strictly required by the Gibbs sampling algorithm. It was
introduced in [82] to speed up the convergence avoiding the Markov chain to
be trapped in sticky patches of the Markov space.
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4. Modeling with Product Partition Models

For the case σ2-PPM we consider the following parametric PPM

yt |
(
µ, (σ2∗

1 . . . σ
2∗
|ρ|), ρ

) ind.∼ N(µ, σ2
t )

µ |
(
σ2∗

1 . . . σ
2∗
|ρ|
)
, ρ ∼ N

(
m,

λ0

T (ν0 − 1)

)
σ2∗

1 . . . σ
2∗
|ρ| | ρ

i.i.d.∼ IG(ν0, λ0)

ρ ∼ PD, with C(Sd) = c× (|Sd| − 1)! , (4.17)

where we fixed the variance of the likelihood of µ in order to match the mean
of the σ2∗

d prior, 〈σ2∗〉 = λ0/(ν0− 1) and rescaling it with the dimension of the
sample. Even in this case the full conditional distribution of the problem can
be computed exactly, leading to the following Gibbs scheme:

1. Sample µ from its full conditional distribution

µ|σ2,y ∼ N

m+
∑|ρ|

d=1
λ0

T (ν0−1)σ2∗
d

∑
i∈Sd yi

1 +
∑|ρ|

d=1
|Sd|λ0

T (ν0−1)σ2∗
d

,

λ0
T (ν0−1)

1 +
∑|ρ|

d=1 |Sd| λ0
T (ν0−1)σ2∗

d

 .

(4.18)

2. Update each σ2
t , t = 1, . . . , T , by sampling from the mixture

σ2
t |σ2

−t,y ∼
∑
j 6=t

q̃tj δσ2
j
(σ2

t ) + q̃t0 × IG
(
ν0 +

1

2
, λ0 +

(yt − µ)2

2

)
. (4.19)

The distribution in Eq. (4.19) corresponds to a mixture of point masses and
an Inverse Gamma distribution, with weights

q̃tj ∝
1√
σ2
j

e
− (yt−µ)

2

2σ2
j

q̃t0 ∝ c× Γ
(
ν0 + 1

2

)
Γ(ν0)

2ν0+ 1
2 (λ0)ν0

[(yt − µ)2 + 2λ0]ν0+ 1
2∑

j 6=t
q̃tj + q̃t0 = 1 , (4.20)

where Γ is the Euler Gamma function.

3. Resample the unique values of σ2 from

σ2∗
d ∼ IG

(
ν0 +

| Sd |
2

, λ0 +
∑
t∈Sd

(yt − µ)2

2

)
d = 1, . . . , |ρ| . (4.21)
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4.4 Posteriors and cluster dynamics

In this section we will apply the models described before to the analysis of
real financial series, describing the posterior distributions of the parameters
obtained as the output of the Gibbs schemes.

We considered four time series, each one of depth T = 1000, correspond-
ing to the daily log-returns of the MiB30 index (Milan Stock Exchange) and
its three components Lottomatica (LTO.MI), Mediobanca (MB.MI) and Snam
Rete Gas (SRG.MI), from April 2004 to March 2008. These components were
the ones exhibiting the highest excess of kurtosis, for which we know a priori
that usual approaches based on Normal distributions do not provide a satisfac-
tory description. We carried out N = 10000 sweeps of the Gibbs algorithms,
discarding the first 1000 realizations to guarantee the Markov chain thermal-
ization. The prior parameters were fixed as in Table 4.1. The choice of m
can be justified by the fact that the mean of daily returns is usually of or-
der 10−3 and it can be neglected a priori, while the somewhat large value of
τ 2

0 was chosen to avoid making the likelihood of µ given σ2 too informative.
Moreover, since the variability of stock returns is usually extremely small, we
fixed λ0 and ν0 in order to have prior expectation and variance for σ2 equal to
0.01. Finally, since the cohesion parameter c controls the prior probability of
generating new clusters, after a numerical sensitivity analysis, we chose c = 1,
since we found that such a value allows an efficient updating of the partition
structure during the sampling, still preventing an excessive fragmentation. A
major consequence of this choice is that the posterior partitions always exhibit
a dominant cluster including the largest part of the observations, thus allow-
ing to define coherently the concept of outlying experimental points (see next
section). Before considering the posterior distributions, it is worth looking at

N m τ 2
0 λ0 ν0 c

10000 0 1000 0.0101 2.01 1

Table 4.1: Prior parameters for the Gibbs sampling of the µ-PPM (4.12) and
σ2-PPM (4.17) models.

how the clusters distribute during the sampling. From the expression (4.3),
the prior expectation of the number of clusters can be computed

〈NC〉 =
T∑
|ρ|=1

c

c+ |ρ| − 1
.

It can be compared with the posterior average cardinality of the partitions
NCB

2 as in Table 4.2, from which we see that the prior expectation is modified

2We put a subscript B to indicate the posterior (Bayesian) value of the corresponding
quantity.
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4. Modeling with Product Partition Models

〈NC〉 Number of Clusters Largest Cluster Weight

µ-PPM σ2-PPM µ-PPM σ2-PPM

MIB30.MI 7.4855 3.11 3.39 0.986 0.990
LTO.MI 7.4855 5.02 4.52 0.963 0.944
MB.MI 7.4855 4.11 3.72 0.968 0.970
SRG.MI 7.4855 3.44 3.59 0.984 0.978

Table 4.2: Posterior average of the number of clusters and relative weight of
the largest cluster for µ-PPM and σ2-PPM.

by the inference process, eliciting a clustering structure with a number of
clusters between 3 and 4 (on average). Moreover the posterior dimension of
the largest cluster is always about 99% of the sample, justifying the concept of
outlying observations (see next section). In Fig. 4.1 we report the histograms
of the parameters posterior distributions of the MiB30 index (the ones for the
other components being similar) for the case of the µ-PPM model. We plot the
distribution of the first entry of the µ vector, its average µ̄ =

∑T
t=1 µt,B/T , and

of the variance σ2. Possible considerations here are highly qualitative, since
the exact forms of the posterior distributions are not known analytically. We
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Figure 4.1: Posterior distributions in the µ-PPM model for the MiB30 index:
clockwise, the firs entry of µB, its mean value µ̄B and the variance σ2

B.
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Figure 4.2: Posterior distributions in the σ2-PPM model for the MiB30 index:
clockwise, the firs entry of σ2

B, its mean value σ̄2
B and the return mean µB.

observe the bell shaped profile of the distribution of µ̄, which could be expected
since for every iteration of the Gibbs sampler µ̄ is a sum of Gaussian variables
as stated in (4.14) and (4.16). We also note that the distribution of σ2

B lose
its prior Inverse Gamma shape, despite the fact that the likelihood (4.13) was
Inverse Gamma itself.

Fig. 4.2 shows the posteriors of σ2
1,B, its average σ̄2

B =
∑T

t=1 σ
2
t,B/T and

µB for the case of the σ2-PPM model with reference to the MiB30 index.
Here, the posteriors of the variances retains a clearly non Gaussian, Inverse
Gamma like shape. This can be easily understood as the large value of T
makes the likelihood µ | (σ2∗

1 , . . . , σ
2∗
|ρ|) very narrow and peaked around m, so

that the µ entering the likelihood of yt in (4.12) is nearly constant. Since the
Inverse Gamma prior of σ2

t is conjugated 3 to that likelihood, we expect the
posterior to be approximately Inverse Gamma either. Table 4.3 shows the pos-
terior estimates for the MiB30 index, as obtained taking the expected value
of the corresponding posterior distributions, to be compared with the frequen-
tist values µ̂ and σ̂2. Errors on the Bayesian estimates have been computed
by searching for the most symmetric interval in the support of the posterior
distributions which encloses the assigned confidence level (CL), here 68%, and
they have to be considered as “credibility” intervals from the point of view of

3When the posterior distribution p(φ|y) is in the same class of the prior p(φ), they are
said to be conjugate distributions and the prior is called a conjugate prior for the likelihood.
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4. Modeling with Product Partition Models

µ̂(10−4) σ̂2(10−5) µB(10−4) µ̄B(10−4) σ2
B(10−5) σ̄2

B(10−5)

µ-PPM 2.05+2.68
−2.68 7.20+0.32

−0.32 - 2.08+2.80
−2.80 8.05+0.43

−0.37 -
σ2-PPM 2.05+2.68

−2.68 7.20+0.32
−0.32 3.14+2.89

−2.86 - - 11.76+1.38
−1.63

Table 4.3: Posterior estimates of parameters for the MiB30 index, compared
with the frequentist values µ̂ and σ̂2 (errors at 68% confidence level).

Bayesian statistics. Even though the Bayesian estimates for the mean of the
data are in agreement with the sample statistics, this is knot true for the vari-
ances, whose posterior values are noticeably larger than the frequentist one,
especially for the σ2-PPM case. This evidence may be interpreted as a clue of
the fact that the partition structure on the variances is statistically relevant
and that the assumption of identically distributed random variables for the
sample at hand is not fully justified. This is in agreement with the evidence
of regime switching in the high frequency volatility [16, 17].

4.5 Outliers identification

The modeling described in this chapter is greatly motivated by the ability of
PPMs to identify clusters of observations sharing some statistical properties,
such as the mean or the variance for the µ-PPM and σ2-PPM models respec-
tively. The concept of a partition structure brings in the notion of outlying
observation as an experimental point belonging to a small cluster when the
majority of the observations belong to a large dominant group.

A natural choice is to model outliers as a shift in the mean of the data
and for this reason, we focus on the µ-PPM model. Indeed, if we take a look
at the expressions of the probabilities qtj and qt0 in (4.15) we see that the
extent of that shift is the criterion used in the µ-PPM approach to induce a
new cluster on the vector of returns: the larger the difference (yt − µj) the
smaller the probability qtj of a reshuffling and, from normalization arguments,
the larger the probability qt0 of generating a genuine new value. Along this
line, we present an efficient algorithm [5, 6] allowing to select the partition
that best separates the main group of standard observations from one or more
groups of atypical points.

Every partition corresponds to a different scenario, and we can think of the
best model as the one maximizing a suitably chosen score function. In [83] it is
suggested that a good choice for the specific problem at hand is the following

SC(ρ) =
k1

T
‖ µ̂B(y)−µ̂ρ(y) ‖2 +k2

[
σ̂2
B(y)− σ̂2

ρ(y)
]2

+(1−k1−k2)|ρ|, (4.22)

where ‖ · ‖ is the Euclidean norm and k1, k2 are non-negative parameters
with k1 + k2 ≤ 1. The subscript “B” stands for the Bayesian (posterior)
estimate of the corresponding parameter while the subscript“ρ”for its estimate
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4.5. Outliers identification

conditioned on a given partition. Formally, we have that µ̂B(y) = 〈µ|y〉,
µ̂ρ(y) = 〈µ|y, ρ〉 and analogously for σ̂2

B(y) and σ̂2
ρ(y). The function (4.22)

combines the estimation of parameters and partition selection problems, k1,2

being the weights which control their priority.
The Bayesian estimates are obtained via the Gibbs sampling algorithm of

Eq.s (4.13)-(4.16). The evaluation of µ̂ρ(y) and σ̂2
ρ(y) requires the use of the

Gibbs scheme in a simpler form: a fixed partition is first selected by means of
the search algorithm detailed below, and then we sample iterating step 1 and
3 but skipping step 2 since ρ is fixed. An exhaustive search on the space of all
possible partitions is infeasible. In fact, for a set with T elements, the number
of all possible partitions is equal to the Bell number of order T , recursively
defined by B(T + 1) =

∑T
k=0

(
T
k

)
B(k), with B(0) = 1, which is an extremely

large number even for moderate values of T . For this reason we restrict to
a tractable subset, performing an exhaustive search over the partitions with
cardinality up to three, selected as follows.

i) Let µB = (µ1, . . . , µT ) be the vector of the Bayesian estimates of the
return means, and µ̃B = (µ̃1, . . . , µ̃T̃ ) be the vector of the unique entries
of µB sorted in increasing order, with µ̃1

.
= min (µt), µ̃T̃

.
= max (µt),

and T̃ ≤ T .

ii) We perform our search of the optimal partition over the set of the parti-
tions ρ = {S1, S2, S3}, where S1 = {t : µt < µ̃i}, S2 = {t : µ̃i ≤ µt ≤ µ̃j},
and S3 = {t : µt > µ̃j} with i, j = 1, . . . , T̃ . The optimal partition is the
one for which the score function (4.22) achieves its maximum.

When i 6= 1 and j 6= T̃ , ρ has 3 distinct clusters and the indexes in S1 and
S3 may be considered as representative of those returns being in the “left tail”
and the “right tail” of the empirical distribution of y. In a naive way, S2 would
correspond to elements occupying the central region of this distribution. When
i = 1 and j = T̃ , the algorithm explores the trivial partition, S1 = S3 = {∅},
while if i = 1 or j = T̃ we have partitions with only two clusters. However,
up to now our search is not exhaustive yet since it exists an alternative way of
generating partitions of cardinality 2. Given any cardinality-3 partition ρ, we
need also to consider the new partition ρ̂ = {S1, S2}, obtained identifying the
two “tails” cluster, namely posing S1

.
= S1∪S3. Once the optimal partition has

been found, we identify the outliers with those elements in y whose indexes
belong to the sets with lowest cardinality.

In Fig. 4.3 we report the results of this outliers detection algorithm for
the considered time series 4. The triangles represent “positive” outliers, cor-
responding to extreme gains, while circles represent extreme losses. We see
that the points detected as atypical always match spikes in the return series.
At the same time, not all the spikes are detected as outliers. This reflect the
very nature of parameter PPMs modeling: large returns which are extreme

4For a detailed table reporting the composition of the optimal partition see [5]
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Figure 4.3: Detected outliers for the returns series of MiB30 index and its
components Lottomatica, Mediobanca and Snam Rete Gas. From [5].

realizations of a Gaussian variable whose mean value is not atypical are not
detected as atypical either.
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Chapter 5
Option pricing and market risk
evaluation

So far we described two different, complementary approaches to the modeling of
financial series focusing on some specific examples. First we considered SVMs,
diffusion processes in which price returns are driven by a stochastic volatility,
in agreement with empirical evidences about the non constant behavior of the
amplitude of price fluctuations. These models focus on the price dynamics and
describe its random time evolution, aiming at the more realistic description of
the statistical properties of financial time series considered as a realization of
the path of a stochastic process. Then, we explored a completely different ap-
proach, based on Bayesian inference which updates the degree of belief in some
hypothesis reacting to the empirical evidence; within this approach, exploiting
the specific framework of PPMs, it is possible to incorporate the hypothesis
of a non homogeneity of the sample, eliciting the partition structure which is
more likely to be realized given the observations, and to take into account this
information when estimating the parameters of interest if needed. We also saw
that the Bayesian PPM approach modifies the frequentist sample estimates,
supporting the need to consider the different statistical properties of the data,
especially as far as the volatility is concerned.

In this chapter we will discuss some original financial applications of these
approaches to problems of major interest in finance: the rational evaluation of
option prices and the estimation of market risk exposure. In the first part of
the chapter we will review the basic definitions and results on these subjects
along with some original methodological achievement. We will define an op-
tion contract, and the celebrated price formula by Black, Scholes and Merton
will be recalled as well. We will introduce the concepts of arbitrage and mar-
ket efficiency and completeness, the fundamental martingale pricing theorem
providing a general framework for evaluating financial derivatives in efficient
markets, the notion of implied volatility and its empirical features pointing to-
ward the lacking of realism of the Black and Scholes (B&S) assumptions. We
will see how it is possible to derive the martingale dynamics for SVMs, propos-
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5. Option pricing and market risk evaluation

ing a useful way to exploit the fact that the market model is incomplete, and
we will show that the knowledge of the model CF can be exploited usefully
for pricing purposes. As far as risk estimation is concerned, we will define
the most commonly used estimators for evaluating the risk associated to price
fluctuations, the Value-at-Risk (VaR) and the Expected Shortfall (ES), and we
will detail an original computational methodology for their efficient evaluation
based on the Generalized Fourier Transforms (GFTs). This methodology ap-
plies both to the case of single assets and portfolios and it also allows for the
evaluation of the sensitivities with respect to the portfolio composition. The
non parametric historical approach will be also revised along with some useful
backtesting procedures to test the robustness of the models used for risk as-
sessment. Finally we will introduce the Delta-Gamma-Normal (DGN) model,
a benchmark framework to account for risk of portfolios containing derivative
instruments like options.

The second part of the chapter will be devoted to describe some original
results about the previously introduced topics. Firstly we will consider the
pricing problem for the linearized exponential Ornstein-Uhlenbeck model in-
troduced in Chapter 3. We will describe the form of the martingale dynamics
for this model and we will propose an efficient procedure to estimate its param-
eters from real market quotes exploiting the analytical expression of the CF.
The implied volatility surface predicted by the linear model and those obtained
for the exponential Ornstein-Uhlenbeck and the Stein-Stein models will be also
compared in the light of an accurate propagation of the statistical uncertainty
associated to the parameters estimation and to the numerical implementation.
Then we will exploit the µ-PPM and σ2-PPM models of Chapter 4 to obtain
Bayesian estimates for the VaR of single assets from the Milan Stock Exchange
and for the MiB30 index. At this aim, we will devise suitable expressions for
the VaR in order to account for the contribution of outlying clusters of obser-
vations. Our Bayesian estimates will be also compared with the ones obtained
in the frequentist parametric approach proposed in [25] where the return PDF
is fitted with a fat tailed generalized Student-t. As a conclusion, our GFT
approach to risk, presented in the first part, will be applied to the case of the
DGN model, whose CF is known in closed form. We will detail a case study,
obtaining Fourier estimates of the VaR, the ES and their sensitivities for a fic-
titious portfolio and we will check the results against the historical estimates
from a synthetic, Monte Carlo generated, sample of portfolio value variations.

5.1 Martingale pricing and risk measures

Derivative contracts are financial instruments whose value Ot at time t depends
on the value S of some fundamental asset. The latter is called the underlying,
and it may be a stock, an exchange rate or something else, and the value
of the contract possibly depend on the whole past history of the underlying,
that is Ot = O(t, St′≤t). Here we focus on European plain vanilla options.
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5.1. Martingale pricing and risk measures

An option gives its holder the right, not the due, to buy from or sell to the
writer a unit (conventionally) of the underlying stock at the price K specified
by the contract. In the first case we have a call option, while a put in the
second. The exercise price is named the strike price and the European option
can be exercised only at the T , the maturity, which is also part of the contract
specifications. From these definitions, it follows that the value of the contract
at t = T , its payoff, only depends on the final price of the underlying

h(ST ) =

{
(ST −K)+ Call

(K − ST )+ Put .
(5.1)

In 1973, F. Black and M. Scholes [85], and independently R. Merton [86],
published their theory of rational option pricing, based on the assumption of
a GBM dynamics for the underlying asset and a few other assumptions about
the financial market. Their famous formula for the price of a European option
can be seen as a specific result of a more general approach to derivative pricing
which is known as martingale pricing or no arbitrage pricing.

This approach find its roots in the hypothesis of efficient market, formu-
lated in 1965 by P. Samuelson [87] which we state as follows: a market is
efficient when all the information relevant for the transactions is gathered and
processed instantaneously by all market participants. This is a reasonable ap-
proximation for liquid markets and it translates in the absence of arbitrage
opportunities, that is a trading strategies able to guarantee a riskless profit
with a null initial investment. The martingale pricing theory relies on the fol-
lowing fundamental theorem of mathematical finance, see for instance [88]. We
call a numéraire N(t) the value of any freely tradable and positively valued as-
set. The martingale pricing theorem states that, in absence of arbitrage, there
exists a probability measure Q such that for all other securities, the value Ot

of the security divided by the numéraire is a martingale, that is

Ot

Nt

=

〈
OT

NT

∣∣∣∣ It〉
Q

for all T > t

where 〈.〉Q denotes the expectation with respect to Q and It stands for the
information available at time t about the process. In our case Ot is the value
of the Call/Put option and OT = h(ST ) is its payoff. We will discuss the case
when St is modeled with a SVM, so that St is a Markovian process. In this
case, the theory of Markovian processes tells us that conditioning with respect
to It is equivalent to conditioning only to the value of the underlying process at
t. We can also introduce the concept of a bank account B(t) = er(t−t0) which is
the value at t of a unit of currency invested in a bank deposit at time t0 when
the continuous interest rate is constant and equal to r. This (deterministic)
process can be conveniently chosen as our numéraire, so that Nt = Bt; if so,
the corresponding measure Q is named risk neutral measure and the value of
the option at present (conventionally t = 0) reads

O0 = e−rT 〈h(ST )|S0〉Q . (5.2)
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5. Option pricing and market risk evaluation

From this point of view, the fundamental issue of option pricing consists of
finding the risk neutral measure, or more generally a way to compute the
expectation (5.2) under such a measure. When Q is unique, the market is said
to be complete; in this case it can be proved [57] that the value of the option
can be replicated at any time by a portfolio set up with only the underlying S
and the bank account B. When the market is incomplete, and we will see it is
the case of SVMs, this is not true anymore. In the B&S theory, the underlying
dynamics under the risk neutral measure reads

St = S0e

(
r−σ2

2

)
t+σ(W ∗t −W ∗0 )

(5.3)

where W ∗
t is a standard Brownian motion under Q. The previous expression is

nothing but the solution of the GBM equation (1.3) with the drift coefficient µ
replaced by the risk free interest rate. It follows that the risk neutral PDF is the
Log-Normal with mean 〈St〉Q = S0e

rt and variance VarQ[St] = S2
0e

2rt(eσ
2t − 1)

and the expectation (5.2) evaluated for this PDF gives us the celebrated B&S
formula for the price of a European Call option

CB&S
0 = S0Φ(d)−Ke−rTΦ(d− σ

√
T ) , (5.4)

where Φ stands for the cumulative distribution function of the standard Normal
distribution and d is defined as

d =
log(S0/K) +

(
r + σ2

2
T
)

σ
√
T

. (5.5)

Historically, option contracts were introduced as a sort of insurance against
adverse moves of prices: they give the right to trade a stock at a fixed price,
which right is to be exercised only if the price difference (5.1) is favorable de-
pending on whether we are willing to buy the stock or we own it. Fluctuations
of financial prices are what we call market risk and a huge number of papers,
either from the practitioners and the academics community, has been devoted
to define suitable risk level estimators and efficient methodologies for com-
puting them. A widely considered risk measure is the so called Value-at-Risk
(VaR), defined to be the maximum potential loss in the value of an asset (or
portfolio) at given confidence level α∗ = 1 − P∗. The parameter P∗ is called
significance level and common choices are P∗ = 1%, 5%. Indicating with p(V )
the PDF of the price variation of an asset or portfolio whose present value is
W0, and with p̃(R) that of the returns R = V/W0, the VaR ∆∗ is implicitly
defined by

P∗ =

∫ −∆∗

−W0

p(V ) dV = S0

∫ −∆∗/S0

−∞
p̃(R) dR . (5.6)

When R ∼ N(µ, σ2), we obtain the usual form of the Gaussian VaR

∆∗ = −µW0 + σW0

√
2 erfc−1(2P∗) . (5.7)
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The VaR is important for regulatory purposes since Basel II [89] accords on
bank supervision impose institutions to meet strict capital requirements based
on VaR estimates, even though they do not specify any procedure to compute
them, leaving financial actors free to employ their own internal models. Despite
of the interest by regulators, the VaR gives no information about the extent
of the loss when the threshold is exceeded; this motivated the introduction
of a more informative estimator, called the Expected Shortfall (ES), which is
defined as the normalized average of the losses over threshold:

E∗(P∗) = − 1

P∗
∫ −∆∗

−W0

V p(V ) dV . (5.8)

There are situations in which the variation V is modeled by means of un-
bounded distributions (Gaussian for instance), even though that quantity is
limited from below by −W0, and the limit −W0 → −∞ is implicit. Since P∗
is small in practical applications, we can think of −W0 as standing on the far
left tail of the distribution and the error induced by this limit to be small.

5.1.1 Implied volatility smile

From the B&S formula (5.4) it stems a concept of the volatility quite different
with respect to that encountered so far, that of implied volatility. It is defined
as the value σ to be plugged into in the B&S formula to match the price of
the option quoted by the market

Cmarket = CB&S
0 (S0, K, T, r;σ)⇒ σimp .

If the B&S theory was meaningful we would expect all the options written on
the same underlying to have the same value of σimp and this value to be equal to
the volatility σ entering the GBM dynamics of the underlying. Indeed, this is
not the case. It is well known that options with the same underlying stock but
with different strikes or maturities are quoted differently by the market, and
the corresponding surface of implied volatility has the typical shape shown
in Fig. 5.1. In particular, the profile of σimp as a function of the variable
log(S0/K) forms the so called volatility smile. While this dependency can be
considered to reflect investor’s expectation about the future trend and riskiness
of the underlying, the dependency of σimp on the expiry date T reflects the
non constant nature of the volatility itself, in agreement with the evidences
outlined in Chapter 1.

It exists an interesting connection between the implied volatility smile and
the variance σ2

τ , skewness ζτ and kurtosis κτ of the risk neutral PDF at time
T = t0 + τ , as provided by the following expression

σimp,τ (d1) ' στ√
τ

[
1− ζτ

3!
d1 −

κτ
4!

(1− d2
1)

]
, (5.9)
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Figure 5.1: Typical profile of an implied volatility surface.

where σimp,τ is the B&S implied volatility for the time to maturity τ and

d1(τ,K)
.
=

log(S0/K) + rτ + σ2
τ/2

στ
.

The previous relation shows that the smile effect and its asymmetry, can be
considered as a clue of the non Gaussianity of the risk neutral PDF. In par-
ticular, its excess of kurtosis is responsible for the convexity of the smile. The
expression (5.9), derived in [90] (see also [16, 91]), is based on the approxima-
tion of the risk neutral PDF for the time to maturity τ in terms of a Gram
Charlier cumulant expansion. It does not rely on the choice of any specific
underlying dynamics and it is shown that it is effective only for d1 ∼ 0 and
στ � 1, which is often realized in practice (for τ ' 1 year, στ ranges from 0.2
to 0.3 typically) 1.

5.1.2 Martingale pricing for SVMs

Now we will sketch the procedure by which the risk neutral process can be
derived for the case of a SVM (for further details and a more formal treatment
see for instance [57]). We will focus on the case in which the secondary process

1This limitation is due to the fact that the inversion of the B&S formula, required to
write (5.9), is accomplished neglecting terms of higher order in σT and d1.
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Y follows an Ornstein-Uhlenbeck process:

dSt = µSt dt+ σ(Yt)St dW1,t

dYt = −α(Yt − γ) dt+ k dW2,t . (5.10)

The martingale pricing theorem states that under the risk neutral measure
Q the ratio of the price over the bank account numéraire, S̃t

.
= e−rtSt, is a

martingale. From Îto lemma applied to S̃ we have

dS̃t = (µ− r) S̃t dt+ σ(Yt)S̃t dW1,t

= σ(Yt)S̃t

[
dW1,t +

µ− r
σ(Yt)

dt

]
.
= σ(Yt)S̃t dW

∗
1,t . (5.11)

Since martingales are stochastic integrals with respect to Wiener processes, Q
must be a measure under which the process W ∗

1,t is a Wiener process. Moreover,

since a shift in W2,t does not influence the drift of S̃, we can also admit a
transformation of the type

W ∗
2,t = W2,t +

∫ t

0

η(Ss, Ys, s) ds , (5.12)

where the process η may depend on the underlying processes but not on any of
parameters specifying the option contract and, apart from some integrability
conditions, it is an arbitrary function. Under quite general assumptions about
the form of σ(Y ), the existence of such a measure is guaranteed by the Girsanov
theorem (see for instance [92]) so that the complete risk neutral dynamics can
be written as

dSt = rSt dt+ σ(Yt)St dW
∗
1,t

dYt = − [α(Yt − γ) + η(St, Yt, t)] dt+ k dW ∗
2,t . (5.13)

We see that under Q, the µ is replaced by the risk free rate r and the process
η modifies the drift term of Y , which is why η is called the market price of
volatility risk. It is important to notice that for every choice of η we have a
different risk neutral measure, Q = Qη, so that SVMs are incomplete market
models. By the way, for the B&S model we have a constant volatility, σt = σ,
and the solution of the first of (5.13) is just the Log-Normal process (5.3)
whose expectation leads to the B&S formula. In this case the only source
of randomness is the S process and no arbitrariness enters the risk neutral
dynamics, leading to a unique Q measure, which makes the market complete.

The practical approach to the problem of fixing η is to suppose that a
unique choice is made by the market itself. Naively, we may think that the
market price options under the measure corresponding to that choice and, even
though the process η never enters the “objective” dynamics (5.10), we expect
it to be reflected by the values of options. In practical applications η is often
assumed as a constant to be estimated jointly with the other model parameters
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from the implied volatility surface. However, choosing a constant η may sound
quite restrictive; a somewhat general assumption [8, 66] is to assume a linear
dependence on Y

η(St, Yt, t) = η0 + η1Yt . (5.14)

In this case, the risk neutral dynamics of Yt becomes

dYt = −α̃ (Yt − γ̃) dt+ k dW ∗
2,t , (5.15)

where we defined the risk neutral versions of the relaxation coefficient α̃ and
stationary mean value γ̃:

α→ α̃ = α + kη1 , γ̃ =
αγ − kη0

α̃
.

The crucial point to be observed is that this choice for η leaves us with the
same Ornstein-Uhlenbeck dynamics (5.15) for Y under Q either.

5.1.3 Characteristic function machinery

As we saw in Chapter 3, it is frequent the case when the return PDF associated
to a SVM is not available, but we know the analytical expression of its CF. Even
though we would prefer the former, the latter is extremely useful too. First of
all it allows to draw exact expressions for the cumulants, which characterize
the shape of the PDF; secondly, we will see that it provides a quite efficient
and general way to solve the computational problems of option pricing and
risk measure evaluation.

Let us start from the former. In [93] it is proved that a large class of
payoff functions admits a generalized Fourier transform (GFT) in the complex
plane z ∈ C for z limited in a suitable strip of regularity. Let’s focus on
the Call payoff h(ST ) = S0 e

rT (exT − K̃)+, where xt = log(St/S0) − rt and
K̃ = K e−rT/S0; the GFT of the function h̃K̃(x) = (ex − K̃) reads

ĥ(z)K̃ = − K̃1+iz

z2 − iz , z ∈ Sh (5.16)

where Sh .
= {z ∈ C | Im(z) > 1} and h̃ is recovered integrating along a line

parallel to the real axis included in Sh

h̃K̃(x) =
1

2π

∫ +∞+iν

−∞+iν

e−izxĥK̃(z) dz .

with z = ω + iν ∈ S and dz = dω. Exploiting this relation we can express the
value of a European option (5.2) in the form

O0 =
S0

2π

∫ +∞

−∞
p(xT ;T )

[∫ +∞+iν

−∞+iν

e−izxT ĥK̃(z) dz

]
dxT .
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Formally, we can switch the integration order and write the following evaluation
formula

O0 =
S0

2π

∫ +∞+iν

−∞+iν

ĥK̃(z)f(−z;T ) dz , (5.17)

where we defined the GFT of p(x; t) as

f(z; t) =

∫ +∞+iν

−∞+iν

eizxp(x; t) dx (5.18)

assuming the integral to be well defined. Now, let’s suppose we know the exact
expression of the CF f(ω; t) associated to the returns PDF p(x; t) and that its
extension to the complex plane f(z; t), z ∈ C, is analytical and single valued in
the neighborhood of z = 0. If so, a theorem by Lukacs [94] guarantees that the
GFT of p is well defined in a regularity strips Sp .

= {z ∈ C | ν− < Im(z) < ν+},
and this GFT coincides with f(z; t). The same theorem states that the limits
of the strips ν±, with ν− < ν+, are the imaginary parts of the singularities of
f(z; t) closest to the real axis, if any. So, if we define the strip S∗p

.
= {−ν+ <

Im(z) < −ν−}, the expression (5.18) is well defined only for z ∈ Sh∩S∗p , if this
intersection is not empty. Specializing (5.17) to the case of the Call option we
obtain

C0 = −e−D S0

2π

∫ +∞+iν

−∞+iν

e−izD
f(−z;T )

z2 − iz dz

= −eD(ν−1) S0

2π

{∫ ∞
−∞

dω cos(ωD) Re [W (ω+)f(−ω+) +W (ω−)f(−ω−)]

+

∫ ∞
−∞

dω sin(ωD) Im [W (ω+)f(−ω+)−W (ω−)f(−ω−)]

}
(5.19)

where z = ω ± iν, D
.
= log(S0/K) + rT and W (ω)

.
= [ω2 − iω]−1, with

ω±
.
= ±ω + iν.
Now we will show how a similar approach can be extended to risk eval-

uation. Fourier techniques were introduced since the work of Rouvinez [95],
and more recently in [96, 97], and we generalized to the case of non linear
portfolios in [10]. The expressions (5.6) and (5.8) defining the VaR and ES can
be managed with the same formalism leading to Eq. (5.19). Indeed, if f(z) is
the GFT of the PDF for the variation V of an asset value, we can express the
VaR (5.6) as

P∗ =
1

2π

∫ +∞+iν

−∞+iν

dz f(z)

(∫ −∆∗

−∞
dV e−izV

)
, (5.20)

and the convergence of the innermost integral is guaranteed if we fix ν ∈
(0, ν+). With this choice, the previous expression readily reduces to

P∗ =
i

2π

∫ +∞+iν

−∞+iν

dz
f(z)

z
e−iz∆

∗
=
e−ν∆∗

π
Re

[∫ +∞

0

dω
f(ω + iν)

ν − iω eiω∆∗
]
.

(5.21)
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5. Option pricing and market risk evaluation

Analogous considerations allow us to write the following Fourier representation
for the ES, see [10]

E∗(P∗) = ∆∗ − e−ν∆∗

πP∗ Re

[∫ +∞

0

dω
f(ω + iν)

(ω + iν)2
eiω∆∗

]
. (5.22)

Since the only information required is the CF, the above Fourier machinery is a
powerful tool, allowing to generalize the evaluation of risk measures to dynamic
models such as those SVMs [97] whose CF is known in closed form, such as
the Heston or the S2 model. When the value variation V involved in previous
equations is associated to a combination of different assets, a portfolio, the as-
sociated CF will depend on the set β = {β1, β2, . . . } of the parameters defining
its composition (see the last section of this chapter). From a practical point
of view, after estimating the portfolio VaR for a given P∗, it is important to
evaluate the risk measure sensitivities to variations of the weights βi. The only
ingredient required here are the derivatives ∂f/∂βi, and Fourier representa-
tions can be drawn also for sensitivities. Indeed, after differentiating (5.20) at
constant P∗ and reminding the definition of GFT of p(V ), the VaR sensitivities
reduce to a single Fourier integral

∂∆∗

∂β
=

e−ν∆∗

πp(−∆∗)
Re

[∫ +∞

0

dω

ν − iω
∂f(ω + iν)

∂β
eiω∆∗

]
, (5.23)

where the value of the PDF in ∆∗ is computed in terms of its GFT

p(−∆∗) =
1

2π

∫ +∞+iν

−∞+iν

eiz∆
∗
f(z) dz .

Finally, recalling again the relation (5.6) between P∗ and ∆∗, differentiation
of the expression (5.22) gives us analogous expressions for the ES derivatives

∂E∗(P∗)
∂β

= −e
−ν∆∗

πP∗ Re

[∫ +∞

0

dω

(ω + iν)2

∂f(ω + iν)

∂β
eiω∆∗

]
. (5.24)

It is worth noticing that this approach someway unify the problems of
option pricing and risk measure estimation, both involving expectations of
suitable payoffs. Moreover, when the CF is the only information available it
proves to be highly efficient, since it reduces to a single Fourier integration
what would require a double numerical integration otherwise, the first over the
probability space and the second over the Fourier variable.

5.1.4 Historical approach to risk measures

A widely exploited, non parametric approach to risk assessment is the his-
torical one, consisting of estimating the empirical quantiles from a sample of
observations of asset value changes. Let us suppose we have a sample (real
or simulated) of length T of price changes, Vi=1,...,T . If Ṽt are the entries of
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5.1. Martingale pricing and risk measures

Vt sorted in ascending order, and assuming t∗ = T × P∗ to be integer, the
historical VaR at the significance level P∗ is defined as 2

∆∗H = −Ṽt∗ . (5.25)

The ES is obtained as the average on the left tail of the empirical distribution

E∗H = − 1

t∗

t∗∑
t=1

Ṽt . (5.26)

Confidence intervals for VaR can be derived from a basic result of order statis-
tics. Let us consider the sample of T i.i.d. variables Vi and indicate with Qp the
p-th percentile of their distribution; then, the probability of Qp being enclosed
in (Ṽt− , Ṽt+) is given by the following sum of binomial probabilities [98]

P (Ṽt− < Qp < Ṽt+) =
t+−1∑
k=t−

(
T

k

)
pk(1− p)T−k . (5.27)

To find the confidence interval associated to ∆∗H for a given CL, we find indices
t∓ satisfying

P (Ṽt−+1 < QP∗ < Ṽ +
t ) ≤ CL ≤ P (Ṽt− < QP∗ < Ṽt+)

where QP∗ = −∆∗ and the choice between possible different pairs (t−, t+)
satisfying the previous inequality is made requiring the confidence interval to
be as symmetric as possible around ∆∗H . With these positions, the historical
VaR is estimated by

(∆∗H)+δ+

−δ− ,

{
δ+ .

= −Ṽt− −∆∗H

δ−
.
= ∆∗H + Ṽt+

(5.28)

with confidence level CL.

Since E∗ is a monotonously increasing function of ∆∗, a lower and upper
bound for ES are easily obtained by evaluating the average in equation (5.26)
for t∗ = t− and t∗ = t+ respectively. At the same CL as above, we estimate

(E∗H)+e+

−e− ,


e+ .

= −
(

1

t−

t−∑
k=1

Ṽk

)
− E∗H

e−
.
= E∗H +

(
1

t+

t+∑
k=1

Ṽk

)
.

(5.29)

2If T ×P∗ is not integer, ∆∗ can be defined as the average (−Vs − Vu)/2, where s, u are
the two integers closest to t∗.
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5. Option pricing and market risk evaluation

When V is the variation of a portfolio value whose composition depends
on parameters β, the sensitivities of ∆∗H can be estimated approximating its
derivatives, for instance with a 3 points finite difference formula

(∂β∆∗)H
.
=

(
∂∆∗

∂β

)
H

=
∆∗H(β + ∆β)−∆∗H(β −∆β)

2∆β
(5.30)

where ∆∗H(β ±∆β) denotes the historical estimate for the VaR obtained after
giving a positive/negative shock to the parameter β while keeping fixed all the
others3. The error affecting (∂β∆∗)H is obtained by linear propagation of the
errors affecting ∆∗H(β±∆β) through equation (5.30). An analogous procedure
is applied to estimate (∂βE

∗)H and its confidence interval.

5.1.5 VaR backtesting procedures

The Basel II accords also prescribe to asset the robustness of internal models
used to compute the VaR for daily variations through backtesting procedures
taking into account the number of exceptions recorded over the last year with
respect to the model forecast. The most widely exploited methods are the
Kupiec unconditional coverage (UC) test [99] and the conditional coverage
(CC) one by Christoffersen [100].

We briefly review the logic underlying these tests since they will be applied
to the VaR estimates obtained by the PPMs described in Chapter 4. If we
indicate with p the probability of observing an exception out of a sample of N
observations of an asset returns, the number of registered exceptions follows
a binomial distribution Bin(N, p). The null hypothesis we need to test for is
that p = P∗, where P∗ is the significance level associated to our VaR estimate.
Kupiec considers the following generalized likelihood ratio

LRUC = −2 log
[
(1− P∗)N−nP∗n

]
+ 2 log

[
(1− n/N)N−n(n/N)n

]
(5.31)

where n are the registered exceptions. Asymptotically, LRUC distributes chi-
square with one degree of freedom under the null hypothesis, which allows to
reject that hypothesis at 95% CL when LRUC > 3.84. The above test statistics
can be extended to test for the serial correlation of violations, introducing a
state indicator j which is equal to 0 when VaR is not exceeded and 1 otherwise.
The Christoffersen test considers the following combined statistics

LRCC = LRUC + LRIND (5.32)

LRIND = −2 log
[
(1− n/N)N00+N10(n/N)N01+N11

]
+ 2 log

[
(1− π0)N00πN01

0 (1− π1)N10πN11
1

]
(5.33)

3Obviously, this procedure for computing sensitivities usually applies to simulation stud-
ies, when time series of portfolio values can be generated with Monte Carlo techniques for
every possible portfolio composition.
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where Nij stands for the number of days in the state j conditioned to the
state i having been realized the previous day. With the same logic πi is the
probability of observing an exception the day after state i was realized, that
is π0 = N01/(N00 +N01) and π1 = N11/(N10 +N11). Here, the null hypothesis
for the LRIND statistics is that violations are independent from what occurred
(violation or not) the previous day. Under this hypothesis, it can be shown
that LRCC distributes chi-square with two degrees of freedom, and the VaR
model should be rejected with 95% CL when LRCC > 5.99 (see also [101]).

5.1.6 The Delta-Gamma-Normal model

While the non Gaussian nature of returns distributions of single assets can
be considered a quite fundamental fact which is intrinsic of their underly-
ing dynamics, a different source of non Gaussianity emerges when considering
portfolios containing options or different derivative contracts. The modeling of
these portfolios is mostly made by means of the so called Delta-Gamma-Normal
(DGN) model. This approach is based on a second order Taylor expansion of
the portfolio price variation V with respect to the risk factors Xi=1,...,N respon-
sible for the portfolio fluctuations. Under this quadratic approximation, we
can express V as

V = θ + ∆>X +
1

2
X>ΓX , (5.34)

where V = W −W0 is the value variation over a time horizon ∆t, θ ∈ R, ∆ ∈
RN×N and Γ ∈ RN×N contain the first and second order derivative of V with
respect to the risk factors. In particular Γ accounts for possible non linearities.
The DGN model assumes the risk factors to be drawn from a multivariate
Normal distribution N(0,Σ) with zero mean and covariance matrix Σ. After
solving the generalized eigenvalue problem

CC> = Σ , C>ΓC = Λ ,

with Λ = diag(λ1, . . . , λN), the portfolio variation becomes

V = θ +
N∑
i=1

(
δiYi +

λi
2
Y 2
i

)
(5.35)

where we defined δ
.
= C>∆, X

.
= CY and the transformed risk factors Yi are

now independent Gaussian variables. The CF associated to the distribution of
V has been drawn in [102], reading

f(z) = E[eizV ] = eiθz
N∏
i=1

1√
1− iλiz

exp

{
−1

2

δ2
i z

2

1− iλiz

}
; (5.36)

the asymptotic properties of the corresponding PDF have been studied in [103]
where it is shown that the behavior of the left (right) tail of the PDF is
essentially dictated by the sign of the lowest (highest) eigenvalue λ∗. Focusing
of the left tail, which is the one involved by risk estimation, the following three
cases are possible.
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5. Option pricing and market risk evaluation

1. λ∗ = 0: the tail is asymptotically Gaussian;

2. λ∗ > 0: the PDF is truncated on the left;

3. λ∗ < 0: the left tail exhibits an exponentially damped power law decay

p(V ) ∼ |V |ν e Vλ∗ , for V → −∞ , (5.37)

the index ν, possibly negative, being a function of the multiplicity of λ∗.

The behavior of the right tail follows the antithetic pattern, being exponen-
tially damped (Gaussian) for λ∗ > 0 (λ∗ = 0) and truncated on the right when
λ∗ < 0, where λ∗ is now the largest eigenvalue. So, here we see an example
in which fat tails are induced by the inclusion of second order terms in the
expansion leading to (5.34), even though the single risk factors Xi are drawn
Gaussian. The latter assumption may sound quite unrealistic in the light of
the empirical facts analyzed so far, and actually it is. However, the term “risk
factor” is quite generic, and the actual definition of Xi, a relative or logarith-
mic return rather than an absolute variation for instance, depends on which
parametrization is chosen at first for the portfolio; its nature is generic either,
possibly being related to an interest rate rather than a plain stock or a volatil-
ity itself, depending on the type of the derivative contract. So we argue that
Normality is a working assumption, necessary to make the model (5.34) ana-
lytically manageable and enough general, even though sometimes it is justified
by invoking the CLT (see [104, 105]).

5.2 Option pricing for the LinExpOU model

Now we will calibrate the LinExpOU model against real option quotes and
we will compare the results with the ExpOU and the S2 model, all of which
have been described in Chapter 3. With the linear choice (5.14) for the market
price of volatility risk, the risk neutral dynamics for the centered log-return
Xt = log(St/St0)− rτ , with τ = t− t0, has the form

dXt = −1

2
σ2(Yt) dt+ σ(Yt) dW

∗
1,t

dYt = α̃(γ̃ − Yt) dt+ k dW ∗
2,t (5.38)

with initial conditions X(t0) = X0 = 0 and Y (t0) = Y0, and α̃ > 0 that ensures
the existence of a stationarity state of the Y process. For σ(Yt) = meYt or
σ(Yt) = mYt we recover the ExpOU or the S2 models respectively. When the
variance of Y , β̃

.
= k2/(2α̃) is small, a linear approximation of σ and σ2 around

γ̃ can be performed and if we define Zt = Yt + 1− γ̃, m̄ = meγ̃, k̄ = k for the
ExpOU case, and Zt = Y/γ̃, m̄ = m γ̃ and k̄ = k/γ̃ for the S2 case, the risk
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5.2. Option pricing for the LinExpOU model

neutral dynamics becomes

dXt = −m̄
2

2
(2Zt − 1) dt+ m̄Zt dW

∗
1 (5.39)

dZt = α̃(1− Zt) dt+ k̄ dW ∗
2,t . (5.40)

This dynamics, emerging here as the common limit of the ExpOU and
the S2 models under the martingale measure Q, has just the same form it
had for the LinExpOU model under the objective measure (see Eq. (3.9)-
(3.10)). This implies that the expression of the CF fLinExpOU(ω; t), as given by
Eq.s (3.12)-(3.15) is still valid, provided to replace the original parameters with
their risk neutral, “tilded” versions. The linearization procedure hides a serious
drawback: it breaks the martingality of the discounted price S̃t = St0e

Xt which
must hold for the original Q-dynamics (5.38). That can be easily verified by
observing that

〈
eXt |Xt0

〉
LinExpOU

= f ∗LinExpOU(−i) 6= 1. To account for this

violation we can add by hand an extra term, a function M(τ), to the drift
term of Xt

dXt = −m̄
2

2
(2Zt − 1) dt+M(τ) dt+ m̄Zt dW

∗
1 ; (5.41)

reminding the exponential form (3.12) of fLinExpOU under the original objective
measure, we guess the form of the risk neutral CF

f ∗LinExpOU(ω; τ) = exp
{

+A(ω, τ) +B(ω, τ)z0 + C(ω, τ)Z2
0 + iωx0

}
× exp

{
−iωm

2

2

∫ τ

0

M(τ ′) dτ ′
}

(5.42)

where the expressions (3.13)-(3.15) of A,B,C, remains unchanged. Requiring
the martingale condition

〈
eXt | X0

〉
Q = fLinExpOU(−i; τ) = 1 to be satisfied,

we obtain the explicit expression of the extra term

M(τ) =
2

m2

d

dτ

[
A(−i, τ) +B(−i, τ)z0 + C(−i, τ)z2

0 + x0

]
,

which motivates a posteriori the time homogeneity assumed forM. In order
to fit the model parameters, we will exploit the volatility surface reported in
Table 5.1; it corresponds to the market quotes of Call options written on the
asset Intesa San Paolo S.p.A. from the Milan Stock Exchange, for different
time to maturities τ , as of 22nd November 2007, spot price S0 = 5.16 EUR.
The term structure of risk free rates was retrieved from the market as well. We
will also compare the results of the calibration of the LinExpOU model with
those for the ExpOU and S2 models.

The fitting parameters are k,m, ρ, α, γ and Y0
4; however, under the as-

sumption that the the volatility has reached the stationary state at the time

4 From now on we will drop the tilde from above the risk neutral parameters α̃, γ̃ and
the bar from above m̄ and k̄, unless necessary to avoid confusion.
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τ (yr) rτ (yr−1) log(S0/K) σimp,τ (yr−1/2)

0.0795 0.0425 0.0626 0.3354
0.0218 0.3089

-0.0175 0.2839
-0.0552 0.2599
-0.0657 0.2822

0.1562 0.0465 0.1496 0.3427
0.0626 0.3114
0.0218 0.2823

-0.0175 0.2700
-0.0552 0.2566
-0.0916 0.2592
-0.1267 0.2630
-0.1606 0.2686

0.2329 0.0474 0.0626 0.3347
0.0218 0.2874

-0.0175 0.2704
-0.0552 0.2726
-0.0916 0.2681
-0.1267 0.2593
-0.1606 0.2643

0.0795 0.0425 0.0626 0.3354
0.0218 0.3089

-0.0175 0.2839
-0.0552 0.2599
-0.0657 0.2822

0.1562 0.0465 0.1496 0.3427
0.0626 0.3114
0.0218 0.2823

-0.0175 0.2700
-0.0552 0.2566
-0.0916 0.2592
-0.1267 0.2630
-0.1606 0.2686

0.2329 0.0474 0.0626 0.3347
0.0218 0.2874

-0.0175 0.2704
-0.0552 0.2726
-0.0916 0.2681
-0.1267 0.2593
-0.1606 0.2643

Table 5.1: Implied volatilities market data.
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Figure 5.2: Implied volatilities smiles for Intesa San Paolo as fitted with the
parabolic approximation (5.9).

τ (yr) σMk
τ ± εMk

στ ζMk
τ ± εMk

ζτ
κMk
τ ± εMk

κτ

0.0795 0.0885 0.0063 -0.80 0.20 2.0 2.1
0.1562 0.1145 0.0012 -0.578 0.064 1.44 0.31
0.2329 0.164 0.013 -1.11 0.16 4.6 1.8
0.3260 0.210 0.071 -1.82 0.92 5.3 7.8
0.5781 0.235 0.011 -0.587 0.066 1.7 1.2
0.8274 0.269 0.011 -0.760 0.068 0.2 1.0

Table 5.2: Market calibrated normalized cumulants and their standard 68%
errors.

α∗ ± εα k∗ ± εk m∗ ± εm ρ∗ ± ερ β∗ ± εβ
(yr−1) (yr−1/2) (yr−1/2)

ExpOU 6.3 1.5 1.3 0.1 0.266 0.018 -0.51 0.09 0.13 0.04
S2 5.7 1.3 1.9 0.4 0.265 0.008 -0.41 0.07 0.32 0.14

LinExpOU 5.6 1.3 1.9 0.4 0.264 0.008 -0.41 0.07 0.34 0.15

Table 5.3: Optimal parameters for the three considered models, and standard
68% errors.
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5. Option pricing and market risk evaluation

the quotes correspond to, we can fix arbitrarily Y0 = γ. Moreover, it can be
shown that the moments of the volatility driving Xt always depend on the
combination m̄, not on m and γ separately (see also [67]); so we can also fix
γ and we choose γ = 0 for the ExpOU and LinExpOU cases and γ = 1 for
the S2 model, in order to have the same value of the starting volatility. We
are left with four three parameters and we fit them with the following simple
two step procedure. First, we fit the market smiles with the parabolic approx-
imation (5.9) (see Fig. 5.2), this way exctrating the values for the variance,
the skewness and the kurtosis of the implied PDF for the available time to
maturities, and associated standard errors, reported in Table 5.2. Then we
fit the market cumulants, minimizing the square distance from the theoretical
predictions of the models. For the LinExpOU model the cumulants time scal-
ing is provided by the expressions in Appendix A and analogous expressions
can be obtained for the S2 model 5 On the other hand, the cumulants of the
ExpOU model have to be simulated via Monte Carlo. The optimal parameters
α∗, k∗,m∗, ρ∗ satisfy the equation

α∗, k∗,m∗, ρ∗ = argmin
α,k,m>0, ρ∈[−1,1]

∑
τ

[
(σMk

τ − στ )2

ε2στ
+

(ζMk
τ − ζτ )2

ε2ζτ
+

(κMk
τ − κτ )2

ε2κτ

]

where the standard error is ε2 = εMk2
+ εMC2

, the Monte Carlo error being
zero for the LinExpOU and S2 cases.

The optimal parameters for the data set at hand, calibrated by imple-
menting the previous procedure by means of Marquard-Levemberg and MI-

NUIT minimization routines, are reported in Table 5.3. The value of β for
the ExpOU model supports its linearization and the assumption of the mar-
ket being in a low volatility fluctuations regime. The correlation coefficient is
always negative, in agreement with what is known for stock returns distribu-
tions. Moreover, no statistically significant differences are observed between
S2 and LinExpOU, which was expected as the two models are quite similar in
the structure. Once the models have been calibrated, we can reconstruct the
volatility surface and check it against the original ones. For the LinExpOU
and S2 models, this can be done evaluating the formula (5.19) by means of
standard trapezoidal routines or Fast Fourier Transform (FFT) algorithms 6,
while for ExpOU a further Monte Carlo simulation is mandatory.

In Fig. 5.3 we present the implied volatilities smiles reconstructed by the
LinExpOU model, showing its ability to capture the correct shape of the
volatility. The agreement slightly decreases for very large, K � S0, or very
small, K � S0, strike values; from the third panel, corresponding to τ =

5The expression of CF for the S2 model was already known in the literature [28] and
since the choice (5.14) for the market prices guarantees that the dynamics is invariant in
form, the same expression is valid under Q.

6The analysis of the funcions A,B,C in (3.13)-(3.15) shows that the strip Sh ∩S∗p is non
empty for the calibrated values of the parameters, allowing to use the formula (5.19) for the
LinExpOU model. An analogous result holds for the CF of the S2 model.
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Figure 5.3: Comparison between market implied volatility smiles for Intesa San
Paolo and those obtained from the LinExpOU model. Parameters values as in
the third row of Table 5.3, as obtained from the calibration of the LinExpOU
model.
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Figure 5.4: Comparison between market implied volatility smiles for Intesa San
Paolo and those obtained from the ExpOU and LinExpOU models. Parameters
values as in the first row of Table 5.3, as obtained from the calibration of the
ExpOU model.
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Figure 5.5: Comparison between market implied volatility smiles for Intesa
San Paolo and those obtained from the S2 and LinExpOU models. Parameters
values as in the second row of Table 5.3, as obtained from the calibration of
the S2 model.
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0.326 yr, we notice that there are two anomalous quotes, whose values are aout
of scale and can not reproduced as expected. The statistical uncertainty on the
parameters values reflects in the standard errors associated to the curves. The
error propagation has been performed making use of the numerical first order
derivatives. It is worth pointing out that, following the guidelines depicted
in the previous section, calibration and pricing are carried out in an efficient
way; this is mainly due to the analytical characterization we provided for the
CF and the cumulants, making the entire approach a real time procedure. In
Fig. 5.4 we present the smiles for the set of parameters corresponding to the
ExpOU calibration and we plot both the curves obtained from MC simulation
(T = 105) of the exponential model and those computed integrating Eq. (5.19)
for the LinExpOU model with the same parameters values (the curves corre-
sponding to the LinExpOU case have been shifted rightward). In Fig. 5.6 we
plot the PDF of the LinExpOU model against the one for the ExpOU model
computed with trapezoidal integration and MC simulation, respectively. Both
panels confirm the analysis performed in [67], showing fatter tails and a lower
central peak for the histogram of the ExpOU with respect to the PDF of the
LinExpOU model. Even though the value β ∼ 13% (see Table 5.3) is at the
border of the regime allowing the linearization, as far as the volatility smiles
are concerned, we conclude that they are in a good statistical agreement. In
Fig. 5.5 a comparison analogous to the one in Fig. 5.4 is reported for the S2
parameters , revealing again that the results for the two cases are statistically
compatible. With respect to Fig. 5.4, the narrower error bars reflect the fact
that parameters fitting has been performed exploiting the available analytical
information. Actually, the MC simulation involved both in the calibration and
the price computation for ExpOU introduces an additional statistical uncer-
tainty.

We can conclude that the LinExpOU model, being analytically charac-
terzied, can be fitted efficiently. Most of all, if a careful errror propagation is
performed, the LinExpOU volatility smiles are statistically indiscernible from
the S2 and ExpOU models.

5.3 Bayesian VaR

The Bayesian modeling with PPMs described in Chapter 4 finds an inter-
esting application in evaluating the VaR (5.6) for single assets [5]. In the
µ-PPM model, at the l-th iteration of the Gibbs sampling we obtain a pecu-
liar partition structure in which all the returns share the same variance σ2

(l),
but every cluster of observations corresponds to a different value of the mean
µ∗1(l), µ

∗
2(l), . . . , µ

∗
|ρ|(l). In order to provide a single VaR estimates for each itera-

tion we choose to combine the different entries of µ∗(l) by means of the following
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P∗ = 5% P∗ = 1%

µ-PPM σ2-PPM σ2-CP µ-PPM σ2-PPM σ2-CP

MIB30.MI 1.45+0.05
−0.05 1.74+0.11

−0.12 1.76+0.01
−0.01 2.07+0.06

−0.06 2.48+0.16
−0.17 2.49+0.01

−0.01

LTO.MI 2.08+0.07
−0.07 2.78+0.15

−0.16 2.66+0.02
−0.02 2.95+0.09

−0.09 3.94+0.21
−0.21 3.78+0.03

−0.03

MB.MI 1.91+0.07
−0.08 2.40+0.12

−0.12 2.36+0.01
−0.01 2.72+0.11

−0.11 3.40+0.17
−0.17 3.35+0.02

−0.02

SRG.MI 1.58+0.05
−0.05 1.97+0.12

−0.13 2.01+0.01
−0.01 2.26+0.06

−0.06 2.81+0.17
−0.17 2.87+0.02

−0.02

Table 5.4: Estimated daily VaR (%) with 68% credibility intervals.

arithmetic average

∆∗(l)
S0

= −
|ρ|∑
d=1

∣∣Sd(l)

∣∣
T

µ∗d(l) + σ(l)

√
2 erfc−1(2P∗)

where we normalized the VaR to the spot value S0 of the asset and erfc−1 is the
inverse of the complementary error function. For the σ2-PPM model, the clus-
tering structure emerges upon the vector of the variances σ2∗

(l) = (σ2∗
1,(l), . . . , σ

2∗
|ρ|(l))

while the observations share the same value of the mean µ(l). In this case, the
previous definition becomes

∆∗(l)
S0

= −µ(l) +

|ρ|∑
d=1

∣∣Sd(l)

∣∣
T

σ∗d(l)

√
2 erfc−1(2P∗) .

For the trivial partition, |ρ| = 1, previous formulas reduce to the well know
expression (5.7) of the VaR for Gaussian i.i.d. returns; otherwise, they intro-
duce corrections due to the contribution of the outlying clusters. Finally we
combine all the previous values through an ergodic mean to obtain the final
posterior VaR estimate

∆∗

S0

.
=

1

L

L∑
l=1

∆∗(l)
S0

.

The VaR estimates (normalized to S0) for the data set described at the end of
Chapter 4, the MiB30 index, Lottomatica, Mediobanca and Snam Rete Gas,
and for the two values of interest P∗ = 5% and P∗ = 1%, are reported in
Table 5.4. In the same table we also report the estimates obtained with a
different PPM approach, developed by Loschi et al. [106] and referred to a σ2-
CP model in the following, which still considers a partition structure over the
variances, but constraining the clusters to be contiguous. This more sophisti-
cated approach, besides requiring different sampling algorithms, better applies
to the problems of detecting change points and modeling of the volatility clus-
tering but here it is only considered as a benchmark for our VaR estimates.
Nevertheless, we see that the VaR results for the σ2-PPM and σ2-CP models
are in good agreement, allowing to conclude that, as far as the risk measure
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VaR(%) P∗=5% P∗=1%

Normal Student-t Normal Student-t

MIB30.MI 1.38+0.05
−0.07 1.27+0.04

−0.06 1.95+0.07
−0.09 2.22+0.09

−0.10

LTO.MI 2.50+0.14
−0.15 2.15+0.08

−0.09 3.55+0.19
−0.20 4.05+0.19

−0.22

MB.MI 2.07+0.06
−0.09 1.89+0.05

−0.07 2.95+0.09
−0.11 3.37+0.12

−0.14

SRG.MI 1.62+0.05
−0.08 1.48+0.04

−0.07 2.32+0.08
−0.10 2.65+0.11

−0.12

Table 5.5: Daily ML estimated VaR(%) values at 5% and 1% significance level
with 68% bootstrap intervals.

evaluation is concerned, even a simpler model discarding the contiguous char-
acter of clusters in the volatility series is also effective. On the other hand,
the estimates obtained with the µ-PPM approach tend to underestimate VaR,
which can be justified by noticing that the contribution of the variance to daily
VaR is about ten times that of the mean, due to the typical values of the mean
rate of return for daily horizons.

As said before, PPMs in our framework allow to stay in a Normal settings
while renouncing to the hypothesis of identical distribution. From this point of
view, it is of major interest to compare this approach with the one presented
in [25]. There, a maximum likelihood (ML) approach is used to fit the empirical
return distribution with a Generalized Student-t (GST) distribution with tail
index ν > 2, and an exact expression for the corresponding VaR is obtained.
This GST approach assumes i.i.d. returns and explicitly takes into account the
fat tails of daily returns by means of the GST assumption for their distribution.
We assume it as a benchmark since it presents a good agreement with historical
simulations. The corresponding estimates for the dataset at hand, and 68%
bootstrap errors, are shown in Table 5.5 along with the Gaussian ML ones. The
comparison of Bayesian and ML estimates reveals that for P∗ = 1% the results
for σ2-PPM and σ2-CP are those in best agreement with the GST values
while for for P∗ = 5% the µ-PPM approach seems to perform better. This
may indicate that a PPM approach for the variances tends to overestimate the
volatility of the data with respect to a ML static fit, which effect is less evident
for lower P∗ where the VaR estimate is mostly determined by far left tail of the
distribution, conversely being less sensitive to its bulk. On the other hand, the
Gaussian ML values always underestimates the Student-t values for P∗ = 1%;
from this point of view, we may say that the PPM approach, renouncing to
model identically distributed variables, is able to capture indirectly the effect
of the power law tails of a GST distribution, even keeping to model returns as
Gaussian variables.

The Basel II regulations [89] require the computation of the 10 day ahead
VaR for fixing the regulatory capital for market risk, and suggest propagating
the daily estimates to the 10 days horizon with the square root rule

∆∗(1 day)⇒ ∆∗(10 days) =
√

10 ∆∗(1 day) ;
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Figure 5.7: Ratio of the 10 days ahead over the daily VaR, and 68% error bars,
computed for the µ-PPM and σ2-PPM models.

however, this scaling rule is valid only for standard VaR formula assuming
Gaussian i.i.d. returns, otherwise it should be corrected. To test this scaling,
we computed the 10 days ahead VaR forecast for the µ-PPM and σ2-PPM
models, running the Gibbs schemes over the series of non overlapping 10 days
returns obtained from the original daily sets. In Fig. 5.7 we plot the ratio

RV aR =
∆∗(10 days)√
10 ∆∗(1 day)

,

and it shows statistically significant deviations from the square root law, con-
firming the ability of the PPM approach in capturing the non trivial time
scaling of the risk measure over different time horizons.

To asses the robustness of the PPM approaches, we performed the UC and
CC coverage tests for both the models. Using a rolling window of returns
from the original daily series, we ran N instances of the Gibbs sampler; for
J = 1, . . . , N the algorithms compute the ex ante VaR estimate ∆∗MAXJ

using
the returns yi with i = J, . . . ,MAXJ , where we fixed MAXJ = J+744 in order
to use all the information from our original series of 1000 returns and to obtain
N = 255 VaR estimates, roughly corresponding to one trading year as imposed
by the Basel regulators. Then we check ∆∗MAXJ

against the ex post realized
return yMAXJ+1. An exception occurs when yMAXJ+1 < −∆∗MAXJ

. We set a
state indicator IJ set equal to 1 if we register an exception, 0 otherwise. This
way we obtain the numbers n and N ij needed to compute the LRUC and LRCC

statistics defined in Eq.s (5.31)-(5.33). In Table 5.6 we report the results for the
LTO.MI series, the ones for the other data sets being similar. Gloabally, the
models pass both Kupiec’s and Christoffersen’s tests, with the only exception
of the σ2-PPM model for P∗ = 5%, which produced a fairly low number
of exceptions with respect to the expected number 〈n〉 = 255 × 0.05 ≈ 13,
indicating a too conservative risk estimate. This exception can be justified by
the trend of the considered time series, whose historical volatility exhibits the
steep decreasing trend plotted in Fig. 5.8, meaning that, systematically, ex-ante
VaR estimates computed by “training” the Gibbs sampler with observations
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P∗ = 1% P∗ = 5%

LTO.MI n LRUC LRCC n LRUC LRCC

µ-PPM 5 1.857 2.057 9 1.288 1.947
σ2-PPM 1 1.237 1.245 5 13.873 14.073

Table 5.6: Backtesting results: the model is rejected at 5% significance level
if LRUC > 3.84 (unconditional coverage test), or LRCC > 5.99 (conditional
coverage test).
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Figure 5.8: Historical volatility of the LTO.MI daily return series computed
over a rolling window of 744 returns from the original 1000 data.

corresponding to higher volatility regimes were then compared with ex-post
realized returns drawn from lower volatility periods.

5.4 Portfolio VaR

As the last application, we will briefly describe some results about portfolio
risk estimation, which problem we addressed in [10] in the context of the
DGN approximation. Indeed, since the CF for the benchmark DGN model is
known, Eq. (5.36), the problem of estimating VaR and ES can be elegantly
solved applying our formulae (5.20)-(5.22). The model parameters with respect
to which the sensitivities are defined are the one appearing in (5.35), namely
β = {θ, δi=1,...,N , λi=1,...,N}, N being the number of risk factors. The derivatives
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of the CF are readily computed

∂f(ω)

∂θ
= iωf(ω)

∂f(ω)

∂δi
= − δiω

2

1− iλiω
f(ω)

∂f(ω)

∂λi
=

iω

2(1− iλiz)

[
1− δ2

i ω
2

1− iλiz

]
f(ω) ,

and the VaR and ES sensitivities can be obtained through formulas (5.23)
and (5.24). The involved Fourier integrals can be computed both by means of
standard trapezoidal integration routines or FFT algorithms. However, in the
first case, the integration procedure has to be nested in a root finding one to
solve (5.21) for ∆∗ which can be computationally demanding. On the other
hand, the advantage of FFT teqnique is that, given an input grid of ω values,
the output of the algorithm is a grid of ∆∗ values which are in biunivocal
correspondence with as many values of P∗. This way we obtain an entire strip
of VaR and ES, covering any P∗ range of interest, depending on the tuning of
the input grid.

The effectiveness of this approach has to be tested with VaR and ES mea-
sures computed by the historical approach described in Section 5.1.6 for a
synthetic sample of portfolio variations generated from the model (5.34). To
this end, we simulated T = 107 portfolio scenarios for N = 15 risk factors, ob-
tained by as many draws of the Gaussian variables Y ∼ N(0,1), and the values
Vt were constructed from Eq. (5.35) after arbitrarily fixing θ, δ and λ. Atten-
tion has to be paid here to freeze the values of Yt, so that re-evaluation of the
portfolio with shocked parameters is always carried out based on the same sam-
ple. More details about efficient algorithms to generate the scenarios under a
quadratic approximation of the portfolio losses can be found in [107]. We tested
the formulas of Section 5.1.3 for choices of the parameters β corresponding to
all the three possible cases depending on the sign of the smallest eigenvalue
λ∗. Here we present only the plots corresponding to the case λ∗ < 0, fixing
θ = 0, δi=1,...,15 = 1, λi=1,...,5 = λ∗ = −2, λi=6,...,9 = 1 and λi=10,...,15 = 2. The
correspondences P∗-VaR and P∗−ES are reported in the left panel of Fig. 5.9.
The semi-analytical curves are superimposed to the estimates from historical
simulation for the relevant values P∗ = 0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05
with corresponding 98% CL errors computed as in Section 5.1.6. In Fig. (5.10)
the VaR and ES sensitivities are reported. They exhibit larger error bars, due
to the propagation of statistical uncertainty of the risk estimates which is mag-
nified by a factor of order O(1/∆β) through the finite difference formula (5.30).
Moreover, it is clear that these errors increase for lower P∗ due to the decreas-
ing of the sample size on the left tail of the Monte Carlo generated values
Vt. The complete agreement of the Fourier semi-analytical estimates with the
MC ones confirm the soundness of our approach. As stated earlier, this set of
parameters corresponds to an exponentially damped power law scaling, which
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Figure 5.10: Case λ∗ < 0. VaR (left) and ES (right) sensitivities.

is confirmed by the right panel of Fig. 5.9 where the PDF p(V ) obtained an-
titranforming the CF (5.36) is fitted with its analytical approximation (5.37).
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Conclusions and future
perspectives

Starting from the work of Bachelier, the Gaussian paradigm has spread widely
in the financial world without quantitatively sound motivations. While the
Bachelier assumption of a Normal distribution of prices was clearly unrealis-
tic given the non negative nature of prices, the Geometric Brownian Motion
(GBM) introduced by Osborne, Samuelson and Merton for price returns is also
unrealistic, especially for high frequency data. Observed distributions exhibit
a much larger probability of extreme events, especially losses, than expected
from the Gaussian probability density function (PDF) fitting the data. That
possibly results in a rough underestimation of risk, either when assessing ex-
posures associated to the owning of an asset or portfolio, and when computing
the prices of derivative contracts where these estimation errors are prone to
be amplified by the nonlinearity of the instrument itself. It is now well under-
stood that high frequency returns are compatible with a Tsallis or Student-t
distribution for instance, namely a functional form featuring a much slower,
power law decay on the tails. This is not the end of the story: it does not
suffices to single out the optimal function fitting the data if it remains a static
model. Financial processes exhibit correlations between meaningful quantities
at different times, all of which witness a non trivial underlying dynamics. So,
the quest is for dynamic models able to reproduce those correlations as well as
the evolution over different time scales of the return distributions. The GBM is
a dynamic model in which returns are Gaussian at all times and the volatility
is constant. So it contradicts also the evidence that the volatility is a time
varying, apparently random, process. Stochastic Volatility Models (SVMs)
sign a clear step beyond in the modeling, since the coupled dynamics of the
returns and the volatility introduces correlations and, usually, an exponential
rather than Gaussian decay of the tails.

In this thesis, some interesting cases of SVMs have been studied and de-
veloped. The linearized version of the exponential Ornstein-Uhlenbeck model
(LinExpOU), discussed in [67, 7, 8] and presented in Chapter 3, looses some
interesting properties of the parent model, such as the Log-Normal distribu-
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tion of the volatility, but it does not fail to be non Gaussian, as it can be
proved by the analysis of the moments, exactly computable starting from the
expression of its characteristic function (CF). We derived rigorously the risk
neutral dynamics of this model and we found that the expression of the CF
is still valid with minimal modifications, thus allowing to implement the ef-
ficient calibration strategy depicted in Chapter 5. Our estimates of the risk
neutral parameters are dressed with robust errors, resulting in a band for the
reconstructed volatility surfaces. A quantitative comparison of the LinExpOU
model with the exponential Ornstein-Uhlenbeck and the Stein-Stein models
in the light of these uncertainties, highlighted that no statistically significant
difference can be traced as far as option prices are concerned. As a future
research topic, it would be interesting to study the scaling properties of the
risk neutral dynamics, testing to what extent the model calibrated against the
present volatility surface is able to “follow” future movements of the surface it-
self. A related problem would be to asses the sensitivities of the parameters to
the movements of the market volatility curves, which is important for traders
using these sensitivities to hedge option positions.

The minimal linear model, also developed in Chapter 3 and still under
investigation, is a different yet promising and realistic model. The main cor-
relations were characterized analytically and so we did for the moments of the
return distribution. These ones may diverge at finite times as a consequence of
the power law tails of the stationary distribution of the instantaneous volatility,
the latter being an Inverse Gamma in agreement with the empirical analysis of
the volatility proxies. This last feature, even though desirable, imposes rigid
constraints on the process time scales which prevent the model to capture
the long range memory of the volatility autocorrelation. Despite of that, the
empirical analysis of this model, carried out for the daily return series of the
Standard & Poor 500 index, revealed a high degree of realism despite its linear-
ity. We proposed a systematic methodology for estimating its parameters, and
we found values which support the model internal consistency requiring the
convergence of the volatility autocorrelation function. Most of all, the analysis
of the simulated return PDFs testified the ability of the model to capture the
leptokurtic, power law distribution of the data at high frequency and their
scaling properties over longer time horizons. Future research activity will be
devoted to test the model against ultra high frequency, intraday returns, to
asses the parameters sensitivity to the time resolution of the data used for their
estimation. Such an analysis will provide the starting point for testing whether
the proposed dynamics can be considered realistic at time scales shorter than
a trading day, and for evaluating the importance of this intraday dynamics in
determining the relevant features of the daily return distribution. A different
goal would be exploring possible techniques to solve the model Fokker-Planck
equation for the PDF or its CF at least.
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In all the SVMs considered here, the process driving the volatility belongs
to the more general class of Multiplicative Noise Diffusion Processes analyzed
in Chapter 2 extending the characterization made in [9]. There, the proposed
algorithmic strategy established a simple connection between the time depen-
dent function rescaling the drift and diffusion coefficients of the Îto equation
and the relaxation modes of the moments of the PDF. In particular, we were
able to modulate this time dependence to reproduce power law scalings or more
general stretched exponential ones. The analytical expressions of the moments
may help the analysis of time series such as those considered in [44, 45, 49, 54]
providing a simple way to fix model parameters out of sample averages and
it may also be exploited to study the behavior of Edgewoth-like cumulant
expansions of the PDF.

In Chapter 4 we presented two alternative models based on the Bayesian
framework of the Product Partition Models (PPMs), which were introduced
in [5, 6]. They are not dynamic in the sense the SVMs are, but they take into
account that the distribution of returns may change with time. We identified
clusters of observations based on their distribution parameters and we defined
and singled out outlying points in the series. In this respect, a possible devel-
opment would be supporting these models with a macroeconomic analysis to
check out whether the atypical returns can be associated with specific economic
events triggering a regime switching. In Chapter 5 the same models were suc-
cessfully applied to VaR estimation for single assets. Minor clusters introduce
significant deviations from the crude Gaussian Maximum Likelihood (ML) es-
timates assuming i.i.d. returns; moreover the comparison with a ML approach
fitting the empirical returns with a Student-t distribution highlighted that the
PPM approach leads to compatible risk estimates, even though it starts from a
Gaussian prior assumption. This was an indirect evidence that the relaxation
of the identical distribution hypothesis allows to capture the effect of fat tails
in the VaR estimates. In principle, these models could be extended to the
multivariate case of portfolios as well, considering a hierarchical approach to
model the variance-covariance matrix of the problem. From a computational
point of view, this extension could be highly demanding even for small port-
folios; however the dimensionality of the problem could be reduced applying
filtering techniques, such as those developed in [108, 109, 110, 111], which allow
to retain only the statistically significant information present in the correlation
matrix.

Finally, at the end of Chapter 5, we presented a strictly financial application
to non linear portfolios, discussing some of the results published in [10]. At this
aim we developed an efficient computational methodology for risk assessment
based on the generalized Fourier transform formalism. The extreme generality
of this method, requiring the knowledge of the CF only, placed the computation
of risk measures and their sensitivities with respect to the portfolio composition
into a unified perspective, the latter aspect being of major importance for
portfolio managers. We considered the specific case of the Delta-Gamma-
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Normal model, widely exploited in practice, testing our results with the aid of
MC simulation. As a future research, it would be worth to explore possibilities
to build a more realistic portfolio model in which the risk factors feature a
stochastic volatility dynamics, and for which the portfolio CF can be drawn
thus making our methodology still feasible.

As a last remark, the author hopes that, even when addressing applications
which are of interest in financial practice, the “physical” focus on the actual
statistical features of the underlying fundamental quantities and on their dy-
namics was manifest. In the author’s opinion, this focus is what makes a
substantial difference between Econophysics and financial engineering or in-
dustry.

“ . . . it is still common practice in the world of quantitative finance and in the
derivative industry to use blatantly irrelevant models that can always be brute
force calibrated on market data to spit out meaningless numbers. In my view,
financial engineering is at the stage of Ptolemea’s epicycles before Kepler’s
ellipses. After so much twisting and tweaking (calibration is the politically cor-
rect word for it), epicycles were more precise that ellipses . . . but of course, this
was no theory. ”
J. P. Bouchaud
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Appendix A
LinExpOU model: cumulants

In the following we report the analytical expressions of the cumulants of the
Linear model, obtained by differentiation of the CF (3.12).

k1,τ =
m̄2

α
(Z0 − 1)(e−ατ − 1)− m̄2

2α
ατ +X0,

k2,τ =
1

4

m̄2

α

{
− 2

(
km̄

α

)2 [
e−2ατ − 4e−ατ − 2ατ + 3

]
+
k2

α

[
e−2ατ + 2ατ − 1

]
− 2(Z0 − 1)2

[
e−2ατ − 1

]
− 8(Z0 − 1)

[
e−ατ − 1

]
+ 4ατ

}
+ 2

km̄3

α2
ρ

{
(Z0 − 1)

[
e−ατ + ατe−ατ − 1

]
−
[
e−ατ + ατ − 1

]}
,

k3,τ =
3

2

k2m̄3

α3

{
(Z0 − 1)

[
e−3ατ − 2e−2ατ + e−ατ (3 + 2ατ)− 2

]
+2
[
e−2ατ − 4e−ατ − 2ατ + 3

]}
+

3

2

km̄3

α2
ρ

{(
km̄

α

)2 [
−e−2ατ (3 + 2ατ) + 4e−ατ (3 + ατ) + 4ατ − 9

]
+
k2

α

[
e−2ατ (1 + ατ) + ατ − 1

]
−(Z0 − 1)2

[
e−2ατ (1 + 2ατ)− 1

]
+2(Z0 − 1)

[
e−2ατ − 2e−ατ (2 + ατ) + 3

]
+ 4

[
e−ατ + ατ − 1

]}
+3

k2m̄4

α3
ρ2

{
(Z0 − 1)

[
e−ατ (2 + 2ατ + α2τ 2)− 2

]
−2
[
e−ατ (2 + ατ) + ατ − 2

]}
,
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k4,τ = 3
k2m̄4

α3

{
1

2

(
km̄

α

)2 [
−e−4ατ + 4e−3ατ − 4e−2ατ (3 + ατ)
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]
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k2

8α
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2
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α4
ρ
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3e−3ατ (1 + ατ)− 2e−2ατ (3 + 2ατ)
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4
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.
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SVMs: computational details

Derivation of Eq. (3.28). After expressing Yt+τ in terms of its integral
solution form t to t+ τ , the function f(Y ; t, τ)

.
=
〈[
Y 2
t Yt+τe

√
c∆tW2(τ)

]〉
can be

rewritten in the form

f(Y ; t, τ) =

〈[
Y 2
t

(
Yt +

∫ t+τ

t

(aYs + b)ds+
√
c

∫ t+τ

t

YsdW2,s

)
e
√
c∆tW2(τ)

]〉
=
〈[
e
√
c∆tW2(τ)

]〉
(µ3(t) + bτµ2(t)) + a

∫ t+τ

t

〈[
Y 2
t Yse

√
c∆tW2(τ)ds

]〉
+
√
c

∫ t+τ

t

〈[
Y 2
t Yse

√
c∆tW2(τ)dW2,s

]〉
.

Taking into account that for t ≤ s ≤ t+ τ we can always split ∆tW2(τ) as

∆tW2(τ) = W2,t+τ −W2,t = W2,t+τ −W2,s +W2,s −W2,t

= ∆sW2(t+ τ − s) + ∆tW2(s− t) ,

and the function f(Y ; t, τ) becomes

f(Y ; t, τ) =
〈[
e
√
c∆tW2(τ)

]〉
(µ3(t) + bτµ2(t))

+ a

∫ τ

0

〈[
Y 2
t Yt+τ ′e
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c∆tW2(τ ′)

]〉〈[
e
√
c∆t+τ ′W2(τ−τ ′)
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dτ ′

+
√
c

∫ τ

0

〈[
Y 2
t Yt+τ ′e

√
c∆tW2(τ ′)

]〉〈[
e
√
c∆t+τ ′W2(τ−τ ′)dW2,t+τ ′

]〉
,

(B.1)

where we changed the variable of integrations to τ ′ = s− t. Since the process√
c∆t+τ ′W2(τ − τ ′) is Normally distributed with zero mean and variance c(τ −

τ ′), and recalling the expression of the Gaussian characteristic function, φG,
we can write〈[

exp
{√

c∆t+τ ′W2(τ − τ ′)
}]〉

= φG(ω)
∣∣
ω=−i = exp

{ c
2

(τ − τ ′)
}
.
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Application of the Novikov theorem also gives〈[
e
√
c∆t+τ ′W2(τ−τ ′)dW2,t+τ ′

]〉
=

〈[
δ

δζW2(t+ τ ′)
exp

{√
c

∫ t+τ

t+τ ′
ζ2,sds

}]〉
dτ ′

=
√
c exp

{ c
2

(τ − τ ′)
}
,

where we expressed the Wiener variation in terms of a Gaussian white noise
ζ2,t as dW2,t = ζ2,t , dt. Replacing the previous expressions in Eq. (B.1) we
conclude that f(Y ; t, τ) has to satisfy

f(Y ; t, τ)− (a+ c)

∫ τ

0

f(Y ; t, τ ′)e
c
2

(τ−τ ′)dτ ′ = e
c
2
τ [µ3(t) + bτµ2(t)] . (B.2)

Eq. (B.2) is a Volterra equation of the second kind, whose solution is precisely
the expression (3.28).

Computation of
〈
Y 2
t Y

2
t+τ

〉
entering Eq. (3.33). With reference to the

SVM (3.16), the cross correlation
〈
Y m
t Y

n
t+τ

〉
can be computed exactly. Pro-

vided to express Y n
t+τ as integral solution from t to t+ τ

Y n
t+τ = Y n

t +

∫ t+τ

t

[
FnY

n
s + AnY

n−1
s

]
ds+

∫ t+τ

t

. . . dW2,s

it is straightforward to check that
〈
Y m
t Y

n
t+τ

〉
satisfies the following equation

d

dτ

〈
Y m
t Y

n
t+τ

〉
= Fn

〈
Y m
t Y

n
t+τ

〉
+ An

〈
Y m
t Y

n−1
t+τ

〉
, (B.3)

which is an ODE provided the correlation
〈
Y m
t Y

n−1
t+τ

〉
was computed at the

step n− 1. Starting from n = 0, we readily compute the following correlation〈
Y 2
t Yt+τ

〉
= eaτµ3(t)− b

a
[1− eaτ ]µ2(t) ;

substitution in Eq. (B.3) for the case m = n = 2 provides the ODE satisfied
by
〈
Y m
t Y

n−1
t+τ

〉
, whose solution reads:

〈
Y 2
t Y

2
τ(s)

〉
= eF2τµ4(t) +

A2

a− F2

[
eaτ − eF2τ

]
µ3(t)

−
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b

a

A2

F2

[
eF2τ − 1

]
− b

a

A2

a− F2

[
eaτ − eF2τ

]}
µ2(t) .

100



Appendix C
Notations

ABM Arithmetic Brownian Motion
B&S Black & Scholes

CC Conditional Coverage
CF Characteristic Function
CL Confidence Level

CLT Central Limit Theorem
DGN Delta-Gamma-Normal

ES Expected Shortfall
ExpOU Exponential Ornstein-Uhlenbeck

FFT Fast Fourier Transform
GBM Geometric Brownian Motion
GFT Generalized Fourier Transform
GST Generalized Student-t
H The Heaviside step function

i.i.d. independent, identically distributed
LinExpOU Linearized Exponential Ornstein-Uhlenbeck

log The logarithm to the base e
ML Maximum Likelihood

ODE Ordinary Differential Equation
PD Product Distribution

PDF Probability Density Function
PPM Product Partition Model
r.h.s. right hand side
SDE Stochastic Differential Equation

S&P500 Standard & Poor 500
SVM Stochastic Volatility Model

S2 Stein-Stein
UC Unconditional Coverage

VaR Value-at-Risk
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[65] J. Perelló, “Market memory and fat tail consequences in option pricing
on the expOU stochastic volatility model”, Physica A 382, 213 (2007).
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