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La teoria è quando si sa tutto
ma non funziona niente.
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In ogni caso si finisce sempre
con il coniugare la teoria con la pratica:
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Introduction

Although more than forty years have passed since the discovery of the J/ψ, the
charmonium and open charm physics are still interesting and exciting research
fields. The phenomena of the confinement of quarks, the existence of glueballs
and hybrids and the origin of the mass of strongly interacting, composite sys-
tems are long–standing puzzles and represent a challenge in our attempt to
understand the nature of the strong interaction and of the hadronic matter.
Both theoretical and experimental activities have been stimulated by the re-
cent discovery of narrow charmed–strange states. New capabilities for the
quest of the missing resonances in the charmonium region are provided by the
B factories, which represent rich sources of charmonium states.
Despite this thrust, many years of intense experimentation are still required
in order to reach a precise knowledge of mass, width, decay modes and spin–
parity of all the states.
Significant progresses can be attained only if the statistics and precision of the
new data will exceed the past efforts by several orders of magnitude. This is
presently done by the high statistics experiments in e+e− annihilations, but
in these experiments only states with the quantum numbers of the photon
JPC = 1−− can be directly formed. On the contrary, with antiproton beams
all the qq quantum numbers are accessible.
The PANDA experiment, that will be installed at the international FAIR facil-
ity in the site of the GSI laboratory (Darmstadt, Germany), will take advantage
of the physics potential available using the high–intensity, phase space cooled
antiproton beams provided by the high–energy storage ring HESR.
The PANDA detector will be optimised for the physics goals presented above
and will be able, at the same time, to accomodate additional physics aspects,
like Drell–Yan and CP–violating processes. So it will enable the FAIR facility
to play a significant role in strong interaction physics, providing a link between
nuclear physics and hadron physics.
The design of the PANDA detector is based on the previous experience in
antiproton experiments and takes advantage of ongoing detector developments
performed at the laboratories for high–energy experiments.
A first sketch of the detector that fulfils the physics requirements was laid out
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Introduction

in the PANDA Letter of Intent (2004). Its operation is planned to start af-
ter 2015, after a delay due to some financial problems; nevertheless, extensive
R&D programs for the subdetector design and cost optimisation have already
started and are in progress.

This thesis fits in the scenario presented above: here the results of the work
devoted to the simulation and design of the tracking system of the PANDA
detector, together with the study of its physics performances, are collected.
The tracking system is the set of subdetectors sensitive to the passage of
charged particles, that provide the spatial coordinates of the points where
the energy has been deposited. By joining all the pieces of information from
the whole tracking system and applying devoted track fitting algorithms, the
full particle trajectory can be reconstructed.
Part of this work has been focused on the Straw Tube Tracker (STT), one of
the two options proposed for the PANDA Central Tracker.
Since it has to fulfil strict requirements in order for PANDA to achieve high–
precision results in the physics topics presented above, systematic studies have
been performed to determine the best detector design and to test the perfor-
mances of the foreseen layout. The design parameters of the detector have
been extensively tested with Monte Carlo simulations.
Concerning the experimental tests, an R&D program which foresees the con-
struction of a complete full–scale prototype of the STT is ongoing, but such a
prototype is not yet ready for experimental tests. Nevertheless, a small one is
available at the Institut für Kernphysik (IKP) at the Jülich Forschungszentrum
(FZJ): the author spent about six months at the research center to develop a
dedicated algorithm for the analysis of the cosmic ray data collected with this
prototype.

All the results are presented and discussed in the thesis. It is divided into
four parts:

• PART I: in the first part, the PANDA experiment is presented. In
particular, in Chap. 1 the main points of the PANDA physics program
are summarised. In Chap. 2 an overview of the foreseen detector layout
is provided; a more detailed description of the Straw Tube Tracker design
and of the characteristics of the straw tubes it is made of is also given.

• PART II: this section is dedicated to the study of a single straw tube,
both from the simulation and from the experimental point of view.
In Chap. 3 the physical processes that govern the functioning of a straw
tube are reviewed. A detailed description of how these processes are im-
plemented in the simulation is also reported in this chapter.
The real functioning of straw tubes is studied in Chap. 4, which is devoted
to a detailed description of the results of the analysis of the experimental
data collected with the straw tube prototype of the IKP–FZJ. In partic-
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ular, it is explained how the spatial resolution has been obtained through
a dedicated autocalibration procedure.

• PART III: this part is dedicated to the study of the performances of
the Straw Tube Tracker through the simulation of single track events.
After a brief description of the simulation environment and of the track
fitting methods developed in the software, Chap. 5 reports in detail the
results of systematic studies of the tracker performances: the momentum
resolution and tracking efficiency have been studied as a function of the
particle momentum and angular range, of the geometry design (straw
tube length, skew angle of the tilted tubes) and of the input single tube
resolution curve.

• PART IV: in the last part, the capabilities of the PANDA detector to
fulfil the physics requirements have been studied through the simulation
of two physics channels: the reactions pp → Ψ(3770) → D+D− and
pp → ηc(2979) → K0

SK
+π− have been chosen as benchmark processes.

Chap. 6 reports the results of the analysis of the simulated events and
the invariant mass resolutions that have been obtained.
In addition, a new proposal for a study of antiproton annihilations on
light nuclei like 4He has been presented, together with the resolution the
apparatus would need in order to study this kind of events.
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PANDA: antiProton
ANnihilations at DArmstadt
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Chapter 1
The PANDA experiment

PANDA [1, 4], the acronym for antiProton ANnihilation at DArmstadt, is one
of the major projects of the international Facility for Antiproton and Ion Re-
search (FAIR) at Darmstadt (Germany), an extension of the existing Heavy
Ion Research Lab GSI (Helmholtzzentrum für Schwerionenforschung) [3].
The FAIR facility (Fig. 1.1) will consist of a series of accelerators, among which
there is the High Energy Storage Ring (HESR) for the antiproton accumula-
tion.
The antiproton beam of unprecedented quality provided by the HESR will
allow to make high precision and high statistic measurements of QCD in the
charmonium mass regime and of other aspects of particle and nuclear physics
(the physics motivations and the research program of PANDA are treated in
more details in Sec. 1.2).
In order to explore these items, the PANDA detector will be built as a general
purpose fixed target detector that will study pp and pA annihilations. It will
consist of a set of systems surrounding an internal proton or nuclear target
placed in one of the two straight sections of the HESR.

1.1 High Energy Storage Ring

The HESR is dedicated to supply PANDA with high–quality antiproton beams
over a broad momentum range from 1.5 to 15 GeV/c.
In storage rings, the complex interplay of many processes like beam–target
interaction and intra–beam scattering determines the final equilibrium distri-
bution of the beam particles. Electrons and stochastic cooling systems are
required to ensure that the specified beam quality and luminosity for experi-
ments at the HESR are achieved.
Two different modes of operation have been worked out to fulfil the experi-
mental requirements:

• high resolution mode (HR) for high precision physics;

7



1. The PANDA experiment

HADES

Figure 1.1: Layout of the FAIR facility. The existing facilities are depicted in
blue; in red the new ones. Figure taken from Ref. [3].

• high luminosity mode (HL) for high statistic physics.

For more detailed information about these operation modes, see Tab. 1.1.

Table 1.1: Parameters of the operation modes.

Operation Modes
High resolution (HR) Peak luminosity of 2 × 1031 cm−2 s−1 for 1010 p

RMS momentum spread σp/p ≤ 4 × 10−5

1.5 to 9 GeV/c
High luminiosity (HL) Peak luminosity of 2 × 1032 cm−2 s−1 for 1011 p

RMS momentum spread σp/p ∼ 10−4

1.5 to 15 GeV/c

1.2 Physics motivations

The modern theory of strong interactions is Quantum Chromodynamics (QCD),
the quantum field theory of quarks and gluons based on the non–abelian gauge
group SU(3), which is part of the Standard Model of particle physics together
with the SU(2)×U(1) electroweak theory.

8



1.2. Physics motivations

QCD is a well tested theory at high energies, where the strong coupling con-
stant becomes small and perturbation theory is used; on the contrary, in the
low–energy regime QCD becomes a strongly coupled theory and it is not yet
completely understood. There are still open questions like: is it possible to
bring order into the wide variety of phenomena in the low energy QCD? Are
there effective degrees of freedom allowing us to understand the resonances
and bound states of QCD? Does QCD generate exotic structures so far undis-
covered?
The PANDA experiment will be in a unique position to provide answers to
such important questions about non–perturbative QCD. In fact, the experi-
ment has been designed in order to fully exploit the physics potential arising
from the availability of high–intensity cooled antiproton beams. PANDA will
allow a significant progress in the understanding of the strong interaction and
hadron structure thanks to the improvements in statistics and precision of the
data.
The available energy in the antiproton–proton annihilations at PANDA opens
a series of possible measurements (Fig. 1.2):

- study of the QCD bound states;

- non–perturbative QCD dynamics;

- study of hadrons in nuclear matter;

- hypernuclear physics;

- electromagnetic processes;

- electroweak physics.

In this chapter, the various topics of the PANDA physics program, extensively
described in Ref. [4], will be presented in detail.

1.2.1 QCD bound states

1.2.1.1 The charmonium spectroscopy

Charmonium spectroscopy is one of the main items of the experimental pro-
gram of the PANDA experiment; the design of the detector and of the accel-
erator are optimised to be well suited for this kind of physics. In particular,
PANDA will represent a great improvement with respect to the Fermilab ex-
periments E760 and E835:

- the instantaneous luminosity will be up to ten times higher (L = 2×1032

cm−2s−1 in high–luminosity mode, vs. 2× 1031 cm−2s−1 at Fermilab);

- the resolution of the beam momentum will be better (∆p/p = 10−5 in
high–resolution mode vs. 10−4 at Fermilab);

9



1. The PANDA experiment
FAIR-ESAC/Pbar/Technical Progress Report 5
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Figure 1.1: Mass range of hadrons accessible at the HESR with antiproton beams. The figure indicates the
antiproton momenta required for charmonium spectroscopy, the search for charmed hybrids and glueballs, the
production of D meson pairs and the production of Σ baryon pairs for hypernuclear studies. The energy range
covered by the former Low Energy Antiproton Ring (LEAR) at CERN is indicated by the arrow.

contribute in a synergetic way to the broader goal of
a deeper understanding of the structure of hadronic
matter in all its forms. Finally, the close connection
between the various components of the present pro-
posal is evident in the pursuit of symmetry tests
and symmetry breaking effects, which are the key
for our understanding of how the world is built from
the fundamental building blocks.

1.3 Instrumentation and
Detector

The technical capabilities and the uniqueness of the
proposed facility are of great importance in the re-
alization of the research objectives. Fig. 1.2 shows
the High-Energy Storage Ring (HESR) for antipro-
tons with its key components: a high energy elec-
tron cooling section that will provide beams of un-
precedented quality and precision and the internal
target facility with an advanced detector system.
The high energy electron cooling is a genuine tech-
nological challenge. Therefore, a detailed research
and development project and a collaborative effort
has been initiated with experts from Fermilab and
Novosibirsk.

The detector design incorporates the most recent
technologies in order to reach the required perfor-
mance criteria with regard to mass, momentum and
energy resolution, hit resolution, particle identifica-
tion, and solid angle coverage. The combination
of the high-quality antiproton beam and the detec-

Figure 1.2: Physics topics available at PANDA. Figure taken from Ref. [4].

- the PANDA detector will have a higher angular coverage, magnetic field
and so will be able to better detect the hadronic decay modes.

At full luminosity PANDA will be able to collect several thousands of cc states
per day. Through fine scans, it will be possible to measure masses with accu-
racies of the order of 100 keV and widths up to 10% or even better.
The main problem in the experimental study of charmonium spectroscopy at
PANDA (as well as in all the experiments with pp annihilations) is the high
hadronic background.
The spectrum of the charmonium states is shown in Fig. 1.3. It consists of
eight narrow states below the open charm threshold (3.73 GeV) and several
tens of states above the threshold.

Narrow charmonium Concerning the narrow states, the triplets are well
established with very good accuracy; it is not the same for the singlet states.

The ηc (1S) is the state with the lowest mass of the bound cc states; it has the
same quantum numbers as the η, i.e. IG(JPC) = 0+(0−+).
It is very interesting to be studied because it is the pseudoscalar partner of the
charmonium vector state 13S1, that is J/ψ. It was discovered almost thirty
years ago and a lot of measurements of its mass and width have been obtained
in the last few years, but the reached precision is still far from satisfactory.
The J/ψ mass value given by the Particle Data Group (PDG) [5] is 2980.5±1.2
MeV/c2, an average of thirteen measurements with an internal confidence level
of 0.014; the error on the ηc mass is still large compared with few tens of keV/c2

10



1.2. Physics motivations

Figure 1.3: Charmonium spectrum from Lattice QCD (LQCD). Figure taken
from Ref. [4].

for the J/ψ and ψ′ and few hundreds of keV/c2 for the χcJ states. The situa-
tion is even worse for the total width: the PDG average is 27.4± 2.9 MeV/c2

with an overall confidence level smaller than 0.0001 but with individual mea-
surements ranging from 7 MeV to 48 MeV. The most recent measurements
[6, 7, 8] show that the ηc width is larger than previously believed, with values
which are difficult to accomodate within the quark models.
This situation points out the need for new high–precision measurements of the
ηc parameters: thanks to the very high statistics, PANDA could determine the
mass value with an error almost comparable with the M(J/ψ) value.

Since the radial excitations of charmonium resonances are far from being sim-
ple recursions of the ground states, as shown by the ψ′, it is necessary and
interesting to study the first radial excitation of the charmonium ground state,
ηc(2S).
Its first experimental evidence was stated by the Crystal Ball collaboration
[9], but this discovery was not confirmed by subsequent searches in pp or e+e−

experiments. The ηc(2S) was finally discovered by the Belle Collaboration [10]
in the hadronic decay of the B meson B → K+ ηc(2S)→ K+ (KsK

−π+) but
with a mass incompatible with the Crystal Ball candidate. The Belle finding
was confirmed by CLEO [11] and BaBar [12] which observed the state in two–
photon fusion.
The PDG value of the mass is 3637±4 MeV/c2, leading to a surprisingly small
hyperfine splitting of 49± 4 MeV/c2.

11



1. The PANDA experiment

Citation: C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) and 2009 partial update for the 2010 edition (URL: http://pdg.lbl.gov)

1 From a fit of the J/ψ recoil mass spectrum. Supersedes ABE,K 02 and ABE 04G.
2 Using mass of ψ(2S) = 3686.00 MeV.
3 From a simultaneous fit of five decay modes of the ηc .
4MITCHELL 09 observes a significant asymmetry in the lineshapes of ψ(2S) → γ ηc
and J/ψ → γ ηc transitions. If ignored, this asymmetry could lead to significant bias
whenever the mass and width are measured in ψ(2S) or J/ψ radiative decays.

5 Using an ηc width of 13.2 MeV.
6Weighted average of the ψ(2S) and J/ψ(1S) samples.
7 From the fit of the kaon momentum spectrum. Systematic errors not evaluated.
8 Average of several decay modes.
9 Superseded by ASNER 04.

10 ηc → φφ.
11 Mass adjusted by us to correspond to J/ψ(1S) mass = 3097 MeV.

WEIGHTED AVERAGE
2980.5±1.2 (Error scaled by 1.7)

GAISER 86 CBAL 0.6
BAI 90B MRK3 4.1
BAI 00F BES 2.6
FANG 03 BELL 0.1
BAI 03 BES 3.7
AMBROGIANI 03 E835 2.4
AUBERT 04D BABR 2.0
ASNER 04 CLEO 0.4
WU 06 BELL 0.8
WU 06 BELL 6.9
ABE 07 BELL
UEHARA 08 BELL 4.3
AUBERT 08AB BABR 2.4

χ2

      30.4
(Confidence Level = 0.0014)

2950 2960 2970 2980 2990 3000 3010

ηc (1S) mass (MeV)

ηc(1S) WIDTHηc(1S) WIDTHηc(1S) WIDTHηc(1S) WIDTH

VALUE (MeV) CL% EVTS DOCUMENT ID TECN COMMENT

27.4± 2.9 OUR AVERAGE27.4± 2.9 OUR AVERAGE27.4± 2.9 OUR AVERAGE27.4± 2.9 OUR AVERAGE Error includes scale factor of 2.0. See the ideogram below.

36.3+ 3.7
− 3.6±4.4 921 ± 32 AUBERT 08AB BABR B → ηc (1S)K(∗) →

K K πK(∗)
28.1± 3.2±2.2 7.5k UEHARA 08 BELL γγ → ηc →

hadrons

48 + 8
− 7 ±5 195 WU 06 BELL B+ → ppK+

40 ±19 ±5 20 WU 06 BELL B+ → ΛΛK+

24.8± 3.4±3.5 592 ASNER 04 CLEO γγ → ηc →
K0

S K±π∓

HTTP://PDG.LBL.GOV Page 2 Created: 6/1/2009 14:18

Citation: C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) and 2009 partial update for the 2010 edition (URL: http://pdg.lbl.gov)

34.3± 2.3±0.9 2547 ± 90 AUBERT 04D BABR γγ → ηc (1S) →
K K π

20.4+ 7.7
− 6.7±2.0 190 AMBROGIANI 03 E835 pp → ηc → γγ

17.0± 3.7±7.4 12 BAI 03 BES J/ψ → γ ηc
29 ± 8 ±6 182 ± 25 FANG 03 BELL B → ηc K

11.0± 8.1±4.1 13 BAI 00F BES J/ψ → γ ηc and
ψ(2S) → γ ηc

23.9+12.6
− 7.1 ARMSTRONG 95F E760 pp → γγ

7.0+ 7.5
− 7.0 12 BAGLIN 87B SPEC pp → γγ

10.1+33.0
− 8.2 23 14 BALTRUSAIT...86 MRK3 J/ψ → γpp

11.5± 4.5 GAISER 86 CBAL J/ψ → γX,
ψ(2S) → γX

• • • We do not use the following data for averages, fits, limits, etc. • • •
27.0± 5.8±1.4 15 BRANDENB... 00B CLE2 γγ → ηc →

K±K0
S π

∓
< 40 90 18 HIMEL 80B MRK2 e+ e−
< 20 90 PARTRIDGE 80B CBAL e+ e−
12 From a simultaneous fit of five decay modes of the ηc .
13 From a fit to the 4-prong invariant mass in ψ(2S) → γ ηc and J/ψ(1S) → γ ηc decays.
14 Positive and negative errors correspond to 90% confidence level.
15 Superseded by ASNER 04.

WEIGHTED AVERAGE
27.4±2.9 (Error scaled by 2.0)

GAISER 86 CBAL 12.5
BALTRUSAIT... 86 MRK3
BAGLIN 87B SPEC 7.4
ARMSTRONG 95F E760 0.1
BAI 00F BES 3.3
FANG 03 BELL 0.0
BAI 03 BES 1.6
AMBROGIANI 03 E835 0.8
AUBERT 04D BABR 7.8
ASNER 04 CLEO 0.3
WU 06 BELL
WU 06 BELL 5.7
UEHARA 08 BELL 0.0
AUBERT 08AB BABR 2.5

χ2

      42.0
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Figure 1.4: Present knowledge about ηc(1S) mass (left) and width (right).
Figures taken from Ref. [5].

The study of this state has just started and the precision of the measurements
at PANDA could take advantage of the high yield of charmonium production
in pp annihilations.

The singlet–P resonance of charmonium, hc(1P ), is extremely important in
determining the spin dependent components of the qq confinement potential.
The hc was first observed and identified by the E760 Collaboration in the decay
channel J/ψπ0 [13] with a mass of 3526.2±0.15±0.2 MeV/c2. The hc was not
confirmed by the E835 experiment, which just recorded an enhancement in the
ηcγ final state at an energy of 3525.8 ± 0.2 ± 0.2 MeV/c2 [14]. It was finally
observed by the CLEO Collaboration in the decay mode hc → ηcγ, with the
ηc decaying into hadrons [15], with a mass value of 3524.4± 0.6± 0.4 MeV/c2.
The mass values found by these experiments agree with each other; it is clear
that the study of this state has just started and many measurements are needed
to determine its properties, in particular the width. It should be pointed out
that, due to the narrowness of the state and to the expected low yields, only
a pp formation experiment like PANDA will be able to measure the hc width
with high precision and to carry out a systematic study of its decay modes.

Open charm The region above DD threshold is rich in interesting new
physics. In particular, close to the threshold value four 1D states are expected:
of these, only the 13D1 resonance has been identified with the ψ(3770). The
J = 2 states (11D2 and 13D2) are predicted to be narrow, because parity
conservation forbids their decay to DD. In addition to the D states, the radial
excitations of the S and P states are predicted to occur above the open charm
threshold.
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1.2. Physics motivations

It must be considered indeed that while below the open charm threshold all
the narrow states have been observed and match predictions, above it almost
all conventional charmonium states are missing.
Nowadays, a lot of new states have recently been discovered at the B–factories,
mainly in the hadronic decays of the B mesons: these states are associated with
charmonium because they decay predominantly into charmonium states such
as J/ψ or ψ′, but their interpretation is far from being obvious, since they
do not match regular spectroscopy, but are rather candidates for bound states
with additional quarks or gluons. An updated review of the experimental and
theoretical state of the art on heavy quarkonium spectroscopy can be found in
Ref. [16].
The new measured charmonium states are:

- X(3872), the first state that was found not to fit charmonium spec-
troscopy and, by far, the state for which the most information is avail-
able;

- the 3940 family, three different states observed by the Belle Collaboration
with masses close to 3940 MeV/c2 (X(3940), Y (3940) and Z(3940));

- a cluster of C = + states with masses close to 4150 MeV/c2: X(4140),
X(4160), X(4350) and Z(4250);

- the 1−− family, consisting in the Y (4260), Y (4350) and Y (4660) states
observed via e+e− annihilation, hence with JPC = 1−−;

- the three charged states Z(4430), Z1(4050) and Z2(4250).

Fig. 1.5 shows the observed states overlaid on the regular charmonium states
as predicted by the potential models [17]; the most likely JPC assignment is
shown.
Colours identify the grouping of the states: red for the individual states, green
for the 3940 family, blue for the states around M = 4140 MeV, purple for the
1−− states and orange for the charged states. Black states are traditionally
considered as regular charmonium, although ψ(4040) seems to behave as an
exotic particle, since it does not match any potential model and is close in
mass to a charged state with the same JP . In summary, of the observed states
above open charm threshold only the X(4160), Z(3940), Y (3940) and ψ(3770)
are good candidates for regular charmonium: ηc(3S), χc,2(2P ), χc,0(2P ) and
ψ(1D) respectively.
Nevertheless, the possibility is still open of at least a fraction of them being
ordinary charmonium with an incorrect JPC assignment or for which the po-
tential model predictions do not hold.
The states recently discovered suggest in particular the possibility to observe
states with two or three quarks and two or three anti–quarks. There are two
possibilities to form bound states out of two quarks and two anti–quarks:
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1. The PANDA experiment

Figure 1.5: Observed states with hidden charm above the open charm thresh-
old. Figure taken from Ref. [16].

- tetraquark, binding the two quarks in a coloured configuration called
diquark [qq]α or antidiquark [q̄q̄]α, such that colour charge is neutralized
by the interaction diquark–antidiquark;

- molecular bound state, binding each quark to an anti–quark [qαq̄
α] and al-

lowing interaction between the two color neutral pairs [qαq̄
α][qβ q̄

β]. This
configuration is very close to the one with two interacting mesons.

Expected tetraquark spectra were derived, under assumption which lead to
uncertainties O(100 MeV). Besides the X(3872) which is assumed to be a
tetraquark when building the model and that would naturally be constituted
by two states close in mass, the following states have a match within 100 MeV:
Y (4350), Z(4430), X(4160), Y (4260), Y (4350) and Y (4660). Such a small
number of matched states is opposed to the large number of needed states:
18 (27) for each of the J = 0(1) multiplets. While it can be argued that the
production and decay mechanism can distinguish between the states and that
experimental sensitivity differs significantly between final states, one striking
observation is that no attempt is made to search for the strange states, that
would decay into charmonium plus a kaon.
Predictions in the case of molecules are more difficult. It is easy to classify the
masses around which a molecule could possibly lay by computing all sums of
the masses of two mesons with correct quantum numbers. Each case should
be considered separately to estimate the production cross sections and the
binding energies. Since the molecules have masses lower than the sum of the
constituent mesons, it is interesting to search for their decays in the final states
at lower masses.
So we are still far from having clear assignments for each of the states between
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1.2. Physics motivations

different possible interpretations. Moreover, a new spectroscopy implies the
existence of a large number of states, whose absence would have to be justified.
A perception of the status of the global picture and an indication on where
to search can be obtained from a comparison between possible spectra and
observed states.

1.2.1.2 Gluonic excitations

The quark model from its beginning [18] contemplate the existence of other ag-
gregations than qq̄ pairs or qqq triplets. In fact, the QCD Lagrangian contains
also the gluons: besides being the particles which mediate strong interactions,
they can act as dynamical degrees of freedom and as principal components of
entirely new types of hadrons, the “gluonic hadrons”. They are bound states of
gluons and quarks and can be classified in two categories: the glueballs, which
are bound states of only gluons, and the hybrids which are qq̄g bound states,
i.e. qq̄ states with a gluonic excitation.
The additional degrees of freedom carried by the gluons allow glueballs and
hybrids to have spin–exotic quantum numbers JPC that are forbidden for nor-
mal mesons and other fermion–antifermion systems. Exotic quantum numbers
(e.g. JPC=0−−, 0+−, 1−+, 2+−) provide the best opportunity to discriminate
between gluonic hadrons and qq states.
The properties of glueballs and hybrids are determined by the long–distance
features of QCD; so their study will yield fundamental insight into the struc-
ture of the QCD vacuum.

Hybrids The existence of hybrid mesons was suggested in 1976 by Jaffe and
Johnson [19] and Vainsthein and Okun [20]. Hybrids have been studied using
different approaches: (i) the MIT bag model [21, 22], (ii) an adiabatic heavy–
quark bag model [23, 24], (iii) constituent gluon models [25, 26, 27, 28, 29, 30],
(iv) heavy quark lattice gauge theory [31] and (v) the flux tube model [32].
In the simplest scenario, hybrids can be described by adding the quantum
numbers of a gluon (JP = 1+ or 1−, depending on if it is a colour–electric or
colour–magnetic excitation) to a simple qq pair. Hybrids which exhibit quan-
tum numbers which can not be formed by a normal qq pair are called exotic;
thus, they could be more easily identified experimentally.
The average mass obtained for the lightest hybrid with light quarks is about
1.5-2 GeV/c2. Concerning the charmonium family, hybrids are predicted in the
mass region around 4.3 GeV/c2, with an estimated uncertainty of 100 − 200
MeV/c2. Four of the low–lying charmonium hybrids (JPC = 1−−, 0−+, 1−+,
2−+) correspond to a cc pair with JPC = 0−+ or 1−− coupled to a gluon in the
lightest mode with JPC = 1−−. The other four states (JPC = 1++, 0+−, 1+−,
2+−) with the gluon mode JPC = 1−+ are probably heavier.
In pp annihilations, production experiments are the only way to obtain char-
monium hybrids with exotic quantum numbers. At PANDA, as a first step,
all possible production channels will be studied with production measurements
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1. The PANDA experiment

at the highest antiproton energy available (Ep = 15 GeV), in order to cover
exotic and non–exotic states. The next step would consist of formation exper-
iments, by scanning the antiproton energy in small steps in the region where
production measurements give hints about the possible presence of hybrids.

Glueballs A detailed prediction for the glueball mass spectrum can be ob-
tained from LQCD calculations in the quenched approximation disregarding
light quark loops [33]; as an example, the calculated width of about 100 MeV/c2

[34] for the ground state glueball is in agreement with the experimental results.
According to LQCD, 15 glueballs are predicted, some with exotic quantum
numbers in the mass range accessible by the HESR (Fig. 1.6).
Like charmonium hybrids, they can be formed directly in the pp annihilation
process or can be produced together with another particle.
Glueballs with exotic quantum numbers are called oddballs and they cannot
mix with normal mesons; consequently, they are predicted to be rather narrow
and they should be easily identified experimentally [35].
The lightest oddball, with JPC = 2+− and a predicted mass of 4.3 GeV/c2,
would be in the range of the proposed experimental program.
It is worth noting that the pp annihilations offer a unique chance to search
for heavier glueballs since alternative methods have severe limitations; since
the study of glueballs is a key to understand long–distance QCD, every effort
should be made to identify them.FAIR/PANDA/Physics Book 89

with exotic quantum numbers in the mass range
accessible to the HESR.

Glueballs with exotic quantum numbers are called
oddballs which cannot mix with normal mesons. As
a consequence, they are predicted to be rather nar-
row and easy to identify experimentally [66]. It is
conceivable that comparing oddball properties with
those of non-exotic glueballs will reveal deep insight
into the presently unknown glueball structure since
the spin structure of an oddball is different [66].
The lightest oddball, with JPC = 2+− and a pre-
dicted mass of 4.3 GeV/c2, would be well within the
range of the proposed experimental program. Like
charmonium hybrids, glueballs can either be formed
directly in the pp-annihilation process, or produced
together with another particle. In both cases, the
glueball decay into final states like φφ or φη would
be the most favourable reaction below 3.6 GeV/c2

while J/ψη and J/ψφ are the first choice for the more
massive states.

The indication for a tensor state around 2.2 GeV/c2

was found in the experiment of Jetset collaboration
at LEAR [67]. The acquired statistics was not suffi-
cient for the complementary reactions to be deter-
mined. We plan to measure the pp → φφ channel
with statistics of two orders of magnitude higher
than in the previous experiments. Moreover, other
reactions of two vector particle production, such
as pp → ωω,K∗K∗, ρρ will be measured. How-
ever, the best candidate for the pseudo-scalar glue-
ball (ηL(1440)), studied comprehensively at LEAR
by the Obelix collaboration [68, 69, 70, 71, 72], is
not widely accepted to be a glueball signal because
the calculations of LQCD predict its mass above
2 GeV/c2. Therefore, new data on many glueball
states are needed to make a profound test of differ-
ent model predictions.

It is worth stressing again that pp-annihilations
present a unique possibility to search for heavier
glueballs since alternative methods have severe lim-
itations. The study of glueballs is a key to under-
standing long-distance QCD. Every effort should be
made to identify them uniquely.

Light Glueballs
Since decades light meson spectroscopy experiments
tried to identify the lowest lying glueball states.
Many high statistics experiments have been per-
formed which delivered excellent information about
the scalar and pseudoscalar waves. Nevertheless,
due to the unavoidable mixing problem and the
large widths arising from missing or smooth damp-
ing functions pinning down of the scalar glueballs
will very difficult.

Figure 4.24: Glueball prediction from LQCD calcu-
lations. See [73, 64] for details. While the region of the
ground-state glueball was investigated in the LEAR era
(in particular by Crystal Barrel) are the tensor glueball
and the spin exotic glueballs with JPC = 0+− and 2+−

important research topics for PANDA.

In light quark domain the tensor glueball is the
best candidate to look at from experimental means.
There is potential mixture from two nonets (3P2

and 3F2) which sums up to 5 expected isoscalar
states, but SUF (3) forbids φφ decays to first order
for the conventional qq states, while there is no sup-
pression for a potential glueball. The mass for the
glueball is expected in the range from 2.0 GeV/c2

to 2.5 GeV/c2. Thus the benchmark reaction is
pp → f2(2000− 2500) → φφ.

Heavy Oddballs
Since glueballs don’t have to obey any OZI rule,
they may decay in any open channel. For glue-
balls above the open charm pair production thresh-
old also decays in to D mesons and its excitations
should be easily possible. The width is completely
unknown. Since a lot of channels are potentially
open, the heavy glueballs could be extremely wide.
Nevertheless it is known from many other reactions,
that nature seems to invest more likely in mass
rather than in breakup-momentum, thus giving the
opportunity to look for oddballs in e.g. DD∗ de-
cays. Decays of this kind are investigated for the
search for charmonium hybrids. The final state to
look at is then DD∗η or DD∗π0. The lightest odd-
balls are JPC = 2+− and 1+− (spectroscopic name
b0,2(4000− 5000)). Since they would appear in the

Figure 1.6: Glueball predictions from LQCD calculations. Spin–exotic glue-
balls with JPC = 0+− and 2+− are important research topics for PANDA.
Figure taken from Ref. [4].
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1.2.2 Hadrons in nuclear medium

The in–medium properties of charmonium states and D mesons have been
studied theoretically in different approaches [36].
At present, the investigation of medium modifications of hadrons embedded in
hadronic matter is one of the main activities at GSI. The aim is to understand
the origin of hadron masses in the context of spontaneous chiral symmetry
breaking in QCD and their modification due to chiral dynamics and partial
restoration of chiral symmetry in hadronic environment.
In general, the picture of spontaneous symmetry breaking involves a hot system
respecting a given symmetry. As the system cools below its critical temper-
ature Tc, the expectation value of the order parameter associated with the
system symmetry attains a nonzero value, indicating that spontaneous sym-
metry breaking has occurred. In the case of QCD, the relevant symmetry that
is spontaneously broken is chiral symmetry and the associated order parame-
ter is the quark–antiquark condensate 〈qq〉. The nonzero vacuum expectation
value of the qq condensate 〈0|qq|0〉 turns out to be related to the quark and
hadron masses (see Refs. [38, 39, 40] and references quoted therein).
Due to the limitations in the available energy, up to now the studies on in–
medium properties have been focused on the sector of light quarks. In par-
ticular, the in–medium modifications of the light vector mesons ρ, ω, φ, for
which substantial changes of spectral functions in the medium are predicted
to occur at normal nuclear matter density [37], are the main research goal of
the HADES experiment [41] at GSI.
Thanks to the high intensity antiproton beam up to 15 GeV/c that will be
available at PANDA, it will be possible to extend this research program to the
charm sector, both for hadrons with hidden and with open charm.
Concerning the charmonium states, since their mass is dominated by the large
mass of the charm quark pair, it is expected to have only small changes in
the quark condensate but major modifications of the gluon condensate. So
the investigation of the interaction of cc̄ mesons with nucleons and nuclei will
allow to explore fundamental aspects of gluon dynamics in QCD.
According to recent calculations [42], the in–medium mass reductions for the
low lying charmonium states like J/ψ and ηc will be of the order of 5 − 10
MeV/c2; in the case of excited charmonium states, the effect should be larger,
since it is expected to scale with the volume occupied by the cc̄ pair. Large
attractive mass shifts of 40 MeV/c2 for χcJ , 100 MeV/c2 for ψ′ and 140
MeV/c2 for ψ(3770) are predicted by modelling a QCD second order Stark–
effect [43, 44].
Concerning D mesons, the situation is different: since they are made of a heavy
c quark and a light antiquark, the D mesons will provide the unique chance to
study the in–medium dynamics of a system with a single light quark.
According to recent phenomenological studies, a mass splitting for D mesons
in nuclear matter is predicted, although there is no agreement on the predicted
size of the splitting and on the sign of the D− mass shift (the values can be
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found in Refs. [36, 45, 46, 47]).
It is also predicted an in–medium reduction of the DD threshold, that would
result in an increased D and D production in antiproton annihilation on nuclei,
in particular at sub–threshold energies [45]. This would allow to identify the
D mesons via their hadronic decay with K and K in the final state. Cross sec-
tions of ∼ nb near threshold lead to about 100 events per day at a luminosity
of 1031 cm−2s−1, which allows to perform a D meson physics program.
In addition, the lowering of the DD threshold in the nuclear medium could
open this decay channel or increase its partial width for the decay of the excited
charmonium states lying close to the free DD mass, as long as the reduction
of the in–medium mass of these states is sufficiently small [46, 48].
In conclusion, it should be pointed out that the availability of antiproton beams
up to 15 GeV/c opens new opportunities to investigate the nuclear potential
of strange atoms.16 PANDA - Physics Case

in-medium mass of charmonia can be reconstructed
from their decay into di-leptons or photons, differ-
ent signals have been proposed for the detection of
the in-medium mass shifts of D mesons. A reduc-
tion of the DD threshold would result in an in-
creased D and D production in p annihilation on
nuclei, in particular at sub-threshold energies [78].
D and D mesons can be identified via their hadronic
decays with K and K mesons in the final state.
Cross sections of typically 1 nb near threshold lead
to about 100 events registered per day at a luminos-
ity of 1031 cm−2s−1 which would allow a substantial
D meson physics program.

Moreover, a lowering of the DD threshold in the
nuclear medium could open this decay channel or
increase its partial width for the decay of the excited
charmonium states lying close to the free DD mass
(ψ(3770), ψ′, χc2) [77, 82], provided the reduction
of the in-medium masses of the charmonium states
is sufficiently small. Recent model calculations [83]
indicate that a dropping of the DD threshold in the
nuclear medium by ∼ 50 MeV/c2 could be seen in a
suppression of low-mass di-leptons from the decay
of the ψ(3770).

An observable modification of the excited charmo-
nium spectral distribution due to the DD decay is
not expected if the states exhibit substantial at-
tractive in-medium mass shifts [74, 75] of similar
size as the DD threshold. However, according to
Refs. [74, 75] the mass shifts of the charmonium
states may be deduced from their in-medium de-
cay which is enhanced relative to the decay in the
vacuum due to the collisional width along the path
inside the nucleus.

In Sec. 13.5.10, the PANDA detector performance
for finding a J/ψ signal in a pCu reaction is dis-
cussed in further detail.

2.5 Hyperon-Hyperon and
Quark-Quark Forces

2.5.1 Hypernuclei

Replacing an up or a down quark with a strange
quark in a nucleon, which is bound in a nucleus,
leads to the formation of a hypernucleus. A new
quantum number, strangeness, is introduced into
the nucleus, adding a third axis to the nuclear chart.
Due to experimental limitations the third dimension
has only scarcely been explored in the past.

Single and double Λ-hypernuclei were discovered
50 [84] and 40 years ago [85], respectively. However,
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Figure 2.3: Shift of D mesons in the nuclear medium.
The shift of pions and kaons have been discovered al-
ready before at GSI.

only 6 double Λ-hypernuclei are presently known,
in spite of a considerable experimental effort during
the last 10 years. Thanks to the use of p beams and
the skilful combination of experimental techniques,
copious production at PANDA is expected, with
even higher numbers than at (planned) dedicated
facilities. A new chapter of strange nuclear physics
will be opened whose first result will be the deter-
mination of the ΛΛ strong interaction strength, not
feasible with direct scattering experiments.

The hyperon – usually a Λ particle – is not re-
stricted by the Pauli principle in populating all pos-
sible nuclear states, in contrast to neutrons and pro-
tons. The description of hyperons occupying the
allowed single-particle states is without the compli-
cations encountered in ordinary nuclei, like pairing
interactions. The strength of the Λ-N strong in-
teraction may be extracted with a description of
the pure single-particle states by well known wave
functions. Furthermore, the decomposition into the
different spin-dependent contributions may be ana-
lyzed. For these contributions, significantly differ-
ent predictions exist from meson exchange current
and quark models. At the same time, the Λ-N weak
interaction can be studied where the Pauli principle
acts in the opposite way: the decay of the Λ into Nπ
is suppressed, since all nucleon states in the nucleus
are occupied. In contrast, the process ΛN → NN is
allowed, opening a unique window for four-baryon,
strangeness non-conserving interaction.

Figure 1.7: Mesons shift in the nuclear medium. The shifts of pions and kaons
have been already discovered at GSI. Figure taken from Ref. [49].

1.2.3 Hypernuclear physics

A hypernucleus can be formed by replacing an up or down quark with a strange
quark in a nucleon, which is bound in the nucleus.
The hypernuclei physics represents an interdisciplinary science, since it has
many interesting links to different fields of physics: for example, it is impor-
tant to understand how nuclear physics can be derived in a rigorous way from
Quantum Chromo Dynamics (QCD) and how nuclear structures, like nuclei
on the small scale, are formed. It is interesting also for the astrophysics field:
in fact, up to now there is no clear picture regarding what kind of matter is
present in the cores of neutron stars.
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The advantage of the hypernuclei is that the hyperon bound into the nucleus,
usually a Λ particle, is not subject to the Pauli principle in populating all pos-
sible nuclear states, unlike protons and neutrons. This allows the formation
of deeply bound hypernuclear states that are directly accessible in the experi-
ments.
The presence of the hyperon itself inside the nuclear medium may cause some
dramatical modifications of the nucleus in which it is implanted, giving rise to
new nuclear structures that cannot be seen in normal nuclei composed of only
nucleons.
In addition, the description of the hyperons occupying the allowed single–
particle states is without the complications encountered in ordinary nuclei,
like pairing interactions. For this reason, a hypernucleus represents a sensitive
probe of the hadronic many–body problem.
A comparison with ordinary matter may also give chances to reveal key ques-
tions in nuclear physics, like the origin of the nuclear spin–orbit force.
One of the goals is to measure the level spectra and decay properties of hy-
pernuclei, in order to test the energies and wave functions from microscopic
structure models. Furthermore, there is the hope that the detailed knowledge
of the hyperons excitation spectra and structure could provide unique informa-
tion on the hyperon–nucleon (Y N) and hyperon–hyperon (Y Y ) interaction.
Direct experimental investigation for the Y N interactions are still very rare,
due to the short lifetime of hyperons that makes hyperon targets impossible. In
addition, it is very difficult to produce low–momentum hyperons and hyperon–
proton scattering is only feasible via the double–scattering technique. There
are only a few hundreds low–momentum Λ−N and Σ±−N scattering events
available and there is essentially no data on Ξ−N or Ω−N scattering.
The different S = −2 systems, like Ξ−–atoms and single Ξ−–hypernuclei on
one side and double ΛΛ hypernuclei on the other side, provide complementary
information on the baryon force. Hyperatoms created during the capture pro-
cess of the hyperon will supply additional information on the hyperon–nucleus
interaction.
At the same time, the Y N weak interactions can be studied where the Pauli
principle acts in the opposite way: for example, the decay Λ → Nπ into a
nucleus is suppressed, since all nucleon states in the nucleus are occupied. On
the contrary, processes like ΛN → NN are allowed, opening a unique window
for four–baryon, strangeness non–conserving interactions.
Moreover, the non mesonic weak decays ΛΛ→ ΛN and ΛΛ→ Σn are possible
in double hypernuclei [50, 51, 52], allowing to access the ΛΛK coupling.
In order to succeed in having a detailed and consistent understanding of the
quark aspect of the baryon–baryon forces, it is necessary to have experimental
information on the hyperon–hyperon channel. Since scattering experiments are
not possible between two hyperons, the precise spectroscopy of multistrange
hypernuclei at PANDA will provide a unique approach to explore the hyperon–
hyperon interaction. It will be possible by using a dedicated nuclear target
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station and additional detectors (Sec. 2.1.1.7).
At PANDA, it will be possible to study not only Ξ− atoms, but also Ω−

atoms, thus providing unique information on the nuclear optical potential of
Ω− baryons. The Ω hyperon is particularly interesting because, due to its
long lifetime and its spin 3/2, it is the only “elementary” baryon with a non–
vanishing spectroscopic quadrupole moment. Since it is mainly determined by
the one–gluon exchange contribution to the quark–quark interaction, its mea-
surement represents a unique benchmark for our understanding of the quark–
quark interaction.
Finally, another challenging topic of ΛΛ hypernuclear physics is the possible
existence of a S = −2 six quarks (uuddss) H–dibaryon. Although some the-
ories predict that the H–dibaryon is stable, the observation of several double
hypernuclei makes the existence of a strongly bound free H–dibaryon unlikely.
However, since the mass of that particle might drop inside a nucleus and due
to hyperon mixing, a detailed study of the energy levels in double hypernuclei
might succeed in observing traces of a H–dibaryon even if it is unbound in free
space.

Figure 1.8: Present knowledge of hypernuclei: just few events of double hy-
pernuclei have been detected and identified up to now. Figure taken from
Ref. [4].
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1.2.4 Antibaryon–baryon production in pp annihilation

The pp → Y Y baryon–antibaryon production processes allow to study in a
particularly clean way the quark rearrangement and the annihilation and cre-
ation of quark–antiquark pairs [57].
In the absence of polarization, the angular distribution of the final products of
the reaction can be written as:

I(θi, θj) ∝ 1 + αPY + αPY + αα
∑
i,j

Cij cos θi cos θj ,

where i, j = x, y, z and α is the decay asymmetry parameter. The angles refer
to the decay directions in the Y, Y rest frame.
This distribution has been extensively studied for the pp → ΛΛ → pπ−pπ+

reaction by the PS185 experiment at the LEAR accelerator at CERN [58].
The study of the polarization and of the spin correlation coefficients Cij, show-
ing that the ss pairs are predominantly produced with parallel spin, put severe
constraints to the quark–gluon and meson exchange models. Concerning the
depolarization coefficient, data from a polarized target do not match at present
with any model [58].
If CP holds, the magnitude of the polarization of the Y and Y must be the
same, with αY = −αY . Consequently, one can define the parameter:

AY Y =
αY + αY
αY − αY

(1.1)

that should be zero if CP is conserved.
In the case of the pp → ΛΛ reaction, the average value of A is AΛΛ =
0.006±0.014 [58], which is lower than the one quoted in Ref. [5] (0.012±0.021).
The discovery of a CP violation in the hyperon decay would be the first ob-
servation in a baryonic system; the effect is expected to be smaller than 10−4

[58].
At PANDA further studies of these topics would be possible; in addition, they
could be extended also to doubly strange and charmed hyperons.
Nothing is known experimentally on the pp→ YcY c reactions; it would be very
interesting, for example, to investigate whether the creation of a cc pair in the

pp→ Λ+
c Λ

+

c reaction will show the same features as the ss creation in the ΛΛ
case.
According to the studies in Ref. [49], for the channels with only charged par-
ticles in the final state the overall reconstruction efficiency is ∼ 20%.
The production cross sections should be orders of magnitude greater than those
from e+e− annihilation and a number of reconstructed events per month from
104 to 109 is expected for the production of Λc Λc and Λ Λ pairs, respectively.
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1. The PANDA experiment

1.2.5 Electromagnetic processes

1.2.5.1 Partonic picture of hard exclusive pp–annihilation processes

Recently, the theoretical framework of Generalised Parton Distributions (GPDs)
has been developed [59, 60, 61, 62]: it allows to treat hard exclusive processes
in lepton scattering experiments on a firm QCD basis. This is possible under
suitable conditions where one can factorise short and long distance contribu-
tions to the reaction mechanisms.
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4.6 The Structure of the
Nucleon Using
Electromagnetic Processes

4.6.1 Partonic Picture of Hard
Exclusive pp-Annihilation
Processes

Introduction

A wide area of the physics program of PANDA
concerns studies of the non-perturbative region of
QCD. However, the experimental setup foreseen of-
fers the opportunity to study also a certain class
of hard exclusive processes that give insight into
an intermediate region, which marks the transition
towards increasingly important perturbative QCD
effects.

In the recent years, the theoretical framework of
generalised parton distributions (GPDs) has been
developed, which allows treating hard exclusive pro-
cesses in lepton scattering experiments on a firm
QCD basis [341, 342, 343, 344]. This is possible
under suitable conditions where one can factorise
short and long distance contributions to the reac-
tion mechanism. Being related to non-diagonal ma-
trix elements, GPDs do not represent any longer
a mere probability, but rather the interference be-
tween amplitudes describing different parton con-
figurations of the nucleon, thus giving access to
various momentum correlations. Their importance
was first stressed in studies of deeply virtual Comp-
ton scattering (DVCS)[345, 346, 347], for which it
could be rigorously proven that the QCD handbag
diagram (see Fig. 4.78) dominates the process in
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γ∗ γ
q
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hard
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e
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Figure 4.78: DVCS can be described by the hand-
bag diagram, as there is factorisation between the upper
‘hard’ part of the diagram which is described by pertur-
bative QCD and QED, and a lower ‘soft’ part that is
described by GPDs.

certain kinematical domains and that factorisation
holds, i.e. that the process is divided into a hard
perturbative QCD process and a soft part of the
diagram which is parametrised by GPDs. The ap-
plication of perturbative QCD is possible in DVCS
due to the hard scale defined by the large virtuality
Q2 of the exchanged photon. A second example for
the application of the handbag formalism is wide
angle Compton scattering (WACS). Here the hard
scale is related to the large transverse momentum
of the final state photons.

The important question which arises is whether the
concepts that are used in lepton scattering exper-
iments have universal applicability and can there-
fore be used in studies of pp-annihilation processes
with the crossed kinematics. The crossed diagram
of WACS is the process pp → γγ with emission of
the two final state photons at large polar angle in
the CM system (see Fig. 4.79). It can be shown that

p γ

p γ
G

D
A

Figure 4.79: The handbag diagram may describe the
inverted WACS process pp→ γγ at PANDA energies.

the handbag approach is not appropriate to describe
the crossed channel WACS neither at very small nor
at very large energies [348, 349]. However, there
are strong arguments and first experimental indica-
tions that the handbag approach is appropriate at
the intermediate energy regime where PANDA op-
erates [350, 351], even though a rigorous proof of
factorisation has not been achieved yet. The corre-
sponding amplitudes that parametrise the soft part
of the annihilation process (i.e. the counterparts
of GPDs) are called generalised distribution ampli-
tudes (GDAs). The measurement of the process
pp→ γγ as a function of s and t is an experimental
challenge, due to the smallness of the cross section.
The high luminosity and the excellent detector, es-
pecially the 4π electromagnetic calorimeter, should
enable PANDA to separate this process from the
large hadronic background.

Figure 1.9: Deeply Virtual Compton Scattering (DVCS) can be described with
the handbag approach, by factorising the upper “hard” part of the diagram,
described by perturbative QCD and QED, and a lower “soft” part, described
by GPDs. Figure taken from Ref. [4].

The importance of GPDs has been tested by studying deeply virtual Compton
scattering (DVCS): it has been proved that the process can be factorised into
a hard perturbative QCD process and a soft part of the diagram, which is
parametrised by GPDs (see Fig. 1.9).
Another application of the handbag approach (i.e. the factorisation assump-
tion) is, for example, the Wide Angle Compton Scattering (WACS) [63, 64, 65]:
in this case, the hard scale is related to the large transverse momentum of the
photons in the final state.
The important question is whether the concepts used in lepton scattering ex-
periments can be used to describe also pp annihilation processes with crossed
kinematics.
As an example, the crossed diagram of WACS can be considered: the process
is pp → γγ, with the emission of two photons in the final state at large polar
angle in the centre of mass (CM) system. It has been proved that, although
the handbag approach is not suitable to describe this channel neither at very
small nor at very large energies, it seems that it is appropriate in the energy
regime where PANDA operates.
The counterparts of GPDs that parametrise the soft part of the annihilation
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1.2. Physics motivations

process are called Generalised Distribution Amplitudes (GDAs). The experi-
mental measurement of this process is really challenging, due to the very small
cross section; nevertheless, the high luminosity and the excellent detector, es-
pecially the 4π calorimeter, should allow PANDA to discriminate the process
from the large hadronic background.
In addition, the handbag diagrams can be used to describe further reactions,
like pp→ π0γ, for which the E760 experiment has experimentally proved that
the approach is appropriate in the range s ∼ 8.5−13.5 GeV2 [66], or pp→Mγ,
where M is any neutral meson.
The understanding of GPDs is just at its beginning and PANDA has the chance
to contribute to an improved description of the nucleon structure by measur-
ing the crossed–channel conterparts of these distributions in hard exclusive
processes with various final states in a new kinematical region.

1.2.5.2 Transverse parton distribution functions in Drell–Yan pro-
duction

The quark structure of hadrons can be described by three Parton Distribution
Functions (PDFs):

• the unpolarised distribution f1(x), which is the probability of finding a
quark with a fraction x of the parent hadron longitudinal momentum,
whatever its spin orientation is;

• the helicity distribution g1(x), which describes the helicity of the quark
in a longitudinally polarised hadron, that is the asymmetry between the
density functions of the quarks with a given momentum fraction x and
with spins parallel and antiparallel to that of the parent hadron spin;

• the transverse polarisation h1(x), which is like g1(x) but related to a
transversely polarised hadron.

This description is valid only in the so–called collinear kinematics approach,
that is if quarks are perfectly collinear: in this case, f1(x), g1(x) and h1(x)
would contain all information on the internal dynamics of the nucleon.
The quark transverse momentum, however, is not always negligible and it has
to be explicitly accounted for; in this case, a full set of eight Transverse–
Momentum Dependent (TMD) PDFs and Fragmentation Functions (FFs) is
available. The most relevant TMD PDFs for the PANDA proposed physics
program are1:

• the Boer–Mulders (BM) function h⊥1 , that is the distribution of trans-
versely polarised partons in unpolarised hadrons;

1The adopted TMD’s nomenclature is the following: f , g and h refer respectively to un-
polarised, longitudinally and transversely polarised quarks; subscript T to transverse hadron
polarisation; the subscript 1 refers to the leading twist and the apex ⊥ to the explicit de-
pendance on instrinsic momenta.
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1. The PANDA experiment

• the Sivers function f⊥1T , that is the distribution of unpolarised partons in
a tranversely polarised nucleon;

• the transversity h1T , that is the distribution of transversely polarised
partons in a transversely polarised nucleon.

A complete and detailed description of these PDFs, together with a review of
the experimental data available from the literature and their interpretation,
can be found in [4].
The experimental information on h⊥1 and h1T is very poor, since these distri-
butions are not directly observable in fully inclusive deep inelastic scattering
(DIS), the reaction providing the largest amount of data on structure func-
tions.
The Drell–Yan (DY) production of muon pairs is an excellent tool to obtain
information about transverse spin effects within the nucleon. A DY program
in PANDA would allow to evaluate these three PDFs in a kinematic region
where the valence contributions are expected to be dominant. In particular,
with an unpolarised or polarised target, the Boer–Mulders distribution h⊥1 and
the Sivers distribution f⊥1T could be accessed very well. The polarised target
needed in the latter case is not yet foreseen in the present PANDA layout but
it is indicated as an almost necessary upgrade.
In addition, if a polarised antiproton beam would be available, it would be also
possible to access the transversity distribution h1T directly and without any
convolution with other PDFs. In fact, at present h1T can be obtained from
semi–inclusive DIS (SIDIS) measurements, but only by extracting the data
from fragmentation functions obtained from other experiments.

1.2.5.3 Electromagnetic form factors in the time–like region

The electron–nucleon interaction is described by the exchange of one photon
with space–like four momentum transfer q2.
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4.6.3 Electromagnetic Form Factors in
the Time-like Region

4.6.3.1 Introduction

The electromagnetic probe is an excellent tool to in-
vestigate the structure of the nucleon. The PANDA-
experiment offers the unique possibility to make a
precise determination of the electromagnetic form
factors in the time-like region with unprecedented
accuracy. The electric (GE) and magnetic (GM)
form factors of the proton parametrise the hadronic
current in the matrix element for elastic electron
scattering (e− + p → e− + p) and in its crossed
process annihilation (pp → e+e−) as shown in
Fig. 4.95. The form factors (FF) measured in elec-
tron scattering are intimately connected with those
measured in the annihilation process. Moreover
they are observables that can probe our understand-
ing of the nucleon structure in the regime of nonper-
turbative QCD as well as at higher energies where
perturbative QCD applies.

The interaction of the electron with the nucleon
is described by the exchange of one photon with
space-like four momentum transfer q2. The lepton
vertex is described completely within QED and on
the nucleon vertex, the structure of the nucleon is
parametrised by two real scalar functions depending
on one variable q2 only. These real functions are the
Dirac form factor F1

p,n and the Pauli form factor
F2

p,n, or as a linear combination of Fp,n1,2 the Sachs
form factors GE

p,n and GM
p,n. The standard way

of writing the matrix element for elastic electron
proton scattering in the framework of one-photon
exchange is:

M =
e2

q2
ū(k2) γµ u(k1) ū(p2) [F1(q2) γµ

+i
σµνq

ν

2mp
F2(q2)] u(p1), (4.62)

k1(p1) and k2(p2) are the four-momenta of the ini-
tial and final electron (nucleon) represented by the
spinors ū(k) (ū(p)) and u(k) (u(p)), mp is the nu-
cleon mass, q = k1 − k2, q2 < 0. Applying crossing
symmetry yields the matrix element for pp→ e+e−

where k2(p2) changes sign so that q2 = s.

The form factors are analytic functions of the four
momentum transfer q2 ranging from q2 = −∞ to
q2 = +∞. While in electron scattering the form
factors can be accessed in the range of negative q2

(space-like), the annihilation process allows to ac-
cess positive q2 (time-like) starting from the thresh-
old of q2 = 4m2

p. Unitarity of the matrix element
requires that space-like form factors are real func-

tions of q2 while for time-like q2 they are complex
functions. In the Breit frame, space-like FFs have

�
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e′−

�
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Figure 4.95: Feynman diagrams for elastics elec-
tron scattering (left) and its crossed channel pp →
e+e− (right) which will be measured with the PANDA-
detector.

concrete interpretations, since they are the Fourier
transforms of the spatial charge (GE) and the mag-
netisation distribution (GM) of the proton. Their
slope at q2 = 0 directly yields the charge and mag-
netisation radius of the proton. In time-like region,
FFs reflect the frequency spectrum of the electro-
magnetic response of the nucleon. That way two
complementary aspects of nucleon structure can be
studied and ask for a full and complete descrip-
tion of the electromagnetic form factors over the
full kinematical range of q2.

Impact from Electron Scattering Data

The experimental determination of the electromag-
netic form factors of the nucleon has triggered large
experimental programs at all major facilities since
they have long served as one of the testing grounds
for our understanding of nucleon structure ranging
from the low-q2 regime of QCD up to the high en-
ergy perturbative regime. Basically all models of
nonperturbative QCD, which are using effective de-
grees of freedom, have been used to estimate the
nucleon form factors[460]. For example different
constituent quark models, skyrmion type of mod-
els, bag models and more recently a framework like
chiral perturbation theory and lattice gauge theory
have been applied.

Due to their analyticity space-like and time-like
form factors are intimately connected by the ap-
plication of dispersion relations which are an ap-
plication of Cauchy’s integral formula. Perturba-
tive QCD makes predictions for the large q2 be-
haviour of the connection between space-like region
and time-like region. Space-like form factors are

Figure 1.10: Feynman diagrams for elastic electron scattering (left) and its
crossed channel pp→ e+e− (right) which will be measured at PANDA. Figure
taken from Ref. [4].
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1.2. Physics motivations

On the nucleon vertex, which can be completely described by QED, the struc-
ture of the nucleon is parametrised by two real scalar functions depending only
on the variable q2. These functions are the Dirac form factor F p,n

1 and the Pauli
form factor F p,n

2 ; alternatively, the Sachs form factors Gp,n
E and Gp,n

M , which are
linear combinations of F p,n

1,2 , can be used.
Usually, the matrix element for elastic electron–proton scattering in the frame-
work of one–photon exchange is:

M =
e2

q2
ū(k2)γµu(k1)ū(p2)[F1(q2)γµ + i

σµνq
ν

2mp

F2(q2)]u(p1), (1.2)

where k1 (p1) and k2 (p2) are the four momenta of the initial (final) electron
(nucleon), represented by the spinors ū(k) (ū(p)) and u(k) (u(p)), mp is the
nucleon mass and q = k1 − k2, such that q2 < 0.
The form factors (FFs) are analytical functions of the four momentum transfer
q2, ranging from q2 = −∞ to q2 = +∞. The unitarity condition on the matrix
of Eq. (1.2) implies that the space–like form factors are real functions of q2,
whereas the time–like ones are complex functions.
While the electron scattering allows to access the form factors only in the
range of negative q2 (space–like), with the annihilation process the FFs can be
accessed at positive q2 (time–like), starting from the threshold q2 = 4m2

p. The
space–like FFs are interpreted as the Fourier transforms of the spatial charge
(GE) and the magnetisation distribution of the proton (GM): their slope at
q2 = 0 directly gives information about the charge and the magnetisation ra-
dius of the proton. In time–like region, the FFs reflect the frequency spectrum
of the electromagnetic response of the nucleon.
In this way, two complementary aspects of the nucleon structure can be stud-
ied and a complete description of the electromagnetic form factors over the full
kinematical range of q2 can be reached.
The experimental determination of the FFs has triggered large experimen-
tal programs at all major facilities. Recently, the interest in the time–like
form factors of the nucleon has been renewed by the measurements at JLAB,
showing that the ratio µpGE/GM (µp being the magnetic moment of the pro-
ton) deviates from unity, in contrast to the results derived from Rosenbluth
[67, 68, 69, 70, 71].
This surprising result has reopened the matter of the individual determination
of GE and GM in the time–like domain, which was not obtained up to now
and which will be possible with the PANDA experiment.
In fact, with an unprecendeted luminosity and high particle identification ca-
pabilities, that are necessary to discriminate against the very large background
of pp→ π+π−, PANDA offers the opportunity to determine the moduli of the
complex FFs, by measuring the angular distribution of the process pp→ e+e−

in a q2 range from about 5 (GeV/c)2 up to 14 (GeV/c)2. Moreover, the ratio
R = |GE|/|GM | can be extracted with very high precision up to 14 (GeV/c)2:
a factor 10 improved experimental precision is expected with respect to present
world data, as the simulation results show in Fig. 1.11.
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to 14 (GeV/c)2. A factor 10 improved experimental
precision is expected with respect to present world
data. Fig. 4.107 shows the expected accuracy on
the PANDA measurements in comparison with the
world data, under the assumption that R = 1. With
a precise luminosity measurement, we can not only
determine the ratio R but also the absolute and
differential cross section up to 22 (GeV/c)2. More-
over separate determination of |GE| and |GM| can
be made below 14 (GeV/c)2.

In contrast to the e+e− case, the situation for the
process pp → µ+µ− is different. Due to the simi-
lar mass of muon and pion PID capabilities are not
sufficient to arrive at a clean separation of pions
against muons. Our simulations show, that a mea-
surement of the electromagnetic form factors using
muons is much less promising. Further studies are
required.

Polarisation degree of freedom, either on the target
side or with transversely polarised p-beam would
allow to access the imaginary part of the complex
form factors. For example with a transversely po-
larised target only one could already determine the
phase difference of the two form factors.

Outlook on Transition Distribution Amplitudes
(TDA)

The amplitude of the process

p̄(pp̄)p(pp)→ γ?(q)π(pπ)→ `+(p`+)`−(p`−)π(pπ)
(4.65)

at small t = (pπ − pp)2 (or at small u = (pπ − pp̄)2)
and large lepton pair invariant mass squared q2

has been shown to factorise into a short-distance
perturbatively calculable matrix element and long-
distance dominated antiproton Distribution Ampli-
tudes (DA) and proton to pion Transition Distribu-
tion Amplitudes (TDA), as shown in Fig. 4.108.

Transition Distribution Amplitudes [352, 353,
478] are universal non-perturbative objects describ-
ing the transitions between two different particles
( e.g. p → π, p → γ). They are defined from the
Fourier transform of a matrix element of a three-
quark-light-cone operator between a proton and a
meson state. They obey QCD evolution equations
which follow from the renormalisation-group equa-
tion of the three-quark operator. Their Q2 depen-
dence is thus completely under control. To define
the transition distribution amplitudes from a nu-
cleon to a pseudoscalar meson, we introduce light-
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Figure 4.107: Present world data on |GM| (extracted
using the hypothesis R = |GE|/|GM| = 1) are shown
together with the expected accuracy by measuring pp→
e+e− with the PANDA experiment at FAIR. Each point
corresponds to an integrated luminosity of 2 fb−1.

Figure 4.108: The factorisation of the process p̄p →
e+e−π0

cone coordinates v± = (v0 ± v3)/
√

2 and trans-
verse components vT = (v1, v2) for any four-vector
v. The skewedness variable ξ = −∆+/2P+ with
∆ = p′ − p and P = (p + p′)/2 describes the loss

Figure 1.11: Present world data on |GM | (extracted using the hypothesis R =
|GE|/|GM | = 1), together with the expected accuracy by measuring pp →
w+e− at FAIR with the PANDA experiment. Figure taken from Ref. [4].

1.2.6 Electroweak physics

The high intensity antiproton beam that will be available at the HESR will
allow to produce a large number of D mesons, giving the chance to search
for rare weak decays of these mesons, to test the predictions of the Standard
Model for electroweak physics and to look for signatures of physics beyond the
Standard Model.
Due to the very rare and small deviations that characterise such processes, it is
necessary to have a high enough statistics, implying that measurements have
to be performed at the highest possible luminosity.

1.2.6.1 CP violation and mixing in the charm sector

According to the Standard Model, CP violation is due to a single phase enter-
ing the Cabibbo–Kobayashi–Maskawa (CKM) matrix. As a result, the matrix
elements Vub and Vtd, which involve the third generation of quarks, have large
phases and small magnitudes.
At present, CP violation has been observed in neutral kaon and in neutral B
meson decays [53, 54]. In the K0 system, the CP violation is small and in
the D0 system it is predicted to be even smaller [55]. So a deviation from the
small Standard Model effect indicating “new physics” can be more easily found
out in experiments in the D meson system: for example, an enhanced mass
difference of mixing D and D mesons would represent a deviation from the
model.
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Due to the strong correlation of the DD pairs kept in the hadronisation pro-
cess, it would be advantageous to work with D mesons produced at the open
charm threshold. At this energy, asymmetries are not expected in the produc-
tion process and through the observation of one of the D mesons, it is possible
to deduce the quantum numbers of the other one in case of production in a
charge symmetric environment (flavor tagging).
As an example, the two body channels pp → Ψ(3770) → DD and pp →
ψ(4040)→ D∗D

∗
may be useful to investigate the PANDA abilities to recon-

struct open charm.
In order to measure the predicted αCP ∼ 10−3, PANDA should collect 109 D
meson pairs running at L = 2 · 1032 cm−2s−1.

1.2.6.2 CP violation in hyperon decays

In case of two–body decays of hyperons, the decay amplitude can be a S–wave
or a P–wave. Having two amplitudes, interference can occur and CP–violating
phases can enter.
Two parameters govern the decay dynamics: α denotes the asymmetry of the
decay angular distribution and β the decay–baryon polarisation [56]:

A =
αΓ + αΓ

αΓ− αΓ
∼ α + α

α− α (1.3)

B =
βΓ + βΓ

βΓ− βΓ
∼ β + β

β − β , (1.4)

where Γ is the decay width.
The Standard Model predicts for A a value of ∼ 2 · 10−5; on the other hand,
some models beyond the standard one predict CP asymmetries of the order of
several 10−4.
In order to check the Standard Model limit, PANDA should study the decay
of ∼ 1010 hyperons: this would require an operation time of about one year
under ideal conditions.

1.2.6.3 Rare decays

The study of rare decays is a test of the violation of fundamental symmetries,
so it allows to open a window onto physics beyond the Standard Model.
It is possible to search for lepton flavor number violating decays, like D0 → µe
or D± → πµe; in addition, according to the Standard Model, flavor changing
neutral currents like in the decay D0 → µ+µ− are foreseen through box graphs
or weak penguin graphs. Although the branching fractions for these events
are smaller than 10−15, the signatures of the decays are clean, leaving hope for
their observation.
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1.3 p annihilations on nuclei

In ordinary phenomena, quarks are confined in the nucleons, i.e. they cannot
be extracted singularly from nucleons. Unstable non–strange or strange quark
triplets and quark–antiquark doublets are produced in hadronic collisions and
in antinucleon–nucleon annihilations, but also in these cases quarks appear to
be confined in systems of two or three quarks.
Many theories based on QCD predict that ordinary nuclear matter, under cer-
tain conditions, could undergo transitions to excited phases, where quarks and
gluons form a plasma (quark–gluon plasma, QGP). These new phases should
occur when the baryon density is so high that nucleons become very close and
fuse into each other, or when the baryon density is low but a hot and high
enough energy density is attained. In particular, in Ref. [72] it is studied the
possibility that the pN highly excited blob consisting of a gas of individual
hadrons (hadronic gas, HG) could be transformed, in extreme cases, into a
blob of individual quarks deconfined to form QGP.
The excited hadron phases are supposed to be generalised systems of mesons
and baryons of increasing mass and volume where quarks are still confined.
Usually, the phase transitions are studied assuming that the excited blobs be-
have like thermodynamic systems. This means that they should consist of a
large number of particles (thousands or more) which are in equilibrium for
some time, that is with definite temperature, pressure, energy and entropy
density [73]; also non–equilibrium conditions are considered. In this context,
the transition from HG to QGP is characterised by a critical temperature Tc
which, according to various authors, is expected to be in the interval 150-200
MeV. For instance, a lattice QCD calculation predicts for Tc a value of ∼ 173
MeV, corresponding to an energy density Ed ∼ 700 MeV/fm3, which is about
five times the energy density of the ordinary nuclei (0.14 nucleons/fm3=130
MeV/fm3) [74].
Since QGP is supposed to exist in some early stage of our Universe, its discov-
ery is the main motivation of many experiments and theoretical investigations
on relativistic heavy–ion collisions.
Despite the great amount of data that has been collected for many years look-
ing for QGP and the many theoretical speculations that have been produced,
an experimental evidence is still missing. QGP has not yet been discovered un-
ambigously due to the mixture of processes that accompany the nuclear phase
transitions and their complexity, although experimental results indicate the
occurrence of new states of matter that have the characteristics of collective
phenomena not reconcilable with the known physics.
Signatures of the existence of such a state are based on statistical considera-
tions which in general predict an enhancement in the production of states with
quarks heavier than the lighter couple (u, d), while some theoretical models re-
fer to anomalies in rapidity distributions or branching ratio suppression of well
known resonances. In particular, according to Refs. [75, 76, 77], an important
signature of QGP formation is a high production of strange particles. A crucial
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point is to define a reference with respect to which a strangeness production
can be considered “high”.

Since it has been suggested that the transition from ordinary hadronic matter
to quark–gluon plasma could be obtained in antinucleon–nucleus annihilations,
in the following the features of these annihilations are presented in detail.

1.3.1 p–nucleon annihilation

When an p interacts with a proton p, the two baryons lose their identity and
fuse into a highly excited blob, sometimes called “fireball”, with an energy
equal to twice the nucleon mass and a baryon number B = 0.
Then, when the blob de–excites, it materialises into a certain number of mesons
directly or through intermediate states: the observed number of produced pi-
ons varies from a minimum of two to a maximum of eight, with an average of
five; KK pairs are observed in about 5% of the events [78]. The variety and
energy of the final products depend on the conservation laws of momentum,
energy, electric charge, baryonic and leptonic numbers, strangeness, P– and
G–parity.
In a QGP, q, q and g may interact with each other annihilating and/or pro-
ducing additional qq pairs and gluons. So the initial pp system made of three
non–strange qq pairs is replaced by a higher number of qq pairs (ss pairs in-
cluded). Due to the higher mass, ss pairs are produced with lower probability
than uu and dd; anyway, they can be produced and absorbed via the reactions
qq ↔ ss with a 10% probability and gg ↔ ss with a 90% probability.
A QGP feature is that the strangeness density is predicted to be up to 10
times larger than in HG [75]: in a qualitative way, the energy required to pro-
duce a KK pair in a conventional hadronic collision requires at least 700 MeV,
whereas only 2ms ∼ 300 MeV are necessary to create a ss pair in QGP.

1.3.2 p–nucleus annihilation

In the case of an antiproton annihilating on a nucleus, many final states are
similar to those of annihilation on one free nucleon, but the panorama is wider
and some states are substantially different, like the ones with only one meson in
the final state (Pontecorvo reactions: pd → π−p, p3He → π−d and pd → KΛ
[79]). The main features of this annihilation can be found in Ref. [78].
It is worth pointing out that in the case of annihilation on a single nucleon
bound in a nucleus, the emitted mesons may interact with the residual nu-
cleons according to the known physics of meson–nucleon interactions. Since
the average momentum of the mesons is of the order of 300 MeV/c, they may
interact in a resonant way and be absorbed by nucleons.
This kind of annihilation mechanism is referred to as single–nucleon annihila-
tion (SNA) followed by final state interaction (FSI).
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The strangeness production could be evaluated through reactions like the fol-
lowing:

ωN → KY, (1.5)

ωN → NKK, (1.6)

nK+ ↔ pK0, (1.7)

nK− ↔ pK
0
, (1.8)

KN → πY. (1.9)

Since antikaons (and not kaons) are strongly absorbed by nucleons, according
to the previous reactions the number of K increases due to Eq. (1.5) and (1.6)
and the number of K decreases with respect to K due to Eq. (1.9), despite the
positive contribution of Eq. (1.6). According to Ref. [80], the total production
of ss pairs in single nucleon annihilation in a nucleus should be of the order of
1.5 with respect to SNA on free nucleons.
SNA followed by FSI is a particular case of the B > 0 processes, since it starts
with a blob having B = 0 and ends with a state with B > 0, after involving
the other nucleons of the nucleus.
In the case of annihilation of an antiproton on a nucleus, it is also possible
that the p fuses with A nucleons, forming a fireball with energy (A+ 1)mp and
baryonic number B = A − 1 ≥ 1, consisting of HG or QGP. Such process is
called multi–nucleon annihilation (MNA). Also in the case of MNA the energy
blob may interact with the residual nucleons.
MNA on nuclei are expected, however, to be a minority with respect to the
whole set of annihilation reactions, so they are hidden by the many background
events due to SNA plus FSI; in order to disentangle them, it is necessary to
select specific reaction channels.
Anyway, these two mechanisms produce similar final states; in order to evalu-
ate experimentally their relative importance it is necessary to resort to statis-
tical characteristics. The main difference stays in the amount of strangeness
production: that has been studied through statistical models of the blob de-
excitation, by extending the production observed in the case of single nucleon
annihilations.
According to Ref. [81], kaon production (i.e. the total strangeness production)
increases much more in MNA than in the case of SNA plus FSI, in particular
more than three times from A = 1 to A = 2 and at lower pace at higher A
values. On the other hand, antikaon production is almost constant and much
lower than kaon production for A ≥ 2. In addition, due to the lower energy
required to create a hyperon with respect to a kaon, the occurrence of channels
containing Y K is higher than that of KK channels when A increases, resulting
in a strangeness increase with A.
Another feature of MNA is that the ratio of the antistrange quarks to the total
antiquark content of the produced particles R = s/q increases with A up to a
factor seven between B = 0 and B = 4.
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Finally, it is important to point out that the strangeness production from a
hadronic gas strongly depends on the nucleon density. According to Ref. [82],
the total strangeness is expected to increase by a factor 10 between A = 1 and
A = 4. This value can be taken as an upper limit on strangeness production:
any substantial excess would be interpreted as QGP signal.
In conclusion, QGP could be the natural consequence of the quark deconfine-
ment induced by the antiproton annihilation on the nucleus. If the antiproton
annihilation on a single free nucleon is assumed as reference, the strangeness
production is expected to increase going from SNA followed by FSI, to MNA
without QGP formation; the occurrence of QGP is denoted by a much higher
increase.

1.3.3 p−4He annihilation

According to the previous remarks, the probability of QGP occurrence is higher
if the antiproton annihilates in a high density region of the nuclear matter, that
is close to the centre of the nucleus. In order to reach that region, p should
have a sufficiently high initial momentum, since it decreases by scattering as
the p approaches the centre of the nucleus (slow p are known to have a high
probability to annihilate on the nuclear surface, where the density is low [84]).
In this context, the 4He nucleus offers favorable conditions for the formation
of A > 1 and B ≥ 1 fireballs, since the nucleons are strongly bound in a small
volume at the same energetic level. The 4He radius (≈ 1.6 fm) is less than
twice the proton radius (≈ 0.87 fm), so the four nucleons are partially over-
lapped, helping the formation of a blob containing the antiproton and more
than one nucleon. In fact, since they are so close to each other, it is very likely
that all are involved if one of them is “touched” by the antiproton.
In addition, the small number of initial nucleons and of final mesons facilitates
the identification of the final particles and of single and multi–nucleon annihi-
lations (A = 1 and A = 2, 3, 4).
The previously outlined expectations find confirmation in the analyses of the
annihilation data at rest on 1H, 2H, 3He and 4He reported in Refs. [83, 84,
85, 86]. The data were collected by the Obelix spectrometer, operating at the
accelerator LEAR at CERN from 1992 to 1996.
The analyses of p−4He annihilation data have unambiguously identified the
existence of annihilations on more than one nucleon [87]. Moreover, it has put
in evidence that the IntraNuclear Cascade models proposed in Refs. [81, 82]
cannot properly describe the enhancement in strangeness production observed
in some selected channels of p−4He annihilations with respect to the produc-
tion in the same annihilation channels on hydrogen or deuterium [84, 85, 86].
In particular, from the analysis of the Obelix data in Ref. [86] a strangeness en-
hancement higher than 22 is obtained comparing the K+ production in p−4He
events into four charged mesons and one fast proton to the K+ production in pp
annihilations into four charged prong events. This value is significantly higher
than six, the value assumed in Ref. [82] as an upper limit for the strangeness
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enhancement in annihilations involving four nucleons in a hadronic frame.
Moreover, the same analysis shows that the strangeness enhancement produc-
tion for the annihilation into K+2π+2π− without neutral mesons with respect
to the reaction K+π+2π− on hydrogen reaches a value even higher, namely
∼ 32.
These enhancement factors are too high to be explainable in terms of hadronic
interactions: they could be interpreted as a signature of the occurrence of
quark deconfinement and of QGP formation.

In the light of the presented scenario, it has to be stressed that the use of
a well bound nucleus such as the 4He as target could favour the transition to
quark–gluon plasma. Moreover, given the relatively limited number of particles
in the final state with respect to the experimental conditions of the heavy–ion
collisions, the possibility to measure exclusive channels could help to clarify
part of the uncertainties connected to the experimental signatures.
In this framework the use of a Helium target in the PANDA experiment could
be of absolute relevance: the experiment would produce data of incompara-
bly rich statistics with respects to the Obelix data. In addition, its capability
of particle identification in a wide momenta range, together with the covered
solid angle, would allow strangeness and charm production studies in exclusive
annihilation channels.
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Chapter 2
The PANDA detector

2.1 Detector overview

The rich physics program, as described in Sec. 1.2, poses significant challenges
on a detector. But PANDA is in a favourable situation: it takes advantage of
the experience from previous experiments in this field, like Crystal Barrel and
Obelix at LEAR, E835 at Fermilab, FINUDA in Frascati. In addition, it can
take into account new concepts and instruments optimised or introduced by
the construction of the LHC detectors and of the B factory experiments.
So the PANDA detector will be able to combine the best ever available high–
resolution high–intensity antiproton beam with a hermetic detector for charged
and neutral particles, in the energy range between 10 MeV and 10 GeV.
Clearly, the design choices for the detector should represent a balance between
physics needs and available resources.
Since no other detectors are foreseen for the HESR and no other similar an-
tiproton beam will be available elsewhere, the detector has to be sufficiently
robust and resistant to radiation damage to guarantee an operation over many
years.
The main requirements the PANDA detector has to fulfil are the following:

• nearly 4π solid angle coverage;

• good capability of tracking charged particles with momentum between
100-200 MeV/c and 8 GeV/c;

• good vertex reconstruction for the identification of the charmonium states;

• excellent energy resolution;

• good particle identification for photons, pions, kaons, protons, electrons
and muons;

• high rate compatibility, since the estimated event rate is of 2 · 107 an-
tiproton annihilations per second;
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2. The PANDA detector

• high modularity, in order to allow different and complementary measure-
ments from nuclear to particle physics.

To achieve these goals, the detector will be composed of two magnetic spec-
trometers: the Target Spectrometer (TS) to detect particles emitted with la-
boratory angles greater than 5 and 10 degrees in the vertical and horizontal
directions respectively, and the Forward Spectrometer (FS) for small angle
tracks [1, 2, 3].

Figure 2.1: Layout of the PANDA detector. Figure taken from Ref. [4].

2.1.1 Target Spectrometer

The basic concept of the Target Spectrometer (TS) is a shell–like arrangement
of various detector systems surrounding the interaction point, with the aim
of measuring charged tracks in a highly homogeneous (better than ± 2%)
solenoidal field of 2 T.
It will be arranged in three parts:

• the barrel, covering angles in the range from 22◦ to 140◦;

• the forward end cap, extending the angles down to 5◦ and 10◦ in the
vertical and horizontal planes respectively;

• the backward end cap region, between about 145◦ and 170◦.

An overview is shown in Fig. 2.2.
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2.1. Detector overview

Figure 2.2: Side view of the Target Spectrometer (TS) of PANDA. To the
right of this, the Forward Spectrometer (Fig. 2.6) follows. Figure taken from
Ref. [4].

2.1.1.1 Target

Regarding the interaction point, two complementary techniques are taken into
account: a pellet target and a cluster–jet target.

Pellet Target It consists of a stream of frozen hydrogen pellets (micro–
spheres) that traverse the antiproton beam perpendicularly. At the interaction
point, typical parameters are a pellet rate of 10-15 kHz, a fall speed greater
than 60 m/s and a pellet size of 25 µm, leading to an average target thickness
of a few 1015 atoms/cm2. The pellet train has a lateral spread σ ∼ 1 mm
and an interspacing of pellets between 0.5 and 5 mm. The advantage of this
target is the high resolution in the vertex position (50 µm) that can be reached
thanks to the large number of interactions expected in every pellet and to the
foreseen pellet tracking system.

Cluster–Jet Target It is a narrow supersonic jet of hydrogen clusters, each
of them consisting of 103-106 hydrogen molecules. The advantage of cluster
targets is the high homogeneity in density of the targets and the possibility
to focus the antiproton beam at highest density in phase space. On the other
hand, it cannot allow a very precise definition of the interaction point.
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Other targets Targets for the hypernuclear physics are under consideration.
In addition, a current R&D is studying the development of a liquid helium
target and a polarised 3He target. A wire target may also be employed to
study antiproton–nucleus interactions.

2.1.1.2 Tracking devices

The tracking system of the Target Spectrometer will consist of a Micro–Vertex
Detector and of a Central Tracker.

Micro–Vertex Detector The Micro–Vertex Detector (MVD) is the detec-
tor closest to the primary interaction vertex.
It is a tracking device for charged particles, optimised for a very precise deter-
mination of secondary decay vertices of short–lived particles such as hyperons
and strange or charmed mesons.
The foreseen layout, depicted in Fig. 2.3, consists of a four layer barrel detec-
tor (inner radius of 2.5 cm, outer radius of 13 cm) surrounding the beam pipe
and of eight detector wheels arranged perpendicular to the beam, in order to
achieve the best acceptance for the forward part of the particle spectrum.
The two innermost barrel layers (1-2), as well as the inner four wheel layers
(1-4), will be entirely made of silicon pixel detectors; the two outer barrel la-
yers (3-4) and the last two wheels (7-8), placed further downstream to achieve
a better acceptance of hyperon cascades, will be made of double–sided silicon
strip detectors. The remaining wheel layers (5-6) will be a combination of strip
detectors on the outer radius and pixel detectors closer to the beam pipe.

Central Tracker The Central Tracker is designed like a barrel enclosing the
target and beam pipe and surrounding the MVD. It will occupy the space from
15 to 42 cm (radial distance) from the beam pipe and will extend from 40 cm
upstream to 110 cm downstream of the interaction point.
This charged–particle tracking system should have an almost complete 4π co-
verage around the interaction point and should be able to handle the high
particle fluxes (expected event rate of 2·107 s−1) anticipated for a luminosity
of few 1032 cm−2 s−1 and to resolve the complex pattern of multiple tracks
(expected track multiplicity 4 - 6 tracks/event).
The momentum resolution δp/p should be on the percent level over a momen-
tum range of a few hundred MeV/c in the backward region, to some GeV/c in
the forward region. As well, it should be able to reach a high spatial resolution
σrφ = 150 µm and σz = 1 mm.
The tracker should also have good detection efficiency for secondary vertices
which can occur outside the inner vertex detector (i.e. K0

S or Λ). This will be
achieved by combining the Central Tracker with the MVD.
Two options are currently under study:
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2.1. Detector overview

Figure 2.3: The Micro–Vertex Detector (MVD). The two outer layers have
been cut out for a better visibility. Figure taken from Ref. [1].

• a Straw Tube Tracker (STT), that will consist of planar layers of alu-
minised mylar tubes (straws) arranged in a hexagonal layout that have to
fill the cylindrical volume of the Central Tracker. This solution, sketched
in Fig. 2.4 - left, will be described in detail in Sec. 2.2.

• a Time Projection Chamber (TPC), sketched in Fig. 2.4 - right, that will
consist of two large gas–filled half–cylinders. An electrical field along
the cylinder axis will separate positive gas ions from electrons created by
ionising particles traversing the gas volume.

In the next months/years, the PANDA collaboration will evaluate the best
solution between STT and TPC as Central Tracker. The decision will be
taken on the basis of the performances resulting from Monte Carlo simulations
and tests with prototypes, of the particle identification capabilities and of the
detectors costs.

Gas Electron Multiplier The other detector composing the tracking sys-
tem of the Target Spectrometer will consist of three sets of Gas Electron Mul-
tiplier (GEM) stations, placed 1.1, 1.4, 1.9 m downstream of the target, in
order to be able to detect the particles emitted at angles below 22◦ which do
not enter the STT/TPC.
For the GEM stations, gaseous micro–pattern detectors based on GEM foils as
amplification stages are chosen, since they have rate capabilities three orders
of magnitude higher than drift chambers.
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2. The PANDA detector

Figure 2.4: The PANDA Straw Tube Tracker (STT) (left) and Time Projection
Chamber (TPC) (right), with beam and target pipes seen from upstream.
Figure taken from Ref. [1].

2.1.1.3 Particle identification devices

The identification of charged particles over a large range of angles and momenta
is one of the main requirement of the physics objectives of PANDA. This will be
performed by different subdetectors: the main part of the momentum spectrum
above 1 GeV/c will be covered by the Cherenkov counters; in addition, a Time–
Of–Flight barrel will identify slow particles.

Barrel Time–Of–Flight The Barrel Time–Of–Flight (TOF) will provide
particle identification for slow particles at large polar angles. In order to
achieve this goal, the detector will have a time resolution between 50 and
100 ps.
The TOF system will be made of scintillator bars and strips or pads of multi–
gap resistive plate chambers. It will cover angles in the range from 22◦ to 140◦

using a barrel arrangement around the Central Tracker at 42 - 45 cm radial
distance.

Detectors of Internally Reflected Cherenkov light The Detectors of
Internally Reflected Cherenkov light (DIRC) will be essentially used for particle
identification at polar angles between 5◦ and 22◦ (Forward End–Cap DIRC)
and for polar angles between 22◦ and 140◦ (Barrel DIRC).
The Barrel DIRC will consist of 1.7 cm thick fused silica slabs surrounding the
beam line at a radial distance of 45 - 54 cm; the images will be then focused by
lenses onto micro–channel plate photomultiplier tubes, insensitive to magnetic
fields.
The Forward End–Cap DIRC will employ a similar concept of radiator but in
shape of a disk: it will be 2 cm thick with a radius of 110 cm and will be placed
directly upstream of the forward end cap calorimeter.
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2.1.1.4 Calorimetry device

The ElectroMagnetic Calorimeter (EMC) requires fast scintillation materials,
with short radiation length and Moliere radius. It is foreseen the use of lead
tungsten (PbWO4), which has a short decay time (< 10 ns) and shows a good
radiation hardness; different crystals are also taken into consideration.
The envisaged energy resolution is < 2% at 1 GeV, the time resolution < 2 ns.
With such a good resolution, the EMC will allow to reach a e/π ratio of 103

for momenta above 0.5 GeV/c.
The setup, as shown in Fig. 2.5, will consist of 11360 tapered crystals (approxi-
mately 22 X0) with a length of 22 cm, mounted in a barrel shape with an inner
radius of 57 cm. In addition, there will be other 3600 tapered crystals with a
planar arrangement in the forward end cap and 592 crystals in the backward
end cap.

Figure 2.5: Barrel and forward end cap of the PANDA ElectroMagnetic
Calorimeter (EMC) with its mounting structures and cooling pipes. Figure
taken from Ref. [2].

2.1.1.5 Solenoid Magnet

A superconducting solenoid will provide the magnetic field inside the Target
Spectrometer. It will produce a maximum magnetic field of 2 T, with a field
homogeneity better than 2% over the volume of the Micro–Vertex Detector
and Central Tracker.
The solenoid will have an inner radius of 105 cm and a length of 2.8 m.
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2.1.1.6 Muon detection devices

In the yoke of the solenoid magnet a fine segmentation as absorber with in-
terleaved tracking detectors will be implemented in order to allow a proper
separation between primary muons, pions and kinks from pion decays.
In the barrel region, it is foreseen to segment the yoke in one layer of 6 cm
iron, followed by 11 layers with a thickness of 3 cm and finally the last layer
of 6 cm iron: this amount of material is enough to absorb pions.
Then the muon system will be split up in several layers: six detection layers
will be placed around five iron layers of 6 cm thickness each within the door;
in addition, a removable muon filter with five more layers of 6 cm iron will be
placed in the space between the solenoid and the dipole.

2.1.1.7 Hypernuclear detector

It is foreseen that a data acquisition session will be devoted to the hypernu-
clei physics. In order to perform such studies, during this dedicated session
the PANDA detector will be modified, providing a specific configuration. In
particular, by removing the backward part of the calorimeter, it will add an
hypernuclear array: it will consist of a dedicated nuclear target station for
the hypernuclei production and the required additional detectors, that will be
a high resolution and high efficiency germanium scintillator array for γ spec-
troscopy.

2.1.2 Forward Spectrometer

The Forward Spectrometer (FS) (Fig. 2.6) will detect particles emitted in the
entire angular acceptance of the Target Spectrometer of ±5◦ and ±10◦ in the
vertical and horizontal direction respectively.
In this region, a magnetic field will be provided by a dipole magnet; Cherenkov
detectors, calorimeters and muon counters will guarantee the detection of par-
ticles of all types.

2.1.2.1 Dipole magnet

To analyse the momentum of charged particles in the Forward Spectrometer,
a 2 T m dipole magnet with a window frame, a 1 m gap and more than 2 m
aperture is foreseen.
The magnet yoke will be placed at a distance of 3.9 m downstream of the
target and will occupy about 1.6 m.
The deflection of the antiproton beam due to the bending power of the dipole
will be of about 2.2◦ at the maximum momentum of 15 GeV/c. This deflection
will be compensated by two correcting dipole magnets, placed around the
PANDA detection system.
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2.1. Detector overview

Figure 2.6: Artistic side view of the Forward Spectrometer (FS) of PANDA.
It is preceded on the left by the Target Spectrometer (TS), shown in Fig. 2.2.
Figure taken from Ref. [4].

2.1.2.2 Tracking devices

Three pairs of tracking drift detectors (wire chambers) will be used to measure
the deflection of particle trajectories in the field of the dipole magnet. The
first pair will be placed in front, the second within and the third behind the
dipole magnet.
Each independent detector will consist of four double layers of straw tubes
(Fig. 2.7), in order to allow track reconstruction in each pair of tracking detec-
tors separately, also in case of multi–track events. According to the foreseen
layout, two double layers will have vertical wires, the other two wires inclined
by a few degrees; the value of the skew angle is still under study and will be
optimised by ongoing simulations.

2.1.2.3 Particle identification devices

Ring Imaging Cherenkov detector The Ring Imaging Cherenkov (RICH)
detector has been proposed in order to assure a good π/K and K/p separation
also at the very highest momenta: in particular, by using a dual radiator
RICH detector made of silica aerogel and C4F10, like the one used at Hermes,
it will be possible to separate π/K/p in a broad momentum range from 2 to
15 GeV/c.
The Cherenkov light will be focused by a lightweight mirror on an array of
phototubes placed outside the active volume.
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2. The PANDA detector

Figure 2.7: Double layer of straw tubes with preamplifier cards and gas man-
ifolds mounted on rectangular support frame. The opening in the middle of
the detector is foreseen for the beam pipe. Figure taken from Ref. [4].

Time–Of–Flight Wall The Time–Of–Flight stop counter will consist of a
wall of slabs made of plastic scintillators, read out by fast phototubes on both
ends and placed at about 7 m from the target. Similar detectors will be
positioned inside the dipole magnet opening in order to detect low momentum
particles which do not exit the dipole magnet.
With the expected time resolution σ = 50 ps, it will be possible to separate
π/K and K/p on a 3σ level up to momenta of 2.8 GeV/c and 4.7 GeV/c
respectively.

2.1.2.4 Calorimeter device

A Shashlyk–type calorimeter with high resolution and efficiency is predicted to
be used to detect photons and electrons, thanks to lead–scintillator sandwiches
read out by wavelength shifting fibers coupled to photomultipliers. This choice
has been successfully used in the E865 experiment and adopted in various
others.
351 Shashlyk modules (110 mm × 110 mm × 680 mm = 20 X0) will be used to
cover the forward acceptance; they will be arranged in 13 rows and 27 columns
at 7.5 m from the target.

2.1.2.5 Muon detection devices

A tracking system consisting of interleaved absorber layers and rectangular
aluminium drift tubes, similar to the muon system in the target spectrometer,
has been designed for the very forward part of the muon spectrum. It allows
the discrimination of pions from muons, the detection of pion decays and also
the energy determination of neutrons and antineutrons.

46



2.2. The Straw Tube Tracker

2.1.3 Luminosity monitor

The determination of the time integrated luminosity L available while collect-
ing a given data sample for reactions at the PANDA interaction point is needed
to derive the cross section for physical processes.
The basic goal of the luminosity monitor is to reconstruct the angle of the
scattered antiprotons in the polar angular range of 3-8 mrad with respect to
the beam axis. Due to the large transverse dimensions of the interaction region
when using the pellet target, there is just a weak correlation between the po-
sition of the antiproton at e.g. z = 10 m and the recoil angle. Therefore, it is
necessary to reconstruct the angle of the antiproton at the luminosity monitor.
It will consist of four planes of double–sided silicon strip detectors located as
far downstream of and as close to the beam axis as possible. The planes, each
consisting of four wafers (e.g. 2 cm × 5 cm × 200 µm, with 50 µm pitch),
will be separated by 20 cm along the beam direction. The silicon wafers will
be placed inside a vacuum chamber to minimise scattering of the antiprotons
before traversing the four tracking planes.
The luminosity monitor will be located in the space between the downstream
side of the forward muon system and the HESR dipole needed to redirect the
antiproton beam out of the PANDA chicane back into the direction of the
HESR straight stretch (e.g. between z = 11 m and z = 13 m downstream of
the target).

2.2 The Straw Tube Tracker

The Straw Tube Tracker (STT) of the PANDA experiment is one of the two
foreseen options for tracking charged particles inside the Target Spectrometer.
It exhibits the most simple geometry of highly symmetric, cylindrical tubes
and has several advantages:

• robust electrostatic configuration, thanks to the shielding tube surround-
ing each high voltage wire, which suppresses signal cross–talk and pro-
tects neighbouring straws in case a wire breaks;

• robust mechanical stability if the straws are arranged in close–packed
multilayers and pressurised;

• high tracking efficiency (∼ 1% dead zone);

• high spatial resolution (σrφ < 150 µm, σz ∼ 1 mm);

• high momentum resolution (δp/p ∼ 1%);

• small radiation length (X/X0 ∼ 0.05% per tube, in the case of straws
with film tubes of about 30 µm wall thickness);

• high rate capability, which can be improved by using a fast drift gas.
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2.2.1 Straw tubes description

2.2.1.1 Straw materials

The straw tubes that will be used for the PANDA detector have a length
varying from 1200 to 1500 mm, 10 mm inner diameter and a wall thickness of
29 µm. They are made of two layers of 12 µm aluminised mylar films glued
together; the aluminisation at the inner tube wall is used as the cathode,
whereas the aluminisation of the second, outer strip layer is used to prevent
light incidence.
A gold–plated tungsten–rhenium wire with 20 µm diameter is used as anode.
The tubes are closed at both ends by cylindrical precision end plugs made
of ABS with a wall thickness of 0.5 mm. They are glued to the mylar film
leaving a small film overlap (1.5 mm) on both ends. There, a gold–plated
copper–beryllium spring wire is inserted in order to provide the electric cathode
contacting. The end plugs have a central hole with a 3 mm thick cylindrical
nose to insert and glue a crimp pin that fixes the wire. In addition, a micro
PVC tube is glued to another hole of the end plugs, to provide a gas flow
through the tube.
The anode wire is stretched by a weight of 50 g and crimped in the copper
pins at a gas overpressure in the straw tube of 1 bar. At this tension, the
calculated gravitational sag of the wire is less than 35 µm, much below the
foreseen spatial resolution of 150 µm.
The total weight of a fully assembled straw is 3 g.
Tab. 2.1 lists the different components of a straw tube (Fig. 2.8) and their
thickness in radiation length.

Table 2.1: Materials and their radiation lengths of a straw tube components.

Element Material X(cm) X0 (cm) X/X0

Film tube Mylar, 30 µm 6·10−3 28.7 2.1·10−4

Coating Al, 2×0.2 µm 6·10−6 8.9 6.7·10−7

Gas ArCO2 (90/10%) 1 6353 1.6·10−4

Wire WRe, 20 µm diam. 3.14·10−6a 0.35 9·10−6

aThe equivalent thickness X of a wire having diameter d is calculated as-
suming that its material is spread uniformly on a pitch: X = π(d/2)2 [5].

The PANDA straw tubes will be filled with a mixture of ArCO2; the percentage
in which the two gases will be mixed is still under investigation, but the choice
is between 90/10% and 80/20%. The scheme of gas supply and electric readout
are under study and will be developed in the future.
It is foreseen that the tubes will be operated at a high voltage of 1800 V and
2 bar absolute pressure.
Tests are ongoing with a laboratory setup in Jülich (described in Chap. 4) in
order to investigate options for the electronics.
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2.2. The Straw Tube Tracker

Figure 2.8: A straw tube with all its components. Design and picture by
IKP–FZ, Jülich.

2.2.1.2 Pressurised straws

Both the efficiency and the resolution of a straw tube are optimal when the film
tube has a perfect cylindrical shape and the anode wire is located exactly along
the cylinder axis. Due to the gravitational and electrostatic forces, however,
the wire and the straw centers do not coincide. The gravitational sag of the
wire is given by [6]:

δ =
ML

8T
, (2.1)

where M and T are the wire mass and tension1 in grams and L is the length
of the wire.
Having a wire tension of about 50 g inside a 1.5 m long horizontal straw tube,
the maximum sag due to gravitation in the tube is less than 35 µm. Further-
more, the electric field acting on an eccentric wire will induce an additional
bending δ1 depending on the actual voltage applied to the wire [6]:

δ1 =
πε0∆L2V 2

4TR2[ln(R/r)]2
(2.2)

where ε0 is the permittivity of the free space, ∆ is the shift of the wire from
the tube centre due to the gravitational sag, L is the tube length, V is the
voltage applied to the anode, T is the wire tension, R and r are the radii of
the tube and of the wire.
Considering that the PANDA Straw Tube Tracker will consist of about 4200
tubes, these sags will sum up to a tension equivalent to ∼ 210 kg, which must
be maintained. This is usually done by fixing the straw tubes to a strong and
massive surrounding frame or by using additional support structures along the

1The wire tension is usually expressed in terms of the mass weight used to stretch the
wire.
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tubes to keep them straight. All these methods have the inconvenience to
increase the global weight of the apparatus. This can be avoided by using a
new technique developed for the COSY–TOF Straw Tube Tracker [7], con-
sisting in self–supporting straw layers with intrinsic wire tension: the straw
tubes are assembled and the wire stretched by 50 g at an overpressure of ∼ 1
bar. Then they are closed–packed and glued together to planar double–layers
on a reference table, that allows to precisely define the tube to tube distance
to a value of 10.1 mm. At this gas overpressure the double–layers maintain
the nominal wire tension of 50 g for each tube, so they become self–supporting.

2.2.2 The detector layout

The Straw Tube Tracker will consist of planar double–layers of straw tubes
arranged in a hexagonal layout, that has to fill up a cylindrical volume with an
inner diameter of 150 mm, an outer one of 418 mm and a length varying from
120 cm to 150 cm. Due to the presence of the target pipe, this volume will be
divided in two halves in the (x, y) plane, with a gap of 42 mm in between.
A straw double–layer consists of 2 close–packed, staggered layers of tubes: the
position of the straws in the second layer has an offset of half straw diameter
(5.05 mm) compared to the upper one. Each layer consists of closed–packed
straws glued together on a reference plate with precise positioning (50 µm);
each straw is fixed to the neighbouring one along its length, through glue dots.

The proposed design will have, in radial direction, four double–layers par-
allel to the detector axis (z axis), four skewed double–layers with an angle of
±3◦ with respect to the beam axis to reconstruct the z coordinate of the tracks
and further two straight double–layers. Additional single–layers will be placed
in the outer region to approach the cylindrical shape (Fig. 2.9). Moving from
the inner to the outer of the detector, the number of straws per layer changes
from layer to layer; the total number of tubes is 4210 [8].

2.2.2.1 Mechanics

An external mechanical structure is needed to support and to precisely position
the straw tube double–layers. This should be rigid enough to support the
weight of the tubes and of the services (i.e. electronics, gas pipes, etc.), but
on the other side it needs to be extremely light not to increase too much the
material budget.
On the basis of the experience of experiments like FINUDA [9], COSY–TOF [7]
and BTeV [10], the foreseen mechanical structure is the one shown in Fig. 2.10.
In the hypothesis of using Aluminium for the realisation, the support will be
very light and characterised by the parameters in Tab. 2.2.
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Figure 2.9: Cross section of the general layout of the Straw Tube Tracker.
Not all straws are visible (blue marked region) for a better view of the details.
CAD drawing by D.Orecchini (SSE–LNF, Frascati).

Figure 2.10: A full size prototype of the foreseen mechanical frame to support
one half of the tracker. Design and construction by D.Orecchini (SSE–LNF,
Frascati).
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Table 2.2: Parameters of the mechanical frame.

Density 2.7 g/cm3

Young modulus 70 GPa
Radiation length (X0) 9 cm
Thermal expansion 24 ppm/◦C
Weight 8.2 kg

The straw double–layers will be fixed to the support frame through side–bands
(Fig. 2.11). They are light strips made of fiberglass 1 mm thick, gold–plated
on the straw tube side to allow the electrical grounding and with circular holes
with a diameter of 3.2 mm, except for two holes needed to give mechanical
precision to the double–layer, that have a diameter of 3.0 mm (Fig. 2.12).
The tubes are fixed to the side–bands with an elastic ring placed in the groove
of the end–plugs (Fig. 2.13). The double–layers are then fixed to the frame
through fixing pins inserted in two additional larger holes of the side–bands.

Figure 2.11: Prototype of the side–bands used to fix straw tubes double–layers
to the mechanical frame. Design by D.Orecchini (SSE–LNF, Frascati).

2.2.2.2 Full scale prototype

During the year 2009 the assembly of a first full–scale prototype has started
at the Jülich Research Centre (IKP–FZJ), to study the mechanical properties
and assembly techniques of the hexagonal straw layer stacks.
About 2000 straw tubes with the same characteristics of the straw tubes fore-
seen for PANDA have been assembled and glued together to double–layers. A
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2.2. The Straw Tube Tracker

NB. Side-bands: fiberglass gold-plated on straw tube side  

Figure 2.12: Sketch of the side–bands. The insets show in detail the more
precise holes with a diameter of 3.0 mm, used to give mechanical precision to
the module. Design by D.Orecchini (SSE–LNF, Frascati).

Figure 2.13: Straw Tube end–plug. A groove (indicated by the arrows) is
used to fix it to the side–bands by the insertion of an elastic ring. Design by
D.Orecchini (SSE–LNF, Frascati).

simple mechanical frame structure, consisting of two aluminium end flanges,
is used to hold the straw layers. The individual double–layers are positioned
and attached to the flanges by only two pins at both ends.
The (incomplete) setup, shown in Fig. 2.14, confirms that the pressurised straw
layers are self–supporting and no or only weak support structures for the STT
are needed.
The scheme of gas supply and electric readout will be developed next. Finally,
the mechanical precision of the setup will be measured by reconstructed tracks
of cosmic rays or proton beam at COSY [11].
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Figure 2.14: Assembly of a full–scale semi–barrel prototype. Construction by
IKP–FZJ.
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Part II

Study of a single straw tube
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Chapter 3
Physics performances of a single
straw tube

3.1 Basic principles of a single straw tube

Straw tubes are proportional counters consisting of a gas filled tube with a
conductive inner layer as cathode and an anode wire stretched along the cylin-
der axis.
A radial high electric field between the wire and the outer conductor separates
electrons and positive ions produced by charged particles traversing the gas
volume along their trajectories. The electrons of the primary ionisation drift
towards the anode, which is usually at positive voltage of a few kV, while the
ions drift towards the cathode.
Due to the high electric field strength near the thin anode wire, the drift-
ing electrons gain enough energy to ionise the gas molecules. The resulting
secondary electrons then produce tertiary ionisation and so on, leading to the
formation of an avalanche. Thanks to this process, the electric charge collected
on the anode is many orders of magnitude higher than that produced in the
primary ionisation. Depending on the high voltage set and the gas character-
istics, an amplification of about 104 − 105 of the primary charge is possible,
high enough to be read out by the electronics.

In this section, a short review of the main physics processes that govern
the functioning of a straw tube is presented. A more detailed description
of these processes and of the basic principles of such detector can be found in
Refs. [1, 2, 3, 4].
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Figure 3.1: Drift of an electron cluster in a straw tube. Figure taken from
Ref. [5].

3.1.1 Energy loss of charged particles

In order to understand the mechanisms that lead to the formation of electric
signals inside a straw tube, it is necessary to study the passage of charged par-
ticles through matter, i.e. the basic reactions which occur when they traverse
matter and the effects produced by these processes.

3.1.1.1 Heavy charged particles

Two main features characterise the passage of heavy1 charged particles through
matter: particle energy loss and deflection of the particle from its incident
direction; these effects are mainly caused by inelastic collisions with the atomic
electrons and elastic scattering from nuclei. Other processes are the emission
of Cherenkov radiation, nuclear reaction and bremsstrahlung.
The average energy loss per unit path length dE/dx can be described by the
Bethe–Bloch formula:

− dE

dx
= 2πNAr

2
emec

2ρ
Z

A

z2

β2

[
ln

(
2meγ

2v2Wmax

I2

)
− 2β2 − δ − 2

C

Z

]
(3.1)

where 2πNAr
2
emec

2 = 0.15354 MeVcm2/g; ρ is the density of the absorbing
material, whereas Z and A are its atomic number and weight; γ = 1/

√
1− β2,

where β = v/c, being v the velocity of the incident particle and z is its charge
in units of e. Finally, I is the mean excitation potential and Wmax is the
maximum energy transfer in a single collision. In addition, in this formula the
density effect correction δ and the shell correction C are taken into account.

1“Heavy” particles are particles heavier than electrons and positrons, i.e. muons with an
energy less than 10 GeV, pions, protons, α−particles and other light nuclei, for which the
energy loss by radiation is negligible. Particles heavier than these, like the heavy ions, are
excluded from this discussion.
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3.1.1.2 Electrons and positrons

Like heavy charged particles, electrons and positrons suffer as well a collisional
energy loss when passing through matter.
The ionisation is a statistic process that can be described by the Poisson law:

p(n) =
nk

k!
e−n, (3.2)

where n is the mean number of ion–electron pairs per cm and k is the actual
number.
Concerning collisions, they can be divided into two groups depending on the
energy involved:

• soft collisions, in which only excitations result: X + p→ X∗ + p;

• hard collisions, in which the transfer of energy is enough to cause ioni-
sation: X + p → X+ + p + e−. These recoil electrons are referred to as
δ-rays or knock-on electrons. If their energy is sufficiently high, they can
themselves transfer their energy, producing secondary ionisation.

To describe the basic mechanisms of collision loss for electrons and positrons,
the Bethe-Bloch formula of Eq. (3.1) must be modified in order to take into
account the small mass of the incident particle, which does not necessarily
remain undeflected during the collision. In addition, it must be considered
the indistinguishability of the two colliding electrons. These considerations
lead to the fact that the maximum transferable energy is Wmax = Te/2, being
Te the kinetic energy of the incident electron (or positron). Therefore, the
Bethe-Bloch formula becomes:

− dE

dx
= 2πNAr

2
emec

2ρ
Z

A

1

β2

[
ln

τ 2(τ + 2)

2(I/mec2)2
+ F (τ)− δ − 2

C

Z

]
, (3.3)

where τ is the kinetic energy of the particle in mec
2 units and

F (τ) = 1− β2 +
τ 2

8 − (2r + 1) ln 2

(τ + 1)2
for e−,

F (τ) = 2 ln 2− β2

12

(
23 +

14

τ + 2
+

10

(τ + 2)2
+

4

(τ + 2)3

)
for e+.

In addition to the collision and ionisation processes, in case of electrons and
positrons another mechanism comes into play: bremsstrahlung, which is the
emission of electromagnetic radiation arising from the scattering in the electric
field of a nucleus.
Therefore the total energy loss of electrons and positrons is composed of two
contributes: (

dE

dx

)
tot

=

(
dE

dx

)
rad

+

(
dE

dx

)
coll

. (3.4)
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At energies of a few MeV or less, bremsstrahlung does not contribute too much
to the energy loss; as the energy increases, it takes place with higher probability
until energy loss by radiation becomes comparable to energy loss by collision
and ionisation (Fig. 3.2). This energy value is called critical energy:(

dE

dx

)
rad

=

(
dE

dx

)
coll

. (3.5)

Figure 3.2: Radiation loss vs. collision loss for electrons in copper. For com-
parison, the dE/dx for protons is also shown (dotted line). Figure taken from
Ref. [1].

Up to now, discussions were related to the mean energy loss of charged particles
traversing a thickness of absorber. This mean value is affected by statistical
fluctuations which occur in the number of collisions suffered and in the en-
ergy transferred in each collision. According to Ref. [6] and references quoted
therein, these fluctuations are characterised by the parameter:

κ =
ξ

Emax
, (3.6)

where

ξ = 153.4
z2Z

β2A
ρd (3.7)

is the mean energy loss and Emax is the maximum energy transferred in an
atomic collision:

Emax =
2meβ

2γ2

1 + 2γme/m+ (me/m)2
. (3.8)
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κ takes into account both the projectile energy and the geometrical thickness
of the absorber. Depending on the values of the parameters, the absorbers can
be divided into (straggling condition):

a. heavy absorbers (κ > 10);

b. moderate absorbers (0.01 < κ < 10);

c. thin absorbers (κ < 0.01, collision number Ncoll > 50);

d. very thin absorbers (κ < 0.01, Ncoll < 50).

In cases (a) and (b), the energy straggling is well described by the Gauss and
Vavilov distributions, which also allow to calculate the finite variance of energy
and inverse momentum:

σ(E) =
ξ2

κ

(
1− β2

2

)
= ξEmax

(
1− β2

2

)
, (3.9)

σ

(
1

p

)
=

[
d

dp

(
1

p

)]2

σ2(p) =
1

p4
σ2(p) =

E2

p6
σ2(E). (3.10)

The cases of thin (c) and very thin (d) absorbers are treated with the Landau
and sub-Landau distributions. Because of the δ-electron emission, the tail of
the distribution of the energy lost by the particle is very long. This makes the
energy straggling variance infinite (for the Landau distribution) or so big (sub-
Landau model) that the uncertainty on the track momentum is meaningless;
also the full mean of the distributions is infinite.
There is no universally accepted solution to this problem: an option is to use
the truncated mean method. It consists in cutting the Landau distribution
fL(λ) to an area α, such that:

α =

∫ λmax

λmin

fL(λ)dλ, (3.11)

where λ is the Landau variable

λ =
E − Emed

ξ
− 1 + γ′ − β2 − lnκ, (3.12)

with γ′ = 0.577215 being the Euler’s constant; λmin ' −3.5. Different choices
of λmax correspond to different values of α and of the mean and σ of the
energy distribution; for some examples, see Tab. 3.1. For the definition of the
λ variable, it is possible to assume σ(E) = ξσα.
The problem of the strong fluctuation of the energy loss due to the long δ-ray
tail can be treated also with the Urban distribution [7]. According to this
model, the total energy loss in a certain thickness ∆x can be expressed as the
sum of the excitation and the ionisation energy.
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Table 3.1: Results of the integration of the Landau distribution (Eq. (3.11)).

λmax α µ σα
11.1 0.90 1.61 2.83
22.4 0.95 2.40 4.23
110 0.99 4.19 10.16
200 0.995 4.82 13.88
256 0.996 5.08 15.76
339 0.997 5.37 18.19
507 0.998 5.78 22.33
1007 0.999 6.48 31.59

First off, let’s introduce the excitation macroscopic cross sections Σ1 and Σ2

and the ionisation macroscopic cross section Σ3.

Σi = C
fi
Ei

ln (2mβ2γ2/ei)− β2

ln (2mβ2γ2/I)− β2
(1− r), i = 1, 2 (3.13)

where r = 0.4, I = 16Z0.9 eV and f1 = 1− f2, with:

f2 =

{
0 if Z ≤ 2
2/Z if Z > 2.

(3.14)

e1 and e2 are two fixed excitation energies of the model:

e1 =

(
I

ef22

)1/f1

, e2 = 10Z2 (eV). (3.15)

Finally, C = Emed/∆x, being Emed = (dE/dx) ·∆x, is the energy loss in the
absorber with thickness ∆x.
Concerning the ionisation macroscopic cross section, it is computed as:

Σ3 = C
Emax

I(Emax + I) ln ((Emax + I)/I)
r. (3.16)

Σ1, Σ2 and Σ3 are such that it is possible to get the total number of collisions
from the following relation:

Nc = (Σ1 + Σ2 + Σ3) ·∆x = N1 +N2 +N3 (3.17)

By defining the excitation energy:

Ee = Σ1e1 + Σ2e2 = N1e1 +N2e2 (3.18)

and the energy E3 lost by δ-electron emission:

E3 =
I(Emax + I)

Emax

1

E2
, I < E < (Emax + I), (3.19)
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3.1. Basic principles of a single straw tube

the total energy loss in a certain thickness ∆x is:

E = Ee + Σ3E3∆x = N1e1 +N2e2 +N3E3. (3.20)

In this equation e1 and e2 are constants, N1, N2 and N3 are sampled from the
Poisson distribution and E3 is sampled from the δ-ray ionisation energy Ei:

Ei =

N3∑
j=1

I

1− u(Emax/(Emax + I))
. (3.21)

Also in this case, the tail of the distribution is truncated; if δ is chosen as
truncation parameter:

δ =
I(Emax + I)

Emax

∫ Eδ

I

1

E2
dE =

(Emax + I)

Emax

Eδ − I
Eδ

, (3.22)

representing the considered fraction of the δ-ray energy distribution, then:

Eδ =
I

1− δEmax/(Emax + I)
. (3.23)

The mean and the variance of the truncated distribution can be calculated:

σ2(E) = 〈N1〉e2
1 + 〈N2〉e2

2 + 〈N3〉〈E3〉2 + σ2
δ (E3)〈N3〉, (3.24)

where:

〈E3〉 =
I(Emax + I)

Emax

∫ Eδ

I

1

E
dE =

I(Emax + I)

Emax
ln

(
Eδ
I

)
,

〈E2
3〉 =

I(Emax + I)

Emax

∫ Eδ

I

dE =
I(Emax + I)

Emax
(Eδ − I),

σ2
δ (E3) = 〈E2

3〉 − 〈E3〉2. (3.25)

The Urban approach is the one that has been used to sample the energy loss
in the fast simulation of the single straw tube (see Sec. 3.2.5).

3.1.2 Transport of electrons in gases

3.1.2.1 Thermal diffusion

In the absence of an electric field, the electrons generated in an ionisation
event lose their energy very quickly by colliding with the gas molecules, until
they reach the thermal equilibrium. According to the classical kinetic theory
of gases, the velocity of the charges is described by the Maxwell distribution:

v =

√
8kT

πm
, (3.26)
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where k is the Boltzmann constant, T is the absolute temperature and m is
the particle mass. The mean value of the thermal energy is:

εT =
3

2
kT ' 0.04 eV. (3.27)

If no other effects are present, the electrons diffuse isotropically outward from
their point of creation according to a gaussian distribution.
The equation:

dN

dx
=

N0√
4πDt

exp

(
− x2

4Dt

)
(3.28)

describes the fraction of charges dN which is present in the space element dx
at a distance x from the origin after a time t. N0 is the total number of charges
and D is the diffusion coefficient:

D =
2ε

3m
τ =

εk
m
τ, (3.29)

where ε is the electronic energy, εk is the so called characteristic energy (εk =
2ε/3) and τ is the mean time between collisions. The root mean square of the
distribution is given by:

σx =
√

2Dt (3.30)

σV =
√

6Dt (3.31)

in case of a linear or a volumetric diffusion, respectively. This means that an
electronic cloud, which is point–like at t = 0, at time t will be distributed like
a gaussian having a diffusion spread equal to σx or σV .

3.1.2.2 Drift

When an electric field is present, the electrons and ions start to diffuse anisotrop-
ically: the phenomenon can still be described by a Gauss distribution but it
is necessary to introduce two different diffusion parameters DL and DT , de-
scribing the diffusion in the longitudinal and transverse directions, respectively
(Fig. 3.3).
The anisotropic diffusion is just one of the effects of the electric field: in fact,
electrons and ions start to be accelerated and drift to the anode and the cath-
ode, respectively (Fig. 3.4).
Charge transport and thermal diffusion are now superimposed, so the move-
ment of the charges can be represented as the superposition of the average drift
movement, which has a certain velocity, and of the chaotic movement around
the average position, which leads to the charge cluster diffusion.
The mean velocity that characterises the drift motion is called drift velocity
(w = x/t); it is a linear function of the electric field and can be expressed by
the Townsend formula:

w =
e

2m
Eτ. (3.32)
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3.1. Basic principles of a single straw tube

Figure 3.3: If an electric field is present, two diffusion widths are introduced,
the longitudinal σL and the transverse σT ones with respect to the electric field
direction. Figure taken from Ref. [4].

Figure 3.4: The diffusing electron cloud drifts towards the anode wire under
the effect of an electric field. Figure taken from Ref. [4].

For electrons, the drift velocity w is of the order of 106 cm/s, whereas for ions,
since their mass is bigger than the electron one, w ∼ 104 cm/s. In addition,
the energy distribution will be no longer described by a Maxwell function and
the mean energy value will be higher then the thermal one (Eq. 3.27).
Not only the drift velocity, but also the diffusion coefficient is a function of the
electric field. By introducing the mobility:

µ =
w

E
, (3.33)

which is constant for a given gas (at fixed pressure and temperature), the
diffusion coefficient becomes:

D

µ
=
kT

e
. (3.34)

It is also possible to derive an expression for the diffusion spread σx, from
Eqs. (3.30) and (3.34):

σx =
√

2Dt =

√
2kT

e

x

E
, (3.35)

so it is mass independent, hence it is the same for all ions.
It is interesting to separate two different situations:

• in the case of a weak electric field or a quenching gas mixture, the energy
of the electrons produced in the primary ionisation does not increase
too much between one collision and the other. In this case, electrons
are in thermal equilibrium with the surrounding medium, their energy is
comparable with the average thermal energy of ∼ 0.025− 3 eV and their
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drift velocity is proportional to the intensity of the electric field. Gases
that act like this are usually known as “cold” gases for a given electric
field strength;

• on the contrary, there are gas mixtures such that the drift velocity sat-
urates and does not depend anymore on the electric field strength and,
therefore, on the distance to the straw anode. The advantage is that
many sources of systematic errors are removed and the track reconstruc-
tion is easier. The disadvantage is that the spatial resolution in the so
called “hot” gas mixtures is limited by the large diffusion and cannot be
better than ∼ 50 µm.

In the presence of a magnetic field, the drift properties change. First of all, the
small segment of motion between two subsequent collisions is deflected by the
Lorentz force, which is applied to each moving charge: the electrons generated
by the passage of a charged particle into the gas spiralize towards the anode,
as shown in Fig. 3.5. In particular, the global effect of the magnetic field is to
rotate the swarm of an angle θB (Lorentz angle) with respect to the direction
of the electric field (Fig. 3.6).

Figure 3.5: The red spots are the trajectories of the electrons inside the straw
tube, when both an electric and a magnetic field are present.

By writing the differential equations of motion of an electron moving in a gas
with random velocities and subject to crossed fields E and B, when a suitable
averaging is done on the velocities, one finds:

tan θB = ωτB, (3.36)

wB =
E

B

ωτB√
1 + ω2τ 2

B

. (3.37)
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Figure 3.6: Effect of a magnetic field B on the drift trajectory. θB is the
Lorentz’s angle. On the right, the electric and magnetic field are orthogonal.
Figures taken from [4].

In the previous forumlae, ω = eB/m is the Larmor frequency, τB is the time
between subsequent collisions in presence of a magnetic field and wB is the
drift velocity in the case B 6= 0.
The approximation that leads to Eqs. (3.36) and (3.37) consists essentially in
assuming that electrons freely move to a time τB, then having fully isotropic
elastic collisions. Such an averaging is not allowed whenever the electron energy
or the collision cross section are strong functions of the electric field; therefore,
these two equations describe properly the data only at low values of E.
To be precise, τB is a function of both the electric and the magnetic field
(τB = τB(E,B)) but in this case the approximation τB = τ ≡ τ(E,B = 0)
results to be enough accurate. From Eq. (3.32) and the knowledge of the drift
velocity at B = 0, τ can be derived.
With this assumption [8], Eqs. (3.36) and (3.37) reduce to:

tan θB = ωτ, (3.38)

wB =
w√

1 + ω2τ 2
. (3.39)

From the previous equations, it is clear that the drift velocity wB is reduced if
compared to the drift velocity w in the absence of the magnetic field.
Finally, the magnetic field has an influence also on the diffusion process: in
particular, it modifies the transverse diffusion coefficient, which results to be
smaller than DT (B = 0):

DT (B)

DT (B = 0)
=

1

1 + (ωτ)2
. (3.40)

On the contrary, the longitudinal diffusion coefficient does not change:

DL(B) = DL(B = 0). (3.41)
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3.1.3 Gas amplification

In a region where the electric field is uniform, the kinetic energy of an elec-
tron from primary ionisation increases until it is high enough to ionise a gas
molecule.
If n is the number of electrons in a certain position, after a distance dx the
increase in the electron number is:

dn = nαdx, (3.42)

where α, known as first Townsend coefficient, is the inverse free mean path
(λ) for ionisation, i.e. the number of electron–ion pairs produced in a unitary
length. By integrating the previous equation:

n = n0e
αx, (3.43)

being n0 is the number of primary electrons. Hence, the gain or multiplication
factor M is given by:

M =
n

n0

= eαx. (3.44)

This formula is valid only if the electric field is uniform; if it is not the case,
like in a drift tube, the disuniformity itself allows to reach higher values of the
multiplication factor. In this case, α = α(x) and the gain is given by [10]:

M = exp

(∫ x

a

α(x)dx

)
, (3.45)

where a is the anode wire radius and the integral is along the whole drift path.
It is possible to find a good approximation for M if we determine the region
rcr where the avalanche develops. Assuming that the electric field inside the
straw depends on r:

E(r) =
U0

ln (b/a)r
, (3.46)

where U0 is the anode voltage, a and b are the anode and cathode radii respec-
tively, the average ionisation energy2 becomes:

Wi = eE(rcr)λ(rcr) =
eU0

ln (b/a)

λ(rcr)

rcr
. (3.47)

Hence:

rcr =
eU0λ(rcr)

Wi ln (b/a)
. (3.48)

Remembering that α = λ−1 and taking into account Eq. (3.48), the mean gain
can be written as:

M = exp

(∫ rcr

a

dr

λ(r)

)
. (3.49)

2The ionisation energy Wi is the energy required to produce one electron–ion pair in the
gas. For a ArCO2 (90/10) mixture, Wi ∼ 26.7 eV.
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3.2 Simulation of the physics processes

A detailed simulation of the charge generation and collection in a single straw
tube has been implemented in C++ and will be described in detail in this
section.

3.2.1 The charge released into the tube

First of all, for each incident particle it is necessary to sample from the expo-
nential distribution the point along the particle trajectory where an electron
cluster is generated.
From the sampled number of electrons per cluster and from the number of
clusters/cm (Fig. 3.7.a), the number of free electrons generated from a number
of clusters is obtained. This number follows the Poisson distribution, whereas
the number of clusters/cm is assumed to be 25 for Ar and 35.5 for CO2 at
NTP [3].
In order to perform a reliable simulation, it is crucial to know the cluster size
distribution (Fig. 3.7.b), i.e. the number of electrons per cluster: the values
used in the simulation are taken from the theoretical calculations for Ar of
Ref. [11] and from the experimental data on Ar and CO2 of Ref. [12].
The comparison with some available results in gas has demonstrated that this
choice reasonably agrees with the experimental data, as shown in Fig. 3.8.
The energy lost by the projectile along its whole path (Fig. 3.7.c) is calcu-
lated by taking into account the mean value of the energy spent to create an
electron–ion pair; the assumed values are 27 eV for Ar and 33.5 eV for CO2

[3].
A further check has been performed by comparing the energy loss in the tube,
for a variety of projectiles and energies, with the Urban model (Sec. 3.1.1.2),
which is used in GEANT3 [14] and GEANT4 [15] in the case of gaseous thin
absorbers. The experimental results for 1 GeV/c pions traversing 1 cm ArCO2

(90/10) at NTP, reported in Fig. 3.9, show good agreement with the simula-
tion.

3.2.2 The drift process from GARFIELD

The single tube response is simulated in detail by the GARFIELD code [16],
which needs as input the tube dimensions, wire radius, high–voltage, gas mix-
ture and magnetic field, since they determine the gas behaviour.
By taking into account all the physics processes that take place in a straw
tube when a charged particle traverses it and the properties of the gas mix-
ture (“cold” or “hot”) as explained in Sec. 3.1.2.2, GARFIELD is able to derive
the drift velocity of the particle. This is shown in Fig. 3.10 as a function of
the distance from the wire for different gas mixtures (ArCO2 with different
percentages of the CO2): it is clear that the increase of the CO2 percentage
in Ar tends to cool the gas, with a corresponding stronger dependence of the
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Figure 3.7: Results of the single tube simulation for a 1 GeV/c pion in a 2
atm pressure straw tube with a ArCO2 (90/10) gas mixture. (a) poissonian
distribution of the number of clusters; (b) cluster size distribution calculated
as discussed in the text; (c) energy loss in a tube (blue dashed histogram)
compared with the sharper Landau distribution (black histogram); (d) charge
collected on the wire assuming a multiplication mechanism from the Polya
distribution. By multiplying the number of clusters with the mean number
of electrons per cluster, a number of ionised electrons (from primary and sec-
ondary ionisation) of about 200 is obtained.

velocity from the wire distance. This effect could be recovered by an accurate
self–calibration (see Sec. 3.2.4); on the other hand, it requires a more precise
control of temperature and pressure.
GARFIELD takes also into account the effects induced by electric/magnetic
fields on the particles trajectories. Typical time vs. distance curves for the
hot ArCO2 (90/10) mixture, with and without magnetic field, are reported in
Fig. 3.11, where the increase of the drift time due to the field is evident.
Another important input to the simulation are the transverse and longitudi-

72



3.2. Simulation of the physics processes

Figure 3.8: Comparison between the simulation of the energy loss in a ArCO2

layer with a thickness of 1.5 cm (full line) and the experimental values reported
in Ref. [13] (dotted line).
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Figure 3.9: Energy loss of a 1 GeV/c pion traversing a 1 cm of ArCO2 (90/10)
gas mixture at NTP. Full line: Urban distribution; dashed line: specific simu-
lation model; dotted line: Landau distribution.

nal diffusion curves, due to the thermal spread of the electron clouds during
the drift. At this point, since the free electrons have been created at certain
positions inside the straw tube, the GARFIELD diffusion curves are used to
disperse them both transversally and longitudinally; in addition, the arrival
time on the anode is computed by using the distance to time curves.
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Figure 3.10: Drift velocity vs. wire distance in a straw tube of 0.5 cm radius,
operated at 2150 V, 2.2 bar pressure and 2 T magnetic field for different gas
mixtures: (a) ArCO2 (90/10), (b) ArCO2 (80/20).
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Figure 3.11: Drift time vs. wire distance in a straw tube with 0.5 cm radius
filled with ArCO2 (90/10) operating at 2150 V voltage and 2.2 bar pressure:
(a) without magnetic field; (b) with magnetic field of 2 T.

Finally, it is also necessary for GARFIELD to know the gas amplification, that
is the multiplication factor of the avalanche which is formed within a few wire
radii from the wire (Sec. 3.1.3).
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3.2.3 The electrical signal

The arrival of the electrons on the anode gives rise to an electric charge: in
the simulation, this is obtained by sampling from a Polya distribution having
the gain or multiplication factor (∼ 103 − 104) as mean value [10]. Then, by
summing the signals generated by all electrons, the total charge is obtained,
as shown in Fig. 3.7.d.
It is also possible to reproduce the signal shape by taking into account the
electron arrival times and assigning a gaussian–shaped electrical response to
each charge multiplication. In addition, in the signal simulation a white noise
component equal to 3% of the primary signal peak value has been added.
Some examples are shown in Fig. 3.12, where two typical signals are shown.
The first one (left) is generated by a track passing 1 mm far from the wire: in
this case, the irregular structure of the signal is due to the dispersed cluster
arriving times; in such a case, the choice of the discrimination technique is
crucial for a good time resolution. The second signal in the figure (right) is
produced by a track going 4 mm far from the wire: the cluster arrival is now
more concentrated and the signal structure appears more regular.
These examples show the importance of the electronic treatment of the signal
and of the discrimination technique to be used in order to obtain the drift
time. Two discrimination techniques have been considered in the simulation:
fixed (F) and constant fraction (CF) thresholds. The F threshold is set to ∼
5% of the mean primary electron value, i.e. 10 primary electrons in the 2 bar
case (see Fig. 3.7); this is compatible with earlier studies [17, 18]. The CF
threshold is set to 5% of the peak value of the current signal.
In the following, if not explicitly specified, the displayed results are obtained
with the standard F threshold.
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Figure 3.12: Straw tube signals simulated for a track passing near (left) and
far (right) from the anode.
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3.2.4 Simulation of the self–calibration procedure

The primary information from the tube is the drift time distribution of the
arriving signals, that is the number of tracks dn traversing the tube within the
time interval dt. A typical drift time distribution, in the case of a parallel and
uniform illumination of the tube, is shown in Fig. 3.13 (left).
The self–calibration method has been simulated: it exploits the properties of
this distribution.
Since the track density is constant over the tube diameter, it is possible to
write:

dn

dr
=

Ntot

Rtube

, (3.50)

where n is the number of tracks, r is the wire distance, Ntot is the total number
of tracks and Rtube the tube radius. The number of tracks in a time interval
can be obtained directly from the above relation:

dn

dt
=

dn

dr

dr

dt
=

Ntot

Rtube

dr

dt
. (3.51)

By integrating the time spectrum up to t, the space–time relation r(t), shown
in Fig. 3.13 (right), is obtained:

r(t) =
Rtube

Ntot

∫ t

0

dn

dt′
dt′. (3.52)

Figure 3.13: Simulation of a typical TDC spectrum of a single tube uniformly
illuminated (left) and space–time relation r(t) (right) obtained with the self–
calibration method of Eq. (3.52).

After this step, the method requires the correction of the systematic error
due to the threshold level, that appears as an offset in the histogram of the
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residuals3 of the reconstructed distance. In the simulation, a time offset t0
has been adjusted until the mean value of this distribution approaches zero
(Fig. 3.14.a).
After applying the time offset correction (t − t0) to all the measured times
of the drift time spectrum, the r(t) curve is corrected and it is possible to
proceed with the derivation of the simulated resolution curve. This is usually
intended as the standard deviation of the residual distribution as a function of
the distance of the track to the wire (drift distance r), as shown in Fig. 3.14.b:

σ =

√∑
(r − 〈r〉)2

N
. (3.53)

The spatial resolution can also be obtained as the width of the average absolute
residuals as a function of the drift distance (Fig. 3.15):

σ =

∑ |r − 〈r〉|
N

. (3.54)
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Figure 3.14: Residuals distribution (a) and spatial resolution obtained with
Eq. (3.53) (b) after the time offset correction (see text). The bold line in (b)
is the smoothing polynomial.

This simulated procedure corresponds, during the real calibration, to have an
accurate knowledge of the relationship between the measured drift time and
the minimum approach distance of the particle trajectory to the wire. The
mean value of the track residuals is then used to correct the measured drift
times until the residual distribution is symmetric about zero.

3The residuals are calculated as the difference between the reconstructed and true dis-
tance.
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Figure 3.15: Spatial resolution obtained with Eq. (3.54) as a function of the
drift distance, in presence of a magnetic field B = 2 T.

3.2.5 Full and fast simulation

Two kinds of simulation have been implemented. The first one is called “full”
simulation, since it reproduces the time output from the drift tube and the
ADC4 response on the charge collected starting from the primary cluster for-
mation as discussed in the sections above. The inconvenient of this option is
that the time required for each event is quite long, so a faster option (“fast”
simulation) has been also implemented.
In the second case, the drift radius is determined in a realistic way by sampling
from a Gauss distribution having the true wire distance obtained from the MC
truth as mean value. The sigma of the distribution is equal to the spatial res-
olution extracted from Fig. 3.14.b or 3.15 in correspondence of a drift distance
equal to the true drift radius.
Concerning the charge collected on the wire, it is simulated by sampling the en-
ergy loss from the Urban distribution (see Sec. 3.1.1.2) as in Fig. 3.9, avoiding
the charged cluster generation. In this way, the time spent in the tube response
simulation results to be negligible when compared with the other part of the
software.

4Analog–to–Digital Converter.
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Chapter 4
Test measurements with the
STT prototype in Jülich

In order to develop calibration techniques for the PANDA central Straw Tube
Tracker, to understand signal formation, to optimise matching of the straws
with the electronics and to investigate the straws response to β particles and
the potentiality of the tracker in particle identification based on energy–loss
measurements, a laboratory setup has been designed and constructed by the
Institut für Kernphysik of the Jülich Research Centre.
A short description of the prototype and of the analysis performed with dedi-
cated algorithms on the collected data, as well as the results obtained, will be
presented in detail in this chapter.

4.1 Experimental setup

The setup is shown in Fig. 4.1: it consists of a dense array of 128 PANDA–type
straw tubes, arranged in four double–layers of 32 straws each. The tubes, with
an aluminised mylar wall 30 µm thick, are 150 cm long and have a diameter of
10 mm; in the centre of the tubes, a 20 µm anode wire is stretched. The tubes
can be filled with different gas mixtures, like ArCO2 or ArC2H6 (see the detail
of the gas manifolds in Fig. 4.2), and can be operated at different conditions
of high voltage and pressure.
In addition, a drift chamber with two–dimensional readout for particle track-
ing, a hybrid drift chamber with a GEM amplification stage for clustering
investigations and a small straw tube detector (24 cm long, 4 mm diameter)
are included [1]. Finally, two scintillators are placed below the double–layers
and used for triggering time to select the signal events when a coincidence
occurs.
Half of the channels are equipped with the amplifier–discriminator chip CMP161,

1The CMP16 board is based on an analog–to–digital converter chip with 16 channels
which transforms analog signals to LVDS (Low–voltage Differential Signaling) standard. It
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4. Test measurements with the STT prototype in Jülich

Figure 4.1: Straw tube prototype used at the Institut für Kernphysik at
Forschungszentrum-Jülich. Design and construction by IKP-Jülich.

connected with the 64 channels time–to–digital converter based on the F1 TDC
chip of the type used at WASA-at-COSY [3].
The anode signals of the other 64 channels are processed by modular fast cur-
rent amplifiers with 8 ns rise time; thus, individual cluster or groups of few
overlapping clusters created along the ionised track became visible in the signal
structure.
The flash charge–to–digital converters FQDC analyse signals in terms of charge
and pulse–height and disentangle signals into components originating from
ionised clusters or groups of clusters in gaseous detectors.
The FPGA2 controlling the readout of the QDC module are programmed for
high flexibilty to permit also total readout in the “oscilloscope mode” and to
record single spectra in a self triggering mode for calibration measurements
with Fe-55 β+ sources. In view of the limited number of oscilloscope channels
several amplifiers were fed via analog OR into the oscilloscope and then the
data were transferred to a computer.
The actual number of firing straws in each event can be deduced from a mul-
tiplicity signal delivered by the 8-channel discriminator [4].

can run at very high speed at reduced electromagnetic noise. The transfer characteristics of
the amplification and discrimination are presented in [2].

2Field Programmable Gate Array.
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4.2. Event samples

Figure 4.2: Detail of the prototype shown in Fig. 4.1.

4.2 Event samples

As already mentioned in the previous section, the prototype has been operated
with ArCO2 (90/10) or ArC2H6 (80/20), at different conditions of high voltage
(from 1.5 to 1.8 kV) and absolute pressure (from 1.3 to 2 bar).
Data have been mainly recorded from cosmics events; in addition, some mea-
surements have been performed with radioactive sources, like Sr-90 and Fe-55,
in order to study the possibility to perform particle identification by dE/dx
measurements.

Since the Straw Tube Tracker of the PANDA experiment will be operated
with ArCO2 at 1 bar overpressure, data sets from the prototype under the
same conditions have been studied. In the following, detailed results will be
presented for data collected at 1.7 kV; then, they will be compared with the
results obtained at 1.8 kV.

4.3 Straw tube calibration

4.3.1 Fit of TDC spectra

Fig. 4.3 shows an example of the time spectrum of a uniformly illuminated
tube. In this figure, time is expressed in TDC counts and runs from right
to left. In order to get the time spectrum, TDC counts are converted into
seconds, taking into account that one channel corresponds to 130 ps, and time
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Figure 4.3: Example of a raw TDC spectrum. On the x axis, the time is
expressed in TDC counts and runs from right to left.

is reversed; finally, the spectrum shown in Fig. 4.4 is obtained.
The analysis of the individual tube time distributions allows the monitoring
of the data quality: the minimum and the maximum drift times, t0 and tmax,
correspond to a track traversing the tube close to the wire and to the cathode
wall, respectively. The value of t0 depends on delays of the signal cables and
front–end electronics as well as on discriminator threshold and HV setting.
Nearby tubes sharing the same front–end electronics are expected to have very
similar values of t0; on the contrary, the drift time ∆t = tmax− t0 depends only
on the drift properties of the tubes. The number of events outside the drift
time window gives an estimate of the random, constant noise level over time
range (Fig. 4.3) [5].
For each tube, the parameters of the drift time distribution are derived from
a fit performed with the following empirical function [5, 6, 7]:

dn

dt
= P1 +

P2 [1 + P3 exp((P5 − t)/P4)]

[1 + exp((P5 − t)/P7)] [1 + exp((t− P6)/P8)]
, (4.1)

where P1 is the noise level, P2 is a normalisation factor, P3 and P4 are related
to the shape of the distribution, P5 and P6 are the values of t0 and tmax. P7

and P8 describe the slope of the leading and trailing edge of the distribution,
so they are indicators of the drift tube resolution close to the wire and to the
tube wall, respectively. In Fig. 4.4 the fit function is also shown (green line).
In order to do a unique calibration for all the tubes, their time spectra must
have approximately the same shape and the same drift time ∆t. A quality
check on the uniformity of the tubes, as well as on the quality of the fit, was
done by looking at the distributions of the parameters of the fits, shown in
Fig. 4.5. Only the tubes satisfying the following conditions were considered:
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Figure 4.4: Example of a fitted TDC spectrum. The light green line is the fit
of the distribution; the violet vertical lines correspond to the t0 and tmax values
determined by the fit. The dark green horizontal line indicates the noise level.

a. noise level P1 < 4 Hz;

b. P3 < 15 ns;

c. 30 ns ≤ P4 ≤ 120 ns;

d. 240 ns ≤ t0(P5) ≤ 265 ns;

e. 380 ns ≤ tmax(P6) ≤ 440 ns;

f. 140 ns ≤ ∆t ≤180 ns;

g. risetime 2 ns ≤ P7 ≤ 6 ns;

h. χ2/NDF < 5.

4.3.2 r(t) calibration curve

After this selection, all the spectra of the chosen tubes were corrected by their
specific time offset t0 and their noise level was subtracted; then, they were
added into a sum spectrum, each in its ∆t range.
Under the hypothesis of a uniform illumination of the tube and a constant
efficiency over the tube volume, the isochrone radius – drift time relation
(r(t) relation in the following) already presented in Chap. 3 can be obtained
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Figure 4.5: Parameters obtained from the fit of the drift time spectra: (a) noise
level P1, (b and c) the two parameters (P3 and P4) that describe the shape of
the spectra, (d) t0 (P5) and (e) tmax (P6), (f) ∆t = tmax − t0, (g) risetime of
the leading edge P7 and (h) the reduced χ2 of the fit. The dashed lines mark
the cuts applied to the parameters (see text).
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4.3. Straw tube calibration

(Eq. (3.52)). In particular, taking into account the finite TDC resolution (bin
size) and the wire radius Rwire, it becomes:

r(ti) =

∑it
i=1Ni

Ntot

· (Rtube −Rwire) +Rwire. (4.2)

Rtube and Rwire are the tube and wire radii, respectively; Ntot is the sum of all
bin entries Ni.
The obtained space–time relation r(t) is shown in Fig. 4.6.
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Figure 4.6: Isochrones radius – drift time relation (r(t)), parametrised using a
combination of Chebyshev polynomials of the first kind, up to the fifth order.

It has been parameterised using a combination of Chebyshev polynomials of
the first kind up to the fifth order:3

r(t) = p0 +p1t+p2(2t2−1)+p3(4t3−3t)+p4(8t4−8t2 +1)+p5(16t5−20t3 +5t).
(4.4)

Once the space–time relation is known, the isochrone radius of a certain tube
is computed by substituting in Eq. (4.4) the measured drift time. This is
calculated by subtracting from the measured drift “raw” time the time offset
t0 of that tube, obtained from the fit of Eq. (4.1).

3The Chebyshev polynomials of the first kind are defined by the recurrence relation:

T0(x) = 1,
T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x). (4.3)
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4. Test measurements with the STT prototype in Jülich

4.4 Autocalibration

Once the calibration curve has been derived, it is possible to proceed with the
track reconstruction.
In order to perform a good track fitting, it is necessary to know with high
precision the relation between the measured drift time and the distance of
closest approach of the particle trajectory to the wire. This implies an ac-
curate knowledge of the r(t) relation, that can be achieved with an iterative
procedure called autocalibration, since it makes use just of the information
from the tubes under investigation.
The autocalibration works as follows: at each step of the procedure, the r(t)
relation derived in the previous iteration is used to convert the measured drift
times into drift radii, that will be used in the track fitting. At the first step,
the r(t) relation obtained directly from the integration of the drift time spectra
(Sec. 4.3.2) is used.
Once a track candidate has been identified (Sec. 4.4.1), the track is recon-
structed through the steps described in Sec. 4.4.2 and the best fit line with
parameters a and b is found.
For each tube of the pattern associated with a track, the residuals ∆ri =
rifit(a, b)− riraw (Eq. (4.15)) are then computed and represented as a function
of the N bins the drift time interval is divided into.
If the r(t) relation was exact, the average residuals would be zero at all radii;
deviations from zero mean miscalibrations in the r(t) relation, which is then
directly corrected by using the average deviations themselves.
This procedure is iterated until the corrections become less and less relevant;
at this point, the r(t) relation has converged to a stable and“optimal” solution.
The effects of the autocalibration procedure will be shown in Sec. 4.4.3.
In the following, the steps performed at each iteration will be analysed in
detail.

4.4.1 Pattern recognition

Since the events under study were generated by cosmic rays and we were not
so interested in the reconstruction efficiency but in the resolution, as a first
approximation only the events with one track can be considered.
In order to identify these events, a first cut has been applied on the number of
hits: since the prototype consists of layers with 16 tubes each, the maximum
possible number of hits generated by a single track is 32, in case of a vertical
track hitting all the tubes of two adjacent layers. Events with more than 32
hits have been rejected, since they are produced in cosmic showers or they
come from electronic noise.
In this way, “good” events are selected; nevertheless, they might contain also
“spurious” hits generated by secondary particles or due to the electronic noise:
these hits can be eliminated by applying further cuts, as described in the
following.
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4.4. Autocalibration

4.4.2 Track reconstruction

The observables measured by the straw tubes are not the (x, y) coordinates
of the particle hits, but the (x, y) coordinates of the firing wires and the drift
times. From these information, the (x, y) hit coordinates need to be extracted.
To do this, the track fitting procedure is performed through several steps; they
are:

1. a pre-prefit;

2. a prefit using Minuit [8];

3. the Intersection Finder;

4. a refit, using again a Minuit minimisation.

4.4.2.1 Pre-prefit

The pre-prefit step has been introduced in order to give Minuit the input
parameters it requires to be initialised.
For each track, it is performed over the centers of the N firing tubes (i.e. the
wires positions (xi, yi)). It consists in the minimisation of the perpendicular
distance of these points from the best fit line y = a+ bx (Fig. 4.7).

Figure 4.7: Perpendicular distances to be minimised in the pre-prefit.

The function to be minimised in the pre-prefit is:

R⊥ =
N∑
i=1

di (4.5)

where di is the distance of the centre of the tube with coordinates (xi, yi) to
the prefit line y = a+ bx:

di =
|yi − (a+ bxi)|√

1 + b2
. (4.6)
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The sum is over the N hits belonging to the considered track.
Since the absolute value of the function in Eq. (4.5) does not have continuous
derivatives, minimising R⊥ is not amenable to an analytic solution; the square
of the perpendicular distance R2

⊥ is minimised instead:

R2
⊥ =

N∑
i=1

d2
i =

N∑
i=1

[yi − (a+ bxi)]
2

1 + b2
. (4.7)

The minimisation of Eq. (4.7) can be solved in closed form [9]. R2
⊥ has a

minimum when:
∂R2
⊥

∂a
=

2

1 + b2

N∑
i=1

(a+ bxi − yi) = 0 (4.8)

and

∂R2
⊥

∂b
=

2

1 + b2

N∑
i=1

[yi − (a+ bxi)](−xi) +
N∑
i=1

[yi − (a+ bxi)]
2(−1)(2b)

(1 + b2)2
= 0.

(4.9)
After a bit of algebra, the result is:

b2 +

∑N
i=1 y

2
i −

∑N
i=1 x

2
i + 1

N

[(∑N
i=1 xi

)2

−
(∑N

i=1 yi

)2
]

1
N

∑N
i=1 xi

∑N
i=1 yi −

∑N
i=1 xiyi

b− 1 = 0. (4.10)

By defining:

B =
1

2

Sxx − Syy
Sxy

(4.11)

where

Sxx =
N∑
i=1

x2
i −Nx2,

Syy =
N∑
i=1

y2
i −Ny2,

Sxy =
N∑
i=1

xiyi −Nxy,

the quadratic formula of Eq. (4.10) gives:

b = −B ±
√
B2 + 1. (4.12)

a is then found by using:
a = y − bx. (4.13)

From Eq. (4.12) we get two track hypotheses: the closest to the experimental
points is chosen (Fig. 4.8).
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Figure 4.8: In this figure, the pre-prefit line (violet) is drawn; the red dots are
the centers of the firing tubes. The cyan and the blue tubes are excluded from
the calibration and the track reconstruction, because they are noisy (cyan) or
their drift time spectra do not fulfill the requirements in Sec. 4.3.1.

After the pre-prefit, a first cut is applied to check the quality of the events:
event by event, the distances of each hit to the pre-prefit line are computed
and mediated over the number of hits of that event; if the mean distance is
larger than 5 mm, the event is identified as noisy and is rejected. This cut
value has been chosen in order for the cut to be very loose, so that not too
many events are eliminated in this first step of the analysis: in fact, 5 mm is ∼
20 times the mean distance to the pre-prefit line of the hits belonging to one
event.
In addition, another cut on the single hits is applied: for each hit of an event,
the distance to the pre-prefit line is computed with Eq. (4.6). If this distance
is larger than 0.9 cm (∼ 40 times the mean distance of the single hits to the
pre-prefit line), that hit is rejected and the pre-prefit step is performed again
with N − 1 hits.
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4. Test measurements with the STT prototype in Jülich

4.4.2.2 Prefit

The parameters a and b found in the pre-prefit are then used as starting pa-
rameters for Minuit. The function to be minimised in order to find the best
fit solution is [10]:

χ2 =
1

N − 2

N∑
i=1

(
∆ri(a, b)

σri,raw

)2

, (4.14)

where ∆ri is the residual of the ith tube, defined as:

∆ri = ri,fit(a, b)− ri,raw =
|yi − (a+ bxi)|√

1 + b2
− ri,raw. (4.15)

In this equation, ri,fit is the distance of closest approach of the best fit line
found in the previous step to the centre of tube i. ri,raw indicates the radius
computed using the r(t) relation with the corresponding measured drift time
tidrift (Eq. (4.4)). σri,raw is the error associated to the drift radius and is cal-
culated with the sixth order polynomial that fits the experimental data (filled
box symbols) of Fig. 4.9. This figure shows the spatial resolution of single
straws of the Straw Tracker of the COSY–TOF experiment [11], and it has
been used in the prefit as starting input resolution.
Notice that the Minuit minimisation in a and b is non–linear because of the
term

√
1 + b2 in the denominator of Eq. (4.15).

If the Minuit fit is successfull, we get a new track hypothesis: the green line in
Fig. 4.10.
After the prefit step, another check on the goodness of the hits is performed:
for each event, the residuals of Eq. (4.15) are calculated for each hit belonging
to the track. If ∆ri > 0.2 cm, the hit is rejected and the prefit is repeated
without that spurious hit.
Fig. 4.11 shows an example of prefit repeated once a hit (or more than one
hit) has been identified as not generated by the primary particle along its
path through the straw tube. The black line in the figure is the new track
hypothesis, obtained by excluding from the fit the tubes considered as not
belonging to the track pattern (the ones with the red drift circles). Only the
dark green circles have been used for the tracking.

4.4.2.3 Intersection Finder

After the Minuit fit, we can look for the real track points on the drift radii.
This step is called intersection finder.
To better explain the coordinates finding procedure, let’s consider only one
tube: up to now, the coordinates (xi, yi) of its wire are known, as well as the
drift radius rdrift (the red circles in Fig. 4.12) and a first guess of the best fit
line (the green line in the figure).
The perpendicular to the prefit line passing through the wire coordinates (black
dotted lines) intercepts the drift circumference in two points: the closest to the
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Figure 4.9: Spatial resolution σr of single straws obtained from the COSY–
TOF experiment [10]. The data (filled box symbols) include a track reconstruc-
tion using at least 4 straws. The simulation (line) describes tracks through a
single straw, based on the GARFIELD program package [12].

prefit line is chosen and set to be the (x, y) hit of the track (blue markers).
The same procedure is repeated for all the track points and a refit can be
performed over the new found points.

4.4.2.4 Refit

Once the “real” point coordinates where the track passed are known, they can
be used to perform a refit. It is done again with Minuit, which has to minimise
the following χ2:

χ2 =

Nhits∑
i=1

d2
i

σ2
di,tot

, (4.16)

where

d2
i =

[
yi − (a+ bxi)√

1 + b2

]2

(4.17)

is now the distance of closest approach of the track point (xi, yi) to the prefit
line. (xi, yi) are the points on the drift circles found in the intersection finder
step.
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Figure 4.10: In this figure, the pre-prefit (violet) and prefit (green) lines are
drawn. The red circles are the drift circles. The cyan and the blue tubes are
excluded from the calibration and the track reconstruction (see Fig. 4.8).

Both xi and yi are affected by an error; the combination of the two gives the
total error σdi,tot of di, associated to each track point:

σ2
di,tot

=
σ2
i,y

1 + b2
+
b2σ2

i,x

1 + b2
. (4.18)

σi,x and σi,y are the projections of the error on the drift radius σr onto the two
axes:

σi,x = σr,i cosα =
σi,r√
1 + b2

, (4.19)

σi,y = σi,r sinα =
bσi,r√
1 + b2

. (4.20)

In these two equations, α = arctan b, being b the angular coefficient of the
fitting line found in the prefit step. So:

σ2
di,tot

=
2b2σ2

i,r

(1 + b2)2
. (4.21)
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Figure 4.11: In this figure, the pre-prefit (violet) and the prefit (green) lines
are drawn. The black line is the track hypothesis obtained by performing the
tracking without the hits identified as spurious; for this fit, the red drift circles
are excluded and only the dark green ones are considered. (For the cyan and
blues tubes, the same considerations of the previous figures are valid.)

With these arrangements, the χ2 Minuit has to minimise is the following:

χ2 =
1 + b2

2b2

N∑
i=1

[yi − (a+ bxi)]
2

σ2
i,r

. (4.22)

The reason for this refit is that the function in Eq. (4.14) is not the sum of
standard gaussian variables, as a standard χ2 should be:

χ2 =
∑
i

(xi − µ)2

σ2
i

. (4.23)

First off, this is due to the presence of the parameter b in the denominator;
then, the variable ∆ri is not a linear function of the two coordinates (xi, yi).
On the other side, the quantity in Eq. (4.22) is closer to a standard χ2 than the
one in Eq. (4.14); nevertheless, the presence of the term (1 + b2)/2b2 requires
a non linear minimisation in this case too.
The choice to perform the refit is justified by the results obtained.
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Figure 4.12: In this figure, the pre-prefit (violet) and the prefit (green) lines
are drawn; the red circles are the drift circles. For each firing tube, the black
dotted line goes through the centre of the tube and is perpendicular to the
prefit line. The blue marker indicates the (x, y) coordinates of the intersection
point closest to the prefit line and chosen as hit after the procedure.

In Fig. 4.13, the mean residual distributions obtained at the first iteration
when performing the prefit (a) and the refit (b) are shown: they are very
similar. In addition, no improvements from prefit to refit are evident in the
parameters of the two gaussians fitting each distribution and reported in the
statistic boxes of the figure (in particular: p3, p4, p5 in (a) and p0, p1, p2 in (b)
are the parameters of the Gauss curves that fit the peaks of the distributions).
Different remarks concern the resolution curves of Fig. 4.14 (they will be de-
scribed in detail in Sec. 4.5.1 and 4.5.2): they are very similar in the whole drift
distance except for the region close to the wire (drift distance smaller than 1
mm), where the resolution values obtained by performing both the prefit and
the refit are better. Hence it has been chosen to perform both the prefit and
the refit.
Once the refit is done, the final best fit line (represented by the blue line in
Fig. 4.15) is obtained.
At this point, another cut on single hits is applied in order to exclude the ones
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Figure 4.13: Comparison of the mean residual distributions obtained at the
first iteration by performing only the prefit (a) and also the refit (b). Each
distribution has been fitted with two Gauss functions; the fit parameters are
reported in the statistic boxes: the parameters of the gaussian that fits the
peak of the distributions are p3, p4, p5 in (a) and p0, p1, p2 in (b).
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Figure 4.14: Comparison of the spatial resolution curves obtained at the sixth
iteration by performing only the prefit (a) and also the refit (b).

produced by δ electrons. For each event, the residual (Eq. (4.15)) of the single
hit is computed: if it is larger than 0.2 cm (∼ 10 times the σ of the mean
residual distribution, see Fig. 4.13), the hit is rejected.
The refit step is performed again on the remaining hits and a new track hy-
pothesis is found.
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Figure 4.15: In this figure, the pre-prefit (violet), the prefit (green) and the
refit (blue) lines are drawn. The dark green circles are the drift circles used
for the fit; the red ones are excluded since they are identified as belonging to
spurious hits. The blue markers are the space points on the drift circles.

4.4.3 r(t) recalibration

Once the track has been reconstructed and the parameters a and b of the best
fit line are known, it is possible to compute the residuals for each hit belonging
to the track, as in Eq. (4.15).
Fig. 4.16.a shows the distribution of the residuals and Fig. 4.16.b their mean
value as a function of the drift time after the first iteration. At this step,
the mean values of the residuals vary from a minimum of ∼ -160 µm to a
maximum of ∼ 320 µm for small radii: these deviations mean that there are
miscalibrations in the r(t) curve. The mean values of the residuals are then
used to correct the r(t) relation of order 0.
The track reconstruction and the r(t) recalibration by means of the residuals
are then repeated until the mean values of the residuals become closer to 0, as
shown in Fig. 4.17.
To study the speed and stability of the convergence of the method, the mean
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Figure 4.16: Distribution of the average residuals as a function of the drift
time at the first iteration.

square correction

∆2
k =

∑N
i=0 δ

2
ik

N
, (4.24)

where δik is the mean value of the residuals in the ith time bin and N is the
total number of bins, is used as figure of merit.
Fig. 4.18 shows the behaviour of ∆k as a function of the number of iterations:
after 5 iterations, ∆k has converged to a value of about 19 µm.

4.5 Results

4.5.1 Spatial resolution

Fig. 4.19 shows the distribution of the mean residuals of 162385 straw hits after
the sixth iteration of the autocalibration procedure. It has been fitted with
two Gauss functions, in order to better describe both the peak and the tails of
the distribution. The parameters of the fits are reported in the statistics box
in figure: the first three refer to the Gauss function that fits the tails of the
distribution, the other three refer to the one that fits the peak.
The distribution of the residuals is highly symmetric around a mean of about
14 µm (parameter p4 of the fit), indicating no systematic errors. The deviation
σ of about 177 µm (parameter p5 of the fit) is a measure of the mean spatial
resolution of a single straw. This value is in agreement with the resolution
curve of a single tube as a function of the drift distance shown in Fig. 4.20.
It has been obtained in the following way: the track to wire distance has been
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Figure 4.17: Distribution of the average residuals as a function of the drift
time after one (a), two (b), four (c) and six (d) iterations of the autocalibration
procedure.

divided into ten intervals of 0.5 mm each, from 0 to 5 mm. For each interval, the
residual distribution has been obtained and fitted with two functions: a Gauss
function for the peak and a third order polynomial for the tails for the first
four intervals of distance; the fit has been performed with two Gauss functions
for the remaining distance intervals. An example of residual distribution for
one interval is shown in Fig. 4.21.
The values of σ of each Gauss function that fits the peaks of the residual
distributions has been then used to derive the single tube resolution shown in
Fig. 4.20.
This resolution curve is a factor 2 worse than the resolution curve for a single
tube obtained by the COSY–TOF experiment (Fig. 4.9). This is mainly due to
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Figure 4.18: Root mean square correction from the autocalibration procedure.
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Figure 4.19: Distribution of the mean residuals after the sixth iteration of the
autocalibration procedure. The parameters of the fit (red curve) are in the
box: p0, p1 and p2 are referred to the fit of the distribution tails; p3, p4 and p5

are the parameters of the Gauss function that fits the peak.

the fact that the electronics of the prototype was a standard readout which did
not have the best time resolution. Therefore, by using a dedicated electronics
a better single tube resolution could be achieved.
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Figure 4.20: Mean spatial resolution σ for single tubes, obtained as explained
in the text. The red line is the fit with a third order polynomial. (Picture
analogous to Fig. 4.14, with different scales on the x and y axis.)
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Figure 4.21: Distribution of the residuals for r in the range [2.5, 3] mm at
the last step of the autocalibration. The distribution has been fitted with two
Gauss functions; the parameters of the fit are in the box (p3, p4 and p5 are the
ones of the Gauss function that fits the peak).
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4.5.2 Single tube resolution

The single tube resolution as a function of the drift distance obtained in the
way previously described is “biased”, since the tube whose resolution we are
studying has not been excluded from the tracking. In addition, the errors on
the parameters of the best fit line have not been subtracted.
In order to calculate the“unbiased”spatial resolution σ of a single tube, another
method has been implemented and used. First off, tracks with N ≥ 16 hits
have been selected and fitted using N − 1 space points. Then, the distribution
of the residuals for the tube excluded from the fit has been computed as a
function of the drift distance (see Fig. 4.22).
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Figure 4.22: Residuals vs. drift distance.

This distribution is the convolution of the resolution of the tube and the track
extrapolation errors, due to the fit. In fact, both the intercept a and the slope
b of the best fit line are affected by an error σa and σb, respectively given by
the covariance matrix of the Minuit fit in the refit step:(

σ2
a σ2

ab

σ2
ba σ2

b

)
.

The element ρ
.
= σ2

ab is the correlation term between the parameters a and b
of the fit.
So the error on the distance of each point (x, y) to the best fit line (Eq. (4.6))
can be computed as follows:

σ2
d =

(
∂d

∂a

)2

σ2
a +

(
∂d

∂b

)2

σ2
b + 2ρ

∂d

∂a

∂d

∂b
(4.25)
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where
∂d

∂a
= − 1√

1 + b2
, (4.26)

∂d

∂b
= −x+ by − ab

(1 + b2)3/2
. (4.27)

In order to disentangle the intrinsic resolution of the tube from the other
contribution, we have proceeded in the following way.
First off, the distribution of Fig. 4.22 has been sliced in ten intervals of 0.5 mm
each. For each of them, the residual distributions have been fitted with two
Gauss functions, as in Fig. 4.23, and the mean value of σd has been calculated
with Eq. (4.25), using all the space points belonging to that interval. Then,
interval by interval, the obtained mean value of the error on the distance σd
has been quadratically subtracted to the σ of the Gauss functions that fit the
residual distribution of that interval.
The obtained values of σ are the ones used for the single tube spatial resolution,
shown in Fig. 4.24.
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Figure 4.23: Distribution of the residuals for r in the range [2.5, 3] mm after
the sixth iteration of the autocalibration, in case the hit tube is taken out from
the track reconstruction (it is the analogous of Fig. 4.21). The distribution has
been fitted with two gaussians; the parameters of the fit are in the box (p0, p1

and p2 are the ones of the gaussian that fits the peak).
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Figure 4.24: Single tube spatial resolution σ as a function of the drift distance.

4.5.3 Contribution of tubes mispositioning to spatial
resolution

The resolution shown in the previous paragraph is the sum of two contributions:

σ2
overall = σ2

cal + σ2
pos, (4.28)

where σcal contains the contribution of the calibration but also of the electronic
time measurements, primary ionisation cluster effect and gas diffusion effect
and σpos is due to the wire mispositioning (' 50 µm). In the following, it is
explained how the last contribution has been estimated.
For each track, all the tubes have been taken out from the track reconstruction
one by one and the distribution of the residuals (Eq. (4.15)) of the single tubes
has been computed. Fig. 4.25 shows two examples of residual distributions for
two tubes: (a) tube 3 in layer 0 and (b) tube 7 in layer 2. The mean value of
each histogram is a measure of the mispositioning of the single straws: if the
wire positions were correct, the distributions should be centered around 0. As
it is clear from Fig. 4.25.a, it does not always happen: in particular, in this
case, the mispositioning ranges from few micrometers to more than 150 µm.
The displacements from 0 are taken into account with their sign, meaning that
the wires are shifted to the right and to the left with respect to their nominal
positions.
To have an idea of the mean position error, the distributions of the residuals
for each tube have been fitted with two Gauss functions and the mean values
of the one that fits the peak have been reported in Fig. 4.26.a: the mean wire
deviation is about 14 µm, which is negligible. This is in agreement with the
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Figure 4.25: Examples of residual distributions for single tubes, which have
been taken out from track reconstruction: (a) tube 3 in layer 0 and (b) tube 7
in layer 2. The distributions should be centered around 0 (dotted line).
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Figure 4.26: (a) Distribution of the mean deviations (with sign) of the wire
positions from their nominal ones: this is a measure of the systematic shift of
the wires. (b) Distribution of the absolute values of the deviations plotted in
(a).

mean value of the residuals shown in Fig. 4.19 (13.85 µm). These deviations
are within 50 µm, as indicated by the RMS of the figure; this value is com-
parable with the mean of Fig. 4.26.b, where the absolute values of the wire
deviations are reported.
With σpos ∼ 50 µm and σoverall ∼ 177 µm (see σ of the distribution in
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Fig. 4.19), it results:

σcal =
√
σ2
overall − σ2

pos ' 170 µm. (4.29)

So the main contribution to the overall resolution comes from the calibration
and the position error has a very small influence on the global one. Hence, it is
not necessary to iteratively correct the wire position of the individual straws.

4.5.4 Drift velocity

Once the best r(t) curve has been found after the last iteration of the au-
tocalibration procedure, it is possible to produce a plot of the drift velocity
vd(t): it is calculated as the integral of the linear combination of Chebyshev
polynomials that fits the r(t) curve (Eq. (4.4)).
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Figure 4.27: Drift velocity as a function of the drift distance, (a) at the first
and (b) at the last step of the autocalibration.

Fig. 4.27 shows the drift velocity as a function of the drift distance, obtained
by integrating the r(t) curve at the first step of the autocalibration procedure
and at the last one.
The effect of the iterations is evident, in particular by looking at the region
close to the wire up to a drift distance of about 0.15 cm. In addition, the
behaviour of the drift velocity is slightly different also for r > 0.4 cm: at the
last iteration (b), it is a little bit more flat and then sharper with respect to the
behaviour of the velocity at the first iteration (a). It is interesting to compare
the reconstructed velocity with the simulated one, shown in Fig. 4.28.
It has been obtained from a GARFIELD simulation for tubes with 1 cm di-
ameter filled with ArCO2 (90/10) operating at a high voltage of 1700 V with
1 bar overpressure and in the absence of a magnetic field.
For r ∈ [0.075, 0.475] cm, the simulated and the experimental drift velocities
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Figure 4.28: Drift velocity from GARFIELD simulation for 1 cm diameter
straw tubes filled with ArCO2 (90/10) operating at 1700 V, 1 bar overpressure
and no magnetic field.

are very similar, with values ranging from a maximum of 5 to a minimum of 2
cm/µs. The shapes are different for r < 0.075 and r > 0.475 cm: concerning
the region close to the wire, the simulated velocity grows up very rapidly due
to ionisation effects. The different shape of the experimental velocity can be
explained by the worse resolution usually expected in that region (Fig. 4.24).
Concerning the drift distances close to the tube wall, the drop of the recon-
structed velocity might be explained by the almost flat shape of the Chebyshev
polynomials that fit the r(t) curve in that region and also by the statistical
fluctuations at the end of the TDC spectra.

4.6 Comparison with results for ArCO2 (90/10)

at 1800 V

All the steps of the data analysis presented in the previous sections have been
repeated also for the data sample collected when the prototype was operated
at 1800 V.
The results obtained are very similar to the ones shown for 1700 V. As an
example, let’s compare the single tube spatial resolutions, shown in Fig. 4.24
for 1700 V and in Fig. 4.29 for 1800 V.
In the case of 1800 V, all points are slightly lower than the ones in the reso-
lution curve at 1700 V, but the effect is just of the order of 10-20 µm. So the
results at 1700 and 1800 V are very similar and increasing the high voltage
leads to a ∼ 10% improvement in the spatial resolution.
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Figure 4.29: Single tube spatial resolution σ as a function of the drift distance,
for data at 1800 V (spatial resolution for data at 1700 V in Fig. 4.24). The
data (crosses) have been fitted with a third order polynomial (red curve).

In addition, the drift velocity has been derived as described in Sec. 4.5.4 also
for the data set at 1800 V. Fig. 4.30 shows the results obtained after the first
(a) and the last iteration (b) of the autocalibration procedure.
The effect of the iterations on the reconstructed velocity is the same as for the
data taken with the prototype operated at 1700 V. The velocity dependences
at the two voltages are very similar; the only difference is the less steep slope
for drift distances close to the cathode at 1800 V.

The experimental drift velocity can be compared to the one simulated by
GARFIELD, shown in Fig. 4.31. As for the data at 1700 V, the shapes of
the simulated and reconstructed drift velocities are very similar, apart from
the regions close to the wire and to the cathode. The reasons should be the
same explained in the previous section.
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Figure 4.30: Drift velocity as a function of the drift distance, (a) at the first
and (b) at the last step of the autocalibration, for data taken at 1800 V (for a
comparison with data at 1700 V, see Fig. 4.27).
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Figure 4.31: Drift velocity from GARFIELD simulation for 1 cm diameter
straw tubes filled with ArCO2 (90/10) operating at 1800 V, 1 bar overpressure
and no magnetic field (for a comparison with data at 1700 V, see Fig. 4.28).
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Part III

Study of a single track
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Chapter 5
Resolution studies with the
PANDA Straw Tube Tracker

5.1 The simulation environment

In preparation for the PANDA experiment, large–scale simulations need to be
performed in the upcoming years for the detector design, to determine analysis
strategies and to be able to interpret the physics results.
In order to do this, the PANDA collaboration has developed a computing
framework called PandaROOT [1, 2, 3, 4] as an extension of the FairRoot
framework, a GSI project providing a common computing structure for all the
experiments at the FAIR facility, such as PANDA, CBM [5], the HADES up-
grade [6, 7] and R3B [8].
PandaROOT is a framework for both simulation and analysis; it is mainly
based on the object oriented data analysis framework ROOT [9] and on Virtual
Monte Carlo (VMC) [10, 11], which allows to run different transport models
such as Geant3 [12], Geant4 [13] and Fluka [14].
The PandaROOT computation is divided into three main parts.
In order to perform full simulations, the first step consists in generating the
physics events of interest. In PandaROOT, several event generators are imple-
mented, in order to fulfil to the many physics goals of the experiment: some
examples of generators which are inside the code are the box generator, EvtGen
[15], the Dual Parton Model (DPM) [16] and the Ultra–relativistic Quantum
Molecular Dynamic model (UrQMD) [17, 18]. They are provided as exter-
nal packages because they have been developed and are maintained outside
the collaboration. The event output files are converted by ad hoc interpreters
developed in PandaROOT to the standard output that can be read by the
transport model part.
The generated particles are then propagated inside the detectors and their in-
teractions with the spectrometer are computed by one of the transport models
between which the user can switch via the VMC. In this way, it is also possible
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to compare the results obtained with different models, to tune the cuts and to
validate the physics implemented with a cross–check even with experimental
data.
At this stage, the detector geometries and materials are defined: the PANDA
spectrometer is now almost fully implemented in PandaROOT. Also a realis-
tic map of the magnetic field has been implemented, with values taken from
TOSCA [19] calculations. It consists of a solenoidal field in the Target Spec-
trometer and a dipole field in the Forward Spectrometer; the region in between
presents inhomogeneities that make tracking a real challenge there.
Then, the simulation files are used as input for the digitization and recon-
struction steps. The aim is to perform a real high resolution global tracking
by joining the pieces of information from all the tracking detectors, such as
MVD, STT (or TPC) and GEM chambers.
The procedure that allows the STT to provide the global tracking with the
reconstructed hits will be described in detail in Sec. 5.2; the global fit will be
briefly treated in Sec. 5.3.
In order to improve the results provided by the global fit, a Kalman filter
(Sec. 5.4) is then applied on the reconstructed tracks, making use of the
GEANE track follower (Sec. 5.5). Finally, the reconstructed data are used
to perform the physics analysis [4].

5.2 The STT fitting algorithm

Since the STT, unlike the MVD and the GEM chambers, does not provide the
(x, y, z) coordinates where the particle passed but the drift radius of the firing
wires (i.e. the shortest distance to the wire of the particle traversing the tube),
it is mandatory to have a procedure to find them, in order to supply the global
tracking with the reconstructed points for the global pattern recognition and
fitting.
At the end of this local fit, a reconstructed helix trajectory and reconstructed
hits (so called helix hits) are available from STT.

The STT local fitting algorithm has been developed [20, 21] using the helix
model, assuming in this preliminary step that the magnetic field is constant
and ignoring all the material effects1.
Each track is described by the following five parameters (see Fig. 5.1):

• R is the curvature radius of the track in the xy plane, whose centre has
coordinates (xC , yC);

1These two assumptions can be made with no problems for the STT: in the region of the
Straw Tube Tracker, the magnetic field is homogeneous and the helix model can be used for
track fitting. In addition, the material effects can be ignored as a first approximation, since
they will be taken into account be the track follower GEANE (Sec. 5.5) in the following
steps of the track reconstruction.
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5.2. The STT fitting algorithm

Figure 5.8: xy plane parameters.

where (see fig.5.8):

• d0 is the distance of closest approach of the track to the origin;

• φ0 is the azimuthal angle of the point of closest approach φ0 = arctan yc

xc
;

• R is the curvature radius of the track in the xy plane;

• z0 is the z coordinate of the point of closest approach calculated in xy plane;

• tanλ is the tangent of the dip angle, the slope of the straight line in z −
track length cos λ plane.

The first three parameters are linked by the following relation: let (xc, yc) be the
center of curvature of the track, then:

d0 =
(xc + yc)− R(cosφ0 + sin φ)

cosφ+ sinφ

5.2.2 The xy plane algorithm

The Straw Tube Tracker output does not give the (x, y) coordinates of the particle
hit, but gives the wire which has fired (and then its (x, y) coordinates) and the drift
radius (rd), i.e. the distance from the wire at which the particle has transversed
the tube.
From these information the (x, y) hit coordinates need to be inferred. For this
reason a procedure performed through several steps has been developed; the steps
are:
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Figure 5.1: Track parameters in the xy plane. Figure taken from Ref. [20].

• d0 is the distance of closest approach of the track to the origin;

• φ0 is the azimuthal angle of the point of closest approach (φ0 = arctan
yC
xC );

• z0 is the z coordinate of the point of closest approach calculated in the
xy plane;

• tanλ is the tangent of the dip angle λ, i.e. the slope of the straight line
in the z−track length (s cosλ) plane.

The first three parameters are linked by the following relation:

d0 =
(xC + yC)−R(cosφ0 + sinφ0)

cosφ0 + sinφ0

. (5.1)

The fitting procedure is performed in the two planes separately:

• xy plane, perpendicular to the magnetic field direction, with a circle fit;

• z−track length plane with a straight line fit.

5.2.1 The xy plane algorithm

As already mentioned, the STT does not give the (x, y) coordinates of the
particle hit, but gives the wire which has fired (and then its (x, y) coordinates)
and the drift radius rd.
In order to extract the hit coordinates from the straw output, a procedure
performed through several steps and similar to the one described in Sec. 4.4.2
has been developed; the steps are:
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1. a pre-prefit using the conformal mapping technique [22];

2. a prefit using Minuit [23];

3. the Intersection Finder;

4. an iterative refit.

5.2.1.1 pre-prefit and prefit

The pre-prefit has been introduced as input to Minuit, since it requires the
parameters to be initialised. It is performed on the wire coordinates (x, y)
by using the conformal mapping technique, which transforms the problem of
fitting with a circle in a parabola fit, thanks to an appropriate change of
coordinates.
The prefit step is performed as well on the centre of the tubes, the primary
information given by the STT.
The parameters chosen for Minuit to define the track are xC , yC , R. The
function to be minimised is:

χ2 =

(√
(x− xC)2 + (y − yC)2 −R

σrd

)2

, (5.2)

with σrd = 1/
√

12 if rd = 0 and σrd = rd/
√

12 if rd 6= 0, assuming a uniform
distribution for rd.

5.2.1.2 Intersection Finder

After the Minuit fit, if it succeeded, the intersection finder is performed. It
is a procedure that works in a way similar to that described in Sec. 4.4.2.3:
it allows to find the “real” coordinates of the hits, i.e. the points where the
particles actually passed (the point of closest approach to the wire).
Up to now, the (x, y) coordinates of the wires, the drift distance rd of each
tube and a track hypothesis (xC , yC , R) are known. Each straight line (blue
dotted lines in Fig. 5.2) joining the centre of curvature of the track (xC , yC)
with the centers of each tube intercepts each drift circle (black circles in figure)
in two points: the closest ones to the prefit (green line in figure) are chosen
and set to be the (x, y) coordinates of the track hits.

5.2.1.3 Refit

The “real” point coordinates, the new ones found in the intersection finder
step, are then used to perform a refit using the conformal mapping technique,
followed by the intersection finder and Minuit fit (twice). In this last fit also
the drift radii of the different tubes (so the whole information coming from the
tracker) are taken into account.
In this step, the two errors σx and σy on the (x, y) hits coordinates and their
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covariances are obtained by projecting the error on the drift radius onto the
two axes. In particular, if rd 6= 0:

σx = σr · cos(α)

σy = σr · sin(α)

σxy = σr ·
√

cos(α) · sin(α),

where σr is the estimated resolution and α = arctan (m), m being the slope of
the line joining the centre of curvature of the track to the centre of each tube,
found in the intersection finder step. In case of rd = 0, the errors are the same
as in the pre-prefit step.
From this fit the parameters d0, φ0 and R in xy plane are found.
Fig. 5.2 shows an example of the local fit results.

Figure 5.2: In this figure the pre-prefit (black), prefit (green) and refit (red)
curves are drawn. The black circles are the drift circles; the blue dotted lines
are the ones joining the centre of curvature of the track to the centers of each
tube, allowing to find the tracks hits. Figure taken from Ref. [20].

5.2.2 The z coordinate

The z coordinate is reconstructed by making use of tilted tubes (see Fig. 5.3
for a better graphical explanation): from the intersection of these tubes the z
coordinate can be extracted.
The procedure to find the z coordinate is divided in two steps:

1. z finder step;

2. z fit step in the z − s cosλ plane.
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Figure 5.3: One straw tube layer parallel to the beam axis and two skewed
layers tilted in opposite directions are shown. If the particle hit is denoted
by the red point, it is clear that different couples of skewed firing tubes imply
different z coordinate. Figure taken from Ref. [20].

5.2.2.1 z finder

As already pointed out, the z coordinate determination uses the skewed tubes.
In the xy projection, the drift circles of these tubes are not tangent to the
fitted trajectory; hence, they are shifted till they become tangent (Fig. 5.4).
Two possible positions of the drift circle centre are found, (x0

c , y
0
c ) and (x1

c , y
1
c ).

Both are kept in a first step. From them, the z0
c coordinate (and z1

c one) is
inferred.
To select between the two hypotheses, the Hough transform technique2 [24] is
used to identify the points lying on a straight line and ignore the fake ones.

5.2.2.2 z fitting

The z fitting step consists in performing a fit in the plane z − track length.
The track length is calculated via the formula:

s cosλ = h ·R · arctan

(
(y − y0) cos Φ0 − (x− x0) sin Φ0

R + (x− x0) cos Φ0 + (y − y0) sin Φ0

)
. (5.3)

From this fit the parameters z0 and tanλ are found.

2The Hough transform is a method used to find patterns in an ensemble of points (e.g.
to do pattern recognition in a digital image). It consists in parametrising the line we are
searching for and mapping it in the parameter space, in such a way that lines in the real
space are transformed to points (a, b) in the parameter space, while points (x, y) in the real
space are transformed to lines in the parameter one. Thus, to find a line on which several
points lie, these points are transformed in the parameters plane in several lines (all the lines
which pass through them) and the point in which these lines cross provides the parameters
of the straight line we are looking for.
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Figure 5.4: xy plane projection: the red curve is the fitted one. The circles
which are not tangent to this curve are the skewed tube ones. The projection
of the wires of these tubes in the plane is drawn (black segments). The green
circles are the skewed tube drift circles “moved” to become tangent. This
movement is actually a change in the z coordinate. Figure taken from Ref. [20].

5.3 The global tracking

Once the reconstructed hits are available for all the tracking subdetectors, the
global track finding and fitting is performed by the devoted package [4]; the
details of its implementation will not be treated here.
In order to construct the global track, a global pattern recognition is first per-
formed, so that one or more track candidates are found out. Two pattern
recognitions are available: the ideal one, which makes use of the Monte Carlo
truth to assign the hits to the track candidate, and the real one, merging the
reconstructed information from the tracking subdetectors.
Then, a helix fit3 is performed over all the reconstructed hits: the global track
and its parameters are found and can be given as input to the Kalman filter.
As already mentioned, the fitting task is not straightforward due to the pres-
ence of dense media and to the field inhomogeneities between the two spec-

3In the following, the fit performed by the global tracking package is referred to as helix
fit.
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trometers where the GEM chambers are placed. As previously explained in
Sec. 5.2, the helix model assumes that the magnetic field is homogeneous, so
the usage of the helix fit of the global tracking package in the GEM region in-
troduces systematic errors in the track parameters that come out from the fit;
it results, for example, in a shift of the reconstructed momentum distributions,
as will be shown in Sec. 6.1.1.4.
In addition, the performances of the global tracking package are not the best
when used with the STT option as Central Tracker. In fact in this case two fits
are performed: the local one on the STT hits and the global one on the hits
from all tracking subdetectors. Since each tracking step has its own efficiency,
the global one is equal to the product of the two efficiencies, resulting in a
lower one, as evident from the results that will be presented in Sec. 5.7.
Despite these problems, up to now this is the only package devoted to the
global tracking implemented in PandaROOT; a new one, performing both a
pattern recognition and a global fit in one step, without the need of the STT
local one, is in preparation.

5.4 The Kalman Filter

Once a track candidate has been obtained from the global fit, a Kalman filter
is used to improve the resolution of the track parameters.

In this section a short summary of the Kalman fit procedure is reported. A
more detailed description of this topic can be found in Refs. [25] to [29], in
Ref. [20] and references quoted therein.

The Kalman fit is an iterative procedure which, unlike global methods such as
the helix fit, takes into account the dE/dx, the magnetic field inhomogeneities
and the multiple scattering.
The aim of the Kalman filter is to find the best estimation of the true track
point fi at the i-th detector plane by minimising the χ2:

χ2(f) =
∑
i

[(ei[fi−1]− fi)Wi−1(ei[fi−1]− fi)]

+(xi − fi)Vi(xi − fi) (5.4)

where xi are the measured points and ei = ei[fi−1] are the extrapolated ones
(i.e. the predicted position of the track on the i-th detector plane starting
from the i− 1-th one), written as a function of the true track points fi−1; W
and V are the weight matrices containing respectively the tracking and the
measurement errors.
The minimisation of Eq. (5.4) gives an equation that depends both on fi and
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fi−1:

∂χ2

∂fi
= Wi−1,i(ei[fi−1]− fi) + V (xi − fi) (5.5)

−T (li+1, li)Wi,i+1(ei+1[fi]− fi+1) = 0 ,

where T (li+1, li) is the transport or Jacobian matrix that transports the errors
from a track point li to a track point li+1 [20].
The Kalman filter is a method to solve Eq. (5.5). Usually this is done through
three steps [30, 31]:

1. the first step is the extrapolation of the previous Kalman value ki−1 to
the i-th plane:

ei ≡ ei[ki−1] = G(ki−1) (5.6)

σ2[ei] = T (li, li−1)σ2[ki−1]T T (li, li−1)

+R−1
i−1,i, (5.7)

where R−1 is the error matrix relative to random effects;

2. the second step is the calculation of the Kalman filter value at the i-th
detector plane. This is a preliminary evaluation of the track parame-
ters ki, making a “weighted mean” between the measured value and the
predicted value on plane i:

ki = σ2[ki](σ
−2[ei] ei (5.8)

+Vixi)

σ−2[ki] = σ−2[ei] + Vi. (5.9)

These equations are simply the weighted average in the 5-fold track space;

3. the third step is the backward smoothing of the Kalman point solution of
the second step to get the final estimate of the value fi

fi = ki +Ai (fi+1 − ei+1) (5.10)

σ2[fi] = σ2[ki] + (5.11)

+Ai

(
σ2[fi+1]− σ2[ei+1]

)
AT
i

Ai = σ2[ki]T
T (li+1, li)σ

−2[ei+1]. (5.12)

This last step is often substituted by an alternative option: the so–called
“backtracking”, i.e. steps 1 and 2 followed by the extrapolation in the
backward direction, from the last point of the track to the first one.
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If the track follower and all the measured points are not expressed with the
same set of track variables, the so called measurement matrix H is used, to
make the two representations comparable, setting:

xi = Hiei + εi , (5.13)

where ε is the random part introduced by the measurement.

The PandaROOT framework makes use of a software package in which the
Kalman filter is implemented: this is called GENFIT [32]. It is completely
written in C++ and makes extensive use of object oriented design. It uses the
C++ standard template library and the ROOT data analysis framework. A
detailed description of the package features can be found in Ref. [33].

5.5 The track follower: GEANE

The ability to extrapolate a track described by a set of parameters4 and their
covariances to different positions in the spectrometer, taking into account the
effects of materials, is mandatory for track fitting.
In order to do this, GENFIT provides an interface for the invocation of external
programs or libraries that perform track extrapolations. The track follower
used in PandaROOT is GEANE [31].
The task of the track follower is to provide the extrapolated points e[fi], e[fi+1]
and e[fi−1] of Eqs. (5.4)–(5.13) of the Kalman fitting algorithm. To do this, it
is necessary:

• to transport the track parameters (particle momentum, position and di-
rection) from one point to another in the apparatus, forward and back-
ward. The forward extrapolation (deterministic propagation) can be
obtained by simply using any MC code by launching one particle only
and switching off the multiple scattering and the random effects of dis-
crete energy loss due to ionisation and delta ray production (“Landau”
fluctuations, bremsstrahlung, etc.). Concerning the backward tracking
(with increasing momentum), only minor modification of the MC codes
are usually required;

• to propagate the errors on the track parameters together with the mean
values. This is usually obtained by calculating, step by step, the 5 × 5
covariance matrix. This mathematical part is analytically rather com-
plicated: some general ideas are given in the current literature [30] and
some correct approaches can be found in Refs. [29, 34, 35].

4Usually, tracks of charged particles in magnetic fields are described by five parameters
and the corresponding covariance matrix.

124



5.5. The track follower: GEANE

GEANE is a FORTRAN package which originated from the interface between
the GEANT3 tracking programs, used to determine the track parameter mean
values, and the routines developed by the CERN EMC collaboration [34] to
calculate and transport the error matrices. Hence the name:

GEANE = GEANT3 tracking + EMC error propagation routines.

The great advantage of this structure is that the track following is automati-
cally obtained with the same geometry banks of the Monte Carlo, without the
necessity to write ad hoc codes.
In addition to track fitting with recursive methods like the Kalman filter, the
most common applications of GEANE, as well as of the other track following
codes, are:

• trajectory calculation in terms of mean values and errors:
when the measured track value x or an estimate of the true track values
f at a track length l0 is known, the track following code determines the
value at a new track length l, in the forward or backward direction. This
extrapolation, which gives the parameter mean value, is denoted as an
operator G(·) (remembering GEANE):

e(l) = G(l0), (5.14)

where e are the quantities in Eqs. (5.4)-(5.13) and the starting point at
l0 can be chosen as G(f(l0)) or G(x(l0)) or in other manners. Explicit
formulae for the operator G can be found in Ref. [35].
During the tracking, three processes are taken into account:

- energy loss, which affects both averages (Bethe Bloch formula) and
errors (Landau fluctuations);

- Coulomb multiple scattering, that influences the error calculation
only (Molière theory or gaussian approximation);

- magnetic field, that influences the average trajectory only;

• joining track elements:
to find the best estimate of the intersection x of a particle track in a
plane, starting from the measured points (Fig. 5.5.a), the following χ2

can be minimised with respect to x:

χ2(x) = (x−G(l1))W1(x−G(l1))T +(x−G(l2))W2(x−G(l2))T , (5.15)

obtaining the x estimation as the weighted mean with error:

x =
W1G(l1) + W2G(l2)

W1 + W2

(5.16)

σ(x) = (W1 + W2)−1/2; (5.17)
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• track point (vertex) optimization:
in this case, one starts from a track point x0 and finds the best x0 that
minimises the χ2 up to a track length l0 (Fig. 5.5.b):

χ2(x0) =
∑
i

[(xi −G(li))[σ
2
iT ]−1(xi −G(li))

T ], (5.18)

σT = σ2 + σ2
m,

where σ and σm are the extrapolation and measurement covariance ma-
trices respectively, xi are the track measured points and li the track
lengths up to xi. The minimisation can be done also on a subset of the
5 track parameters [31].

4.2. The mathematics of track following
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Figure 4.1: Joining track elements (a) and track point optimization (b) using a
track follower G(·).

4.2 The mathematics of track following

4.2.1 The reference systems

As already described in section 3.2.1, usually there are different choices of the
five track parameters. The most common, that are also codified in the GEANE
package, are the following ones (see also fig.4.2) [5, 6]:

1. the transverse (or curvilinear) system, called SC in the GEANE package,
with variables

1/p , λ , φ , y⊥ , z⊥ (4.5)

where λ and φ are the dip and azimuthal angle and y⊥ and z⊥ are the
coordinate of the trajectory in a frame with x⊥ along the particle direction
and y⊥ parallel to the xy plane. The momentum component are given by:

px = p cosλ cos φ

py = p cosλ sin φ (4.6)

pz = p sinλ

The SC x unit vector is defined along the p direction:

x⊥ = (cosλ cosφ, cosλ sinφ , sinλ) (4.7)

Since y⊥ lies in the MARS (MAster Reference System) xy plane and is
perpendicular to p, the usual choice is

y⊥ =
z × x⊥
|z × x⊥| (4.8)
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Figure 5.5: Joining track elements (left) and track point optimization (right)
using a track follower G(·). Figure taken from Ref. [29].

The GEANE package allows the user to choose between different kinds of track-
ing: it is possible to track a particle to a desired track–length, to a volume or
to a plane.
In the case of non–planar detectors, like wire–based drift chambers or time–
projection chambers, for which physical detector planes are not defined, the
concept of “virtual” detector planes is used.
Since, in order to construct these planes, it is necessary to know the point of
closest approach (PCA) of a track to a point or to a line (wire) positioned in
space, a dedicated method has been implemented in GEANE.
Concerning space–point detectors (like TPCs), the track fit should be such
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that the distances of the track to the hits are minima. Hence, the virtual de-
tector plane associated to each hit must contain the hit position as well as the
PCA of the track to the hit point. In such a way, the residual vector (i.e. the
vector pointing from the hit point to the PCA) is orthogonal to the track. The
orientation of the ~u and ~v vectors spanning the virtual detector plane is chosen
arbitrarily in the plane (Fig. 5.6 (left)).
For wire–based drift detectors, like the PANDA STT, the virtual detector
plane contains the PCA of the track to the wire and it is constructed to con-
tain the whole wire. The ~u vector is perpendicular to the wire, directed from
the PCA on the wire to the PCA on the track; the ~v vector is chosen along the
wire direction (Fig. 5.6 (right)). By choosing the PCA on the wire as origin of
the virtual detector plane, the v coordinate of both the extrapolated and the
measured points id 0 (apart from skewed straws); concerning the u coordinate,
it is a measure of the drift radius and of the wire position.

A more detailed treatment of the techniques and formulae of the track follow-
ing, independently of any language or framework, can be found in Refs. [20]
and [29].

Figure 5.6: Virtual detector plane (spanning vectors ~u and ~v) in the case of
a space–point detector (left) and a wire–based drift detector (right). Figure
taken from Ref. [33].

5.6 The general fit procedure

For the sake of clarity, the steps of the fit procedure described in detail in the
previous paragraphs can be summarised as follows:

• local STT fit (Sec. 5.2), which proceeds through three steps:
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- pattern recognition: the user can choose between an ideal (i.e. based
on the Monte Carlo truth) or a real (i.e. based on the information
from the reconstruction) pattern recognition, depending on the pur-
poses of the analyses to be performed;

- fit developed using the helix model;

- construction of the (x, y, z) reconstructed hits;

• global track finding, consisting in:

- merging of the hits of all subdetectors;

- global pattern recognition (again, both the ideal and the real pat-
tern recognitions are implemented), which provides the list of track
candidates;

• global track fitting (Sec. 5.3) using the conformal mapping technique.
The user can choose which detector should be included in the fit and
which kind of information (Monte Carlo or reconstructed) should be used
for each of them;

• Kalman filter recursive method (Sec. 5.4) with the use of the GEANE
track follower (Sec. 5.5), in order to improve the resolution of the recon-
structed track parameters;

• backpropagation (propagation in the backward direction) with GEANE
of the track parameters to the origin.

At the end of this fit procedure, the track parameters are available for further
analyses like, for example, momentum resolution, efficiency and invariant mass
studies, depending on which kind of events have been simulated.

5.7 Results

In order to study the performances of the designed PANDA Straw Tube
Tracker in terms of geometrical acceptance of the layout, momentum reso-
lution and reconstruction efficiency, systematic studies have been performed
with single track events.
The complete simulation – digitization – reconstruction chain has been run.
The simulated subdetector setup consists of MVD, STT, GEM, EMC, TOF,
MDT and DRC, with the addition of the passive elements (the solenoid and
the dipole magnets and the target and beam pipes).
The digitization step has been performed only for MVD, STT and GEM in or-
der to save computation time, since the studies would have been dedicated only
to the Central Tracker. The pattern recognitions, both the local STT one and
the global one performed by the global tracking package, are real (Sec. 5.6).
The results are presented in the following sections.
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5.7.1 Studies on the number of hits per track

In order to check the geometrical acceptance of the layout, the distributions
of the number of hits coming from axial, skewed and short straws have been
studied for particles generated at fixed values of the polar angle θ and as
function of the azimuthal φ angle.
104 µ+ and 104 µ− single track events at 1 GeV/c, random φ (φ ∈ [−90◦,+90◦])
and θ = 20◦, 90◦, 140◦ (±5◦) have been simulated.
Fig. 5.7 shows the distributions of the number of hits vs. φ for θ = 90◦ ± 5◦.
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Figure 5.7: Distribution of the number of axial (a) and skewed (b) hit straws
as a function of the φ angle for 20000 µ generated with a momentum of 1
GeV/c at θ = 90◦ ± 5◦.

The plots show that the minimum number of hit straws is 12 − 13 for the
axial straws and 7 − 8 for the skewed ones. These numbers correspond to
the minimum number of layers (axial and skewed, respectively) that a particle
flying at φ = ±30◦ can traverse. For φ values corresponding to regions of the
detector where there are additional single–layers parallel to the beam axis, the
number of axial hit straws increases up to 18− 20.
The low number of hit straws at φ = ±90◦ is due to the gap for the target
pipe. Concerning φ = ±30◦, the losses are caused by the fact that in the
corners of the hexagonal STT layout there are short tubes, which do not fill
completely the volume, leaving empty spaces. As shown in Fig. 5.8.b, these
losses are negligible: only ∼ 4.4% of the total number of events hits less than
5 skewed straws. Nevertheless, there is a gain in efficiency when including in
the z reconstruction also the hits from the MVD.
So this study demonstrates that the minimum number of hit straws obtained
with such a layout is enough to perform a robust track reconstruction.
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Figure 5.8: Distribution of the mean number of axial (a) and skewed (b) hit
straws per event.

5.7.2 Studies on momentum resolution

5.7.2.1 Dependence on straw tubes length

As already mentioned in Chap. 2, for the Central Tracker with STT two possi-
ble layouts are under consideration: one consists in a Straw Tube Tracker with
150 cm long tubes and three GEM stations placed downstream of the STT;
the other option foresees a shorter STT with 120 cm long tubes plus four GEM
chambers, resulting in a lower acceptance of the STT in the forward direction.
In order to understand the effects of the tube length reduction in terms of loss
in acceptance, let’s consider the θ angular range [0, 180◦], that can be divided
into five regions. They are shown in Fig. 5.9, which presents a sketch of the
short Straw Tube Tracker in the plane (z, r): the regions are delimited by the
full and dashed lines, corresponding to the angles α, α′, β and β′, computed
with respect to the z axis. The GEM chambers, not drawn in the picture, will
be placed downstream of the STT.
The very forward region (θ ∈ [0◦, α]) is the region where the tracks do not go
through the straw tracker at all but hit just the Micro–Vertex Detector and
the GEM layers. For θ ∈ [α, α′], some of the skewed layers may not be hit;
hence, the z coordinate may not be well reconstructed. For θ ∈ [α′, β′], the
GEM chambers do not have hits but, on the other side, this is the region where
tracks with enough energy traverse all the straw tube layers, both the parallel
to z and the skewed ones. Concerning the backward direction, for the ranges
[β′, β] and [β, 180◦] the remarks are the same as for the ranges [α, α′] and [0◦,
α], respectively, except for the fact that the GEM chambers are not present;
this means that when the straw tubes are not hit, the tracks only go through
the MVD.
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The angle values for the two layouts are reported in Tab. 5.1; they are obtained
in the following way:

α = arctan
rin
l2
, α′ = arctan

rout
l2
,

β′ = arctan
rout
l1
, β = arctan

rin
l1
,

where rin = 15 cm is the straw tracker inner radius, rout = 42 cm is the outer
radius, l1 = 40 cm is the distance of the backward STT side to the interaction
point and l2 is the same for the side in the forward direction. Since, in both
layouts, the tracker will be placed in such a way that l1 will be the same, l2
will be equal to 80 and 110 cm in the case of the shorter and longer tracker,
respectively. So the only angles which differ in the two layouts are the ones in
the forward region (α, α′).
It is clear that shortening the Straw Tube Tracker implies a reduced number of
tracks entering it with respect to the longer tracker. Nevertheless, the reduced
acceptance of the shorthened tracker will be compensated by the additional
(with respect to the longer STT option) GEM tracking station.
In order to compare the performances of the two proposed layouts, two sets
of simulations have been performed: first, single track events with fixed total
momentum and uniform cos θ, with θ ∈ [8◦, 140◦]; then, again single track
events with fixed total momentum but at different fixed θ values.

Table 5.1: Values of the angles α, α′, β and β′ (see Fig. 5.9).

Geometry layout α α′ β′ β
STT 120 cm + 4 GEMs 10.6◦ 27.7◦ 133.6◦ 159.5◦

STT 150 cm + 3 GEMs 7.8◦ 20.9◦ 133.6◦ 159.5◦

Studies with uniform cos θ
104 µ− single track events have been generated in the interaction point I.P. (x =
y = z = 0), with uniform azimuthal angle φ ∈ [0◦, 360◦] and uniform cos θ
(θ ∈ [8◦, 140◦]) with fixed values of total momentum (0.3, 1, 5 GeV/c). The
two layouts for the Central Tracker have been used.
Fig. 5.10 shows the reconstructed momentum distributions for particles at (a)
0.3, (b) 1 and (c) 5 GeV/c in case of 150 cm long tubes plus three GEM stations.
The red dashed histograms show the prefit results (the helix fit performed by
the global tracking package), while the blue histograms reproduce the Kalman
fit result.
Each histogram has been fitted with a Gauss function in the range [µ−3σ, µ+
3σ], where µ is the mean value of the momentum distribution and σ has been
calculated by dividing the FWHM of the histogram by 2.35.
Tabs. 5.2 and 5.3 summarise the values of momentum resolution and efficiency
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Figure 5.9: Sketch of a section of the Straw Tube Tracker in the plane (z, r),
in the case of 120 cm long tubes. The black square in (0, 0) corresponds to the
interaction point (I.P.). The full and dashed lines, corresponding to the angles
α, α′, β and β′ (see Tab. 5.1 for their values), divide the plane into the five
regions described in the text.

obtained with the two geometries. The resolution is calculated as σ/µ, using
the µ and σ values from the gaussian fit; it is then reported in percentage. The
efficiency is defined by the integral below the histogram fitted region, divided
by the number of generated tracks. In addition, the efficiency “in peak” is
reported: it is the number of tracks in the fitted range (µ ± 3σ) with respect
to the total number of tracks.

Table 5.2: Momentum resolution and efficiency for 104 µ− in case of the ge-
ometry layout STT 120 cm long + four GEMs.

Momentum Resolution (%) Efficiency (%) Eff. in peak (%)
(GeV/c) Prefit Kalman Prefit Kalman Prefit Kalman

0.3 2.71 0.72 45.67 45.03 42.25 32.60
1.0 2.80 1.71 91.34 90.12 73.16 72.31
5.0 4.37 3.64 86.33 83.95 68.90 72.04

In all cases the Kalman fit results are better than the prefit ones (as expected),
both in terms of mean value and sigma of the distributions. In fact the Kalman
fit improves the helix fit results both reducing the width of the distribution
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Figure 5.10: Momentum distributions for (a) 0.3, (b) 1 and (c) 5 GeV/c µ−,
reconstructed with helix (red dashed) and Kalman (blue) fits, in case of 150
cm long tubes plus three GEM stations. The statistic boxes report the mean
values and RMS of the non fitted histograms, as well as mean and sigma values
of the gaussian fits, before and after the Kalman fit.
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Table 5.3: Momentum resolution and efficiency for 104 µ− in case of the ge-
ometry layout STT 150 cm long + three GEMs (Fig. 5.10).

Momentum Resolution (%) Efficiency (%) Eff. in peak (%)
(GeV/c) Prefit Kalman Prefit Kalman Prefit Kalman

0.3 2.75 0.72 45.82 43.83 41.79 31.78
1.0 3.06 1.71 92.66 92.52 77.90 78.51
5.0 4.51 3.66 89.28 91.13 73.86 80.10

(i.e. improving the resolution) and shifting the distribution mean value towards
a more correct value. On the other hand, the helix fit introduces a systematic
offset in the momentum determination giving an underestimated value.
For a better comparison, the Kalman resolutions and efficiencies for the two
options are reported in Tab. 5.4.
From the momentum resolution point of view, there are no differences between
the two layouts: from the table it is clear that the values are compatible within
the errors, when they are not equal. On the other hand, the “STT 150 cm +
three GEMs” option seems to be better from the efficiency point of view: it is
higher at 1 and 5 GeV/c with respect to the efficiency obtained with the other
layout, even if slightly lower at 0.3 GeV/c.

Table 5.4: Comparison of the Kalman fit values of momentum resolution and
efficiency for the two foreseen geometries (from Tabs. 5.2 and 5.3): a denotes
the STT 120 cm long + four GEMs option; b the STT 150 cm long + three
GEMs one.

Momentum (GeV/c) Resolution (%) Efficiency (%) Eff. in peak (%)
a b a b a b

0.3 0.72 0.72 45.03 43.83 32.60 31.78
1.0 1.71 1.71 90.12 92.52 72.31 78.51
5.0 3.64 3.66 83.95 91.13 72.01 80.10

Studies at fixed θ values
A systematic scan of the momentum resolutions and efficiencies has been per-
formed with fixed angle generated particles, in order to compare the perfor-
mances of the two geometry layouts with a particular attention to the forward
region.
For each layout, 104 µ− single track events have been generated at the interac-
tion point with fixed total momentum (1 GeV/c) and random φ (φ ∈ [0◦, 360◦]).
The θ angular range has been scanned as follows:

i. θ = 8◦, 9◦, . . . , 21◦ in steps of 1◦ (±0.5◦);
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ii. θ = 25◦, 30◦, 35◦, 40◦ in steps of 5◦ (± 2.5◦);

iii. θ = 50◦, 80◦, 110◦ and 140◦ in steps of 10◦ (± 5◦).

Finally, the events have been reconstructed and the Kalman fit has been per-
formed.
The values of momentum resolution and efficiency in peak (see previous para-
graph for the meaning) are summarised in Tab. 5.5 for the option STT 120 cm
long plus four GEMs and Tab. 5.6 for the option STT 150 cm long plus three
GEMs.

Table 5.5: Comparison of prefit and Kalman fit values of momentum resolution
and efficiency for 104 µ− single track events generated at 1 GeV/c and fixed θ
angle with the geometry layout STT 120 cm long + four GEMs.

θ angle (◦) Resolution (%) Efficiency in peak (%)
Prefit Kalman Prefit Kalman

8 8.58 2.74 43.26 41.38
9 8.98 2.44 43.86 40.11
10 7.34 2.29 40.41 39.73
11 7.79 2.98 48.14 43.18
12 12.51 4.20 57.78 46.01
13 9.45 3.52 55.10 47.00
14 8.05 3.26 53.62 51.15
15 5.64 2.59 46.61 48.89
16 10.02 2.46 61.71 48.50
17 9.77 2.42 64.93 51.26
18 8.29 2.34 62.36 52.31
19 9.34 1.99 70.83 51.89
20 7.16 1.85 82.43 62.96
21 7.29 1.69 84.32 62.96
25 4.37 2.07 85.11 86.05
30 3.29 1.62 89.86 82.36
35 3.57 1.65 89.70 79.48
40 3.20 1.58 82.58 76.76
50 2.96 1.62 83.57 82.30
80 2.51 1.64 82.15 81.71
110 2.58 1.67 83.85 85.65
140 4.73 2.45 51.56 53.21

The momentum resolution and efficiency plots as function of the θ angle are
shown in Figs. 5.11 and 5.12 for θ ∈ [8◦, 21◦] and in Figs. 5.13 and 5.14 for
θ ∈ [25◦, 140◦]: it has been decided to separate the results as a function of the
θ range in order to have a closer look at the forward region, since it is the one
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Table 5.6: Comparison of prefit and Kalman fit values of momentum resolution
and efficiency for 104 µ− single track events generated at 1 GeV/c and fixed θ
angle with the geometry layout STT 150 cm long + three GEMs.

θ angle (◦) Resolution (%) Efficiency in peak (%)
Prefit Kalman Prefit Kalman

8 8.78 3.98 31.01 29.06
9 11.55 6.58 34.99 34.34
10 11.52 6.22 37.48 34.31
11 10.35 5.45 42.52 39.92
12 15.36 5.82 49.94 43.13
13 10.55 4.19 50.04 43.88
14 8.41 2.76 59.02 46.75
15 6.87 2.57 64.62 56.36
16 8.43 2.35 79.33 63.61
17 7.81 2.32 82.57 66.81
18 7.56 2.15 84.87 72.86
19 8.63 1.89 97.74 72.06
20 6.91 1.69 99.81 84.32
21 6.61 1.58 99.15 80.11
25 3.52 1.73 91.08 87.08
30 3.38 1.58 90.47 82.30
35 3.49 1.61 88.97 79.70
40 3.21 1.65 82.03 82.80
50 2.85 1.59 82.44 82.86
80 2.59 1.65 83.02 82.04
110 2.69 1.64 86.11 85.86
140 4.94 2.42 51.39 52.07

affected by the straw tubes shortening.
From the plots, a general improvement due to the Kalman filter (blue squares
in the figures) is evident.
Concerning the region where the fine scan has been performed, it is evident
from Fig. 5.11 that the momentum resolution is better in the case of STT 120
cm long + four GEMs up to θ = 14◦. This can be explained as follows: when
the STT 120 cm + four GEMs option is considered, tracks with θ < 15◦ do not
hit at all (θ < 10.6◦) or hit just few axial layers of straw tubes. So the tracking
is performed mainly with the hits produced in the MVD and the GEMs; hence
the global resolution is dominated by the one of these two detectors, which are
very precise. With the other layout, tracks with these θ values do not neces-
sarily hit all the GEM stations, so the available number of very precise points
may be less than in the previous case. For sure, there will be more hits in the
straw tubes, but in the tracker region where only (θ < 11.6◦) or mainly axial
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Figure 5.11: Momentum resolution vs. θ starting angle for 1 GeV/c µ− single
track events, in the range θ ∈ [8◦, 21◦]: (a) STT 120 cm long + four GEMs,
(b) STT 150 cm long + three GEMs. The red circles and dashed line are the
prefit results, the blue squares and full line are the Kalman ones (see Tab. 5.5
and Tab. 5.6).
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Figure 5.12: Reconstruction efficiency vs. θ starting angle for 1 GeV/c µ−

single track events, in the range θ ∈ [8◦, 21◦]: (a) STT 120 cm long + four
GEMs, (b) STT 150 cm long + three GEMs. The red circles and dashed line
are the prefit results, the blue squares and full line are the Kalman ones (see
Tab. 5.5 and Tab. 5.6).
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Figure 5.13: Momentum resolution vs. θ starting angle for 1 GeV/c µ− single
track events, in the range θ ∈ [25◦, 140◦]: (a) STT 120 cm long + four GEMs;
(b), STT 150 cm long + three GEMs. The red circles and dashed line are the
prefit results, the blue squares and full line are the Kalman ones (see Tab. 5.5
and Tab. 5.6).
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Figure 5.14: Reconstruction efficiency vs. θ starting angle for 1 GeV/c µ−

single track events, in the range θ ∈ [25◦, 140◦]: (a) STT 120 cm long + four
GEMs; (b) STT 150 cm long + three GEMs. The red circles and dashed line
are the prefit results, the blue squares and full line are the Kalman ones (see
Tab. 5.5 and Tab. 5.6).
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layers are present. This would prevent from reconstructing the z coordinate of
the track in the STT, resulting in a worse global resolution and in a tracking
efficiency lower than that of the short STT layout in the same angular region
(see also Fig. 5.12).
Then, for tracks with θ ∈ [15◦, 25◦], the performances of the two layouts in
terms of momentum resolution are comparable within the errors.
Finally, concerning the angular region θ > 25◦, Figs. 5.13 and 5.14 show that
both the momentum resolution and the efficiency of the two layouts are com-
parable within the errors, as expected: in fact, this is the angular range where,
according to Tab. 5.1, the particles traverse only MVD and STT in the case of
both layouts and there are no reasons, apart from statistics, why they should
be different.

5.7.2.2 Dependence on the skew angle

Other tests have been implemented in order to study the dependence of the
z residuals and of the momentum resolution on the skew angle of the tilted
tubes.
104 µ− single track events were generated in the interaction point with a
total momentum of 1 GeV/c, uniformly in φ (φ ∈ [0◦, 360◦]) and in cosθ
(θ ∈ [28◦, 133◦]5).
Four different geometry layouts, corresponding respectively to a skew angle of
3◦, 4◦, 5◦ and 10◦, have been used.
In Fig. 5.15 the distributions of the z residuals are shown and in Tab. 5.7 the
mean and sigma values of the same distributions are summarised.

Table 5.7: Mean values µ and σ of the gaussian fits of the z residual distribu-
tions shown in Fig. 5.15 as a function of the skew angles.

Skew angle µ (cm) σ (cm)

3◦ −0.00199 0.366
4◦ −0.00047 0.285
5◦ 0.00079 0.229
10◦ −0.00066 0.133

As expected, it is clear that for bigger values of the skew angle the mean value
of the z residuals distributions is shifted towards 0, the width of the distribu-
tions is reduced (see σ values in Tab. 5.7), and there is an enhancement of the
peak of the distribution.

5Tracks generated in this θ range traverse for sure the straw tracker, both in the case of
the 120 cm long tracker and in the case of the 150 cm long tubes (see Tab. 5.1).
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Figure 5.15: Distributions of the z residuals for 104 µ− single track events at
1 GeV/c: black histogram with horizontal lines, 3◦; red left dashed histogram,
4◦; green right dashed histogram, 5◦; blue empty histogram, 10◦.

Concerning the dependence of the momentum resolution and reconstruction
efficiency on the skew angle, the values of the momentum resolutions are sum-
marised in Tab. 5.8. They do not seem to be too much affected by the increas-
ing value of the skew angle (compatible within the errors): this is due to the
fact that these values are obtained after the Kalman filter has been applied on
the global reconstructed tracks, so taking also into account the MVD points.
Since they are very precise, the overall resolution is dominated by the MVD
one. Concerning the efficiency, it increases with the skew angle.

Table 5.8: Momentum resolution and efficiency values for 1 GeV/c µ− as a
function of the skew angles.

Skew angle Resolution (%) Efficiency (%) Eff. in peak (%)

3◦ 1.63 92.98 82.65
4◦ 1.68 93.85 83.20
5◦ 1.60 94.72 84.87
10◦ 1.60 94.59 84.28
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5.7.2.3 Dependence on the single tube resolution

Further tests have been implemented in order to study the dependence of the
momentum resolution on the single tube resolution curves.
104 µ− single track events were simulated at different momenta (0.3, 1., 5.
GeV/c) using the geometry layout with STT 150 cm long. They were generated
at the interaction point, uniformly in φ (φ ∈ [0◦, 360◦]) and in cosθ, with the
azimuthal angle θ ∈ [28◦, 133◦].
Five sets of simulations in correspondence of each value of momentum, using
different single tube resolutions, have been performed. In particular:

- the simulated curve with magnetic field (Fig. 3.15), obtained from the
GARFIELD [36] simulations on the single tube response [37];

- the curve experimentally obtained in Jülich at COSY–TOF without mag-
netic field (Fig. 4.9);

- the curve experimentally obtained in Jülich from the prototype without
magnetic field (Fig. 4.24);

- a flat resolution curve with σxy = 100 µm;

- a flat resolution curve with σxy = 150 µm;

- a flat resolution curve with σxy = 300 µm.

The values of resolution and efficiency are summarised in Tab. 5.9. The sum-
mary plots in Fig. 5.16 show the behaviour of momentum resolution and effi-
ciency at different momentum values as functions of the different single tube
resolution curves.
The results obtained with the experimental and simulated resolution curves, as
well as with the flat curve at 100 µm, are very similar and compatible within
the errors. In addition, both momentum resolutions and efficiencies become
lower while worsening the single tube resolution, as expected.

5.7.2.4 Summary of the results

The performances of the Central Tracker have been investigated through the
simulation of different sets of single track (muon) events, generated at the
interaction point at different momentum values, polar angle θ and uniform
azimuthal angle φ.
The tracks have been fitted by applying the procedure summarised in Sec. 5.6.
The attention has then been focused on the momentum resolution of the gen-
erated particles and on the tracking efficiency.
In all the sets of simulations, the improvements due to the Kalman filter is
evident, in particular in terms of momentum resolution: the mean values of
the momentum distributions after the Kalman fit are more centered around

141



5. Resolution studies with the PANDA Straw Tube Tracker

Momentum (GeV/c)
1 2 3 4 5

p
/p

 (
%

)
δ

R
es

o
lu

ti
o

n
  

0

1

2

3

4

5

6

7

8

9

Momentum (GeV/c)
1 2 3 4 5

p
/p

 (
%

)
δ

R
es

o
lu

ti
o

n
  

0

1

2

3

4

5

6

7

8

9

Garfield
COSY-TOF
Prototype

mµ100 
mµ150 
mµ300 

a

Momentum (GeV/c)
1 2 3 4 5

E
ff

ic
ie

n
cy

 (
%

)

30

40

50

60

70

80

90

100

Momentum (GeV/c)
1 2 3 4 5

E
ff

ic
ie

n
cy

 (
%

)

30

40

50

60

70

80

90

100

Garfield
COSY-TOF
Prototype

mµ100 
mµ150 
mµ300 b

Figure 5.16: Momentum resolution (a) and efficiency (b) vs. particle momen-
tum, as a function of the different single tube resolution: GARFIELD simu-
lated curve (black stars), COSY–TOF experimental curve (red empty circles),
Jülich prototype experimental curve (blue full circles), 100 µm flat (cyan full
squares), 150 µm flat (green empty squares) and 300 µm flat (violet triangles).
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5.7. Results

Table 5.9: Momentum resolution, efficiency and efficiency in peak from Kalman
fit for 104µ− single track events at 0.3, 1 and 5 GeV/c, obtained by varying
the single tube resolution curve.

Momentum Single tube Resolution Efficiency Efficiency
(GeV/c) resolution curve (%) (%) in peak (%)

0.3 Simulated 0.72 52.78 41.34
COSY–TOF 0.72 50.74 39.56
Prototype 1.68 41.62 41.34

100 µm flat 0.72 50.63 39.70
150 µm flat 0.72 46.40 35.42
300 µm flat 1.88 37.42 28.94

1 Simulated 1.56 93.46 83.92
COSY–TOF 1.63 92.95 82.65
Prototype 2.55 88.76 83.92

100 µm flat 1.67 93.06 82.48
150 µm flat 1.95 91.36 78.52
300 µm flat 3.34 85.11 75.99

5 Simulated 3.26 91.04 81.10
COSY–TOF 3.67 90.82 82.69
Prototype 6.09 89.03 79.14

100 µm flat 3.61 90.30 81.23
150 µm flat 4.47 90.19 82.61
300 µm flat 8.63 87.60 81.59

the correct value than the ones obtained after the global helix fit. In addition,
the Kalman distributions are narrower than the helix ones, resulting in better
resolution values.

Two design options for the layout of the Central Tracker with STT have been
studied: one consisting in 120 cm long straw tubes plus four GEM chambers
and the other one made of 150 cm long straw tubes plus three GEMs.
Tests with tracks generated with random θ and φ show that the momentum
resolution obtained with the two layouts are compatible within the errors,
ranging from ∼ 0.7% in case of 0.3 GeV/c tracks, to ∼ 3.65% for 5 GeV/c
tracks (Tab. 5.4).
From a more detailed investigation through the simulation of tracks scanning
the forward angular region in steps of ±0.5◦, a difference in the performances
of the two layouts emerges. The results (Figs. 5.11–5.12) show that a better
momentum resolution is attained in the case of 120 cm long tubes plus four
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5. Resolution studies with the PANDA Straw Tube Tracker

GEMs: in fact, with this layout and in such a forward region there are not so
many hits in the STT; hence the global resolution is dominated by that of the
MVD and of the GEMs, which are very precise.
Concerning the central and backward angular region (θ > 25◦), where the two
layouts are geometrically equivalent, the same results have been obtained in
correspondence of the two options (Fig. 5.13–5.14).

The dependence of the performances on the skew angle of the tilted straw
layers has been studied too. Although the choice of a higher value for the skew
angle could facilitate the mechanical construction of the tracker, the perfor-
mances are not too much affected: the momentum resolution does not improve
significantly when going from 3◦ to 10◦ (Tab. 5.8).

Finally, it has been studied the effect that the spatial resolution of the sin-
gle straw tubes has on the tracker performances (Tabs. 5.9, Fig. 5.16).
The results obtained with the experimental curve without magnetic field from
COSY–TOF, the GARFIELD curve with magnetic field and the 100 µm flat
resolution are compatible within the errors. Concerning the other resolutions
used in the tests, the results show that the worse the single tube resolution,
the worse the tracker performances, as expected.
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Chapter 6
Study of physics channels

Two benchmark channels covering relevant topics for the PANDA physics and
allowing a comparison with well known results from other experiments have
been chosen to be studied in this thesis:

pp→ Ψ(3770)→ D+D− → (K−2π+) + (K+2π−)

and

pp→ ηc(2979)→ K0
SK

+π−.

The main purpose is to demonstrate that the proposed detector setup can ful-
fil the physics case and to study the invariant mass resolutions, on which the
attention will be focused.

The analysis procedure and the results obtained will be presented in the follow-
ing sections; in addition, the open points and the software–related problems
(i.e. the low reconstruction efficiency) will be pointed out.
It is important to keep in mind that the software used for these analyses is
rather complicated and not finished yet. For example, since the routines for
particle identification are not ready for all individual subdetectors, both bench-
mark results are based on studies without background production. The same
consideration is true also for the kinematic fitting routines, which require a pre-
cise knowledge from individual subdetectors or detector combinations about
spatial and energy resolution of all reconstructed particles: these routines have
been used just in the study of the Ψ(3770) decay.
Since there is still a lot of space for improvements of tracking reconstruction,
fitting and particle identification, better results could be certainly achieved in
the future, once the software will be ready in all its parts.
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6. Study of physics channels

6.1 Analysis of pp→ Ψ(3770)→ D+D−

The study of the charmonium spectrum above the DD breakup threshold at
3.73 GeV/c2 is one important part of the PANDA physics program (Sec. 1.2.1.1);
it is relevant not only for the open charm spectroscopy, but also for the search
for charmed hybrids decaying into DD and the investigation of rare decays
and CP violation in the D meson sector.
In order to study the tracking capabilities and performances of the PANDA
Central Tracker in the detection of charmonium states above the open charm
threshold, the following channel has been chosen:

pp→ Ψ(3770)→ D+D−.

The dominant channel for the Ψ(3770) decay is a s–wave 2–body decay into a
DD pair [1].
Many decay modes are possible for D mesons; for this analysis, the channel
D± → K∓π±π± has been chosen, since it can be completely reconstructed by
using the Central Tracker thanks, to the absence of neutral particles in the
final state.
The channel has been simulated at an energy in the centre of mass correspond-
ing to

√
s = mΨ(3770). The production has been done directly into the DD pair,

which corresponds to ≈ 40 MeV above the open charm threshold.
In order to estimate the DD cross section, a Breit–Wigner approach can be
used [2]:

σR(s) ≡ 4π(~c)2

(s− 4m2
pc

4)

BinBout

1 + [2(
√
s−MRc2)/ΓR]2

(6.1)

whereMR and ΓR are the mass and the full width of the resonance (the Ψ(3770)
for this channel) and mp is the proton mass. Bin and Bout are the branching
ratios Bin ≡ B(Ψ(3770)→ pp) and Bout ≡ B(Ψ(3770)→ D+D−).
Since the charm production cross sections close to the open charm threshold
in pp annihilations are unknown, Bin can be estimated by scaling the known
branching ratio J/ψ → pp [3]:

Bin ≡ B(Ψ(3770)→ pp) = B(J/ψ → pp) · ΓJ/ψ/ΓΨ(3770) = (6.2)

= 2.17 · 10−3 × 93.2 keV

27.3 MeV
= 7.4 · 10−6.

Bout ≡ B(Ψ(3770)→ D+D−) ' 36%.

For the condition
√
s = MRc

2, the cross section results in:

σ(pp→ Ψ(3770)→ D+D−) ' 1.22 nb.

This value can be considered as a lower limit for the cross section; other con-
siderations [4] yield a much higher value of the cross section(∼ 150 nb). The
lower value has been used in the following calculations.

152



6.1. Analysis of pp→ Ψ(3770)→ D+D−

Since the branching ratio of this decay is B(D± → K∓π±π±) ' (9.29±0.25)%
[1], the total cross section for the chosen channel is:

σ(pp→ D+D− → K−π+π+ + c.c.) ' 10.6 pb.

Finally, assuming 45 mb for the pp inelastic cross section and a 100% suppres-
sion of elastic events, the signal to background ratio is:

R ≡ σ(signal)

σ(pp→ X)
=

1.06 · 10−11

4.5 · 10−2
= 2.4 · 10−10.

Since the particle identification (PID) in PandaROOT is not yet ready for
all subdetectors, the simulation of background events in order to evaluate the
ability to suppress the background to a sufficient level was not performed. As
soon as the PID code will be ready, a detailed study of specific background
reaction is foreseen. For example, it could be possible to simulate inelastic colli-
sions coming from pp annihilations and including six prong events, which could
be kinematically interpreted as signal events, such as pp → K+K−2π+2π−,
pp→ 3π+3π− and pp→ 3π+3π−π0.
Such background studies have been already performed in the framework that
has preceded PandaROOT; the results are reported in Ref. [5].

6.1.1 Event simulation

6.1.1.1 Generation

105 events have been generated with the EvtGen [6] generator. This is one of
the event generators used for the simulation of particle decays in high energy
experiments, such as Belle, BaBar, CDF and many others. It is written in C++
and it allows to handle complex sequential decay channels, like the decays of
bottomonium and charmonium states. There are about 60 models in it but
many others describing new decays can be implemented by the users; it is even
possible to set angular distributions according to the experimental results [7].
The user can set the desired decay chain by himself; the following is an example
of the decay file used for the generation of the Ψ(3770) events:
Decay psi(3770)

1.00 D+ D- PHSP;

Enddecay

Decay D+

1.00 K- pi+ pi+ PHSP;

Enddecay

Decay D-

1.00 K+ pi- pi- PHSP;

Enddecay

End
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As it can be seen, the decay of the Ψ(3770) resonance has been set to D+D−

with branching ratio 1; the same consideration for the decays of the two D
mesons. The model used is PHSP: it generates a generic n–bodies phase space,
mediated on the spin of the initial and final states.
The output of EvtGen is an ASCII file like the one shown in Tab. 6.1.

Table 6.1: EvtGen output. See the text for a detailed explanation.

N Id Ist DF DL px py pz
0 40443 2 1 2 0.00000000 -0.00000000 6.56864758
1 411 2 3 5 -0.10155585 -0.10117576 2.89165554
2 -411 2 6 8 0.10155585 0.10117576 3.67699204
3 -321 1 -1 -1 -0.40708232 -0.47942717 1.50353817
4 211 1 -1 -1 0.43376330 0.22751339 1.41096498
5 211 1 -1 -1 -0.12823683 0.15073802 -0.02284760
6 321 1 -1 -1 -0.46110391 -0.00055324 0.76275362
7 -211 1 -1 -1 0.09292556 -0.07710118 2.27918418
8 -211 1 -1 -1 0.46973420 0.17883018 0.63505423

E t x y z
7.57359076 0.00000000 0.00000000 0.00000000 0.00000000
3.44623046 0.00000000 0.00000000 0.00000000 0.00000000
4.12736030 0.00000000 0.00000000 -0.00000000 0.00000000
1.70291321 0.00833487 -0.00024562 -0.00024470 0.00699360
1.50007163 0.00833487 -0.00024562 -0.00024470 0.00699360
0.24324562 0.00833487 -0.00024562 -0.00024470 0.00699360
1.01888672 0.71252716 0.01753210 0.01746648 0.63477780
2.28664385 0.71252716 0.01753210 0.01746648 0.63477780
0.82182973 0.71252716 0.01753210 0.01746648 0.63477780

In the first column there is an increasing number N associated with particles or-
dering (the number 0 refers to the mother particle); Id is the identification num-
ber associated to each particle (Ψ(3770) = 40443, D± = ±411, K± = ±321,
π± = ±211). Ist is a number equal to 1 or 2, depending on the fact that the
particle is stable or not. DF (Daughter First) and DL (Daughter Last) indicate
the N values of the first and last daughter particles produced in the decay;
in the case of a non decaying particle, DF and DL are set to -1. Finally, the
momentum components (GeV/c), the energy (GeV) and the space–time coor-
dinates follow (mm).
The events have been generated at the interaction point (0, 0, 0) with an an-
tiproton beam momentum of ∼ 6.57 GeV/c along the z direction, in order to
have an energy in the CMS equal to the Ψ(3770) mass. The input D± masses
to the simulation are 1.8693 GeV/c2, while for the Ψ the mass is 3.7699 GeV/c2

and the width is 0.0236 GeV/c2.
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6.1.1.2 Simulation

The EvtGen output file, through a suited interpreter, has been used as input for
the simulation. All the sensitive detectors have been included in the simulation,
in order to take into account the whole material budget. Concerning the
Central Tracker, the option with 120 cm long straw tubes together with four
GEM tracking stations has been chosen.
Fig. 6.1 shows the total momentum of the generated kaons and pions as a
function of the θ angle: from these plots, it is possible to have an idea of the
flight direction and momentum of the daughter particles.
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Figure 6.1: Momentum distributions of the generated kaons (a) and pions (b).

By looking at the red spots in the plots, it is possible to estimate the mean
values of θ and p (θ, p) of the tracks: in particular, they are (23.69◦, 1.477 GeV/c)
and (34.77◦, 1.088 GeV/c) for kaons and pions, respectively. From these num-
bers, it is clear that most of the particles are flying in the forward direction,
and this is more evident from the angular distributions of Fig. 6.2.
In particular, for the Ψ(3770) simulated events, Tab. 6.2 reports the percent-
ages related to the different angular regions for kaons and pions.
The high number of tracks having not so many hits in the straw tracker may
affect the reconstruction efficiency and the quality of the fit.

6.1.1.3 Digitization

In the digitization step, all the detectors have been included.
Concerning the straw tubes, the reconstructed radii have been obtained by
sampling both from the COSY–TOF resolution curve (Fig. 4.9) and the res-
olution curve obtained by the analysis of the data from the Jülich prototype
(Fig. 4.24). Since these two curves represent the lower and upper limits for
the single straw resolution (see Sec. 4.5.2), the idea was to check their effect
on the final resolution.
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Figure 6.2: Angular distributions of the generated kaons (a) and pions (b).
α = 10.6◦, α′ = 27.7◦, β′ = 133.6◦ and β = 159.5◦ (see Sec. 5.7.2.1 for a
detailed explanation of the five regions the θ angular range has been divided
into).

Table 6.2: Angular distribution of the simulated kaons and pions for the
Ψ(3770) decay channel.

Angular range (◦) Kaons (%) Pions (%)
0 - 10.6 15.88 11.22

10.6 - 27.7 51.73 39.97
27.7 - 133.6 32.39 48.11
133.6 - 159.5 ∼0 0.58
159.5 - 180 0 0.12

6.1.1.4 Reconstruction

The reconstruction has been performed using only the tracking detectors be-
longing to the Target Spectrometer: Micro–Vertex Detector, Straw Tube Tracker
and GEM chambers.

The track fitting has been performed by using the global tracking package
described in Sec. 5.3.
Since some problems concerning the efficiency came up (see in the following
Tabs. 6.4 and 6.5), in order to increase the number of tracks passing all the
cuts it has been decided to use the ideal pattern recognition: the Monte Carlo
truth has been used to assign hits to the tracks.
By looking at the invariant masses (as an example) of the D mesons after the
global fit, it has been noticed that the distributions were not peaked around
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6.1. Analysis of pp→ Ψ(3770)→ D+D−

the right value (mD± = 1869.3 MeV/c2), as shown in Fig. 6.3.a. This shows
that the helix fit performed by the global tracking package is not suitable in
the GEM region. In fact, the particle trajectory can be assumed to be a helix
(which is the hypothesis used by the global tracking package) only in case of
a constant magnetic field. Instead, in the region between the solenoid and
the forward spectrometer, where the GEM layers are placed, the field inhomo-
geneities must be taken into account and a helix fit is not the best choice to
describe the track trajectories.
Nevertheless, by completely excluding the GEM points both from the prefit
and from the Kalman fit, it is evident from Fig. 6.3.b that the prefit results
are not improved by the Kalman fit. This is probably due to the fact that
the momenta of the tracks going in the forward direction are so badly recon-
structed without GEM chambers that the Kalman filter is not able to improve
the prefit results.
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Figure 6.3: D+ invariant mass obtained when GEM chambers are included
both in the prefit and in the Kalman fit (a) and when GEM chambers are
excluded both from the prefit and from the Kalman fit (b). Red dashed his-
togram: prefit; blue empty histogram: Kalman fit. The black dotted line
indicates the input value for the D+ mass (mD = 1869.3 MeV/c2). The values
in the statistics boxes are the gaussian fit parameters of the distributions.

Therefore, in order to give to the Kalman filter a better starting momentum,
it has been decided to include the GEM hits to perform the global pattern
recognition, to exclude them from the prefit and to include them in the Kalman
filter. The result is shown in Fig. 6.4: the peak of the prefit distribution (red
histogram in the plot) is now centered around the right value and the results
are improved by the Kalman fit (higher peak, smaller width).
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Figure 6.4: D+ invariant mass in the case of GEM chambers excluded from
the prefit and included in the Kalman fit. Red dashed histogram: prefit; blue
empty histogram: Kalman fit. The dotted line indicates the input value for
the D+ mass (mD = 1869.3 MeV/c2). The values in the statistics boxes are
the gaussian fit parameters of the distributions.

6.1.1.5 Backpropagation to the vertex

Since the output of the Kalman fit is an object in which the track parameters at
the first hit are stored, it is necessary to propagate each track back to its vertex
in order to have more precise momentum values to be used in the calculation
of the invariant masses.
In order to do this, since a vertex fitter is still in preparation in PandaROOT,
the tracks have been backpropagated by Geane to their vertices, which are
known a priori from the Monte Carlo truth. In particular, kaons and pions
have been propagated to the D meson decay vertices; similarly, the Ds have
been propagated to (0, 0, 0), where the Ψ(3770) was set to decay.

6.1.1.6 Particle identification

The next step in the reconstruction chain concerns the particle identification.
Its implementation is ongoing and not yet finished for all PANDA detectors,
so at the moment it is not possible to use a realistic PID. Therefore, for the
analysis of this physics channel, as well as for the decay channel described in
Sec. 6.2, an ideal particle identification has been used: the Monte Carlo truth
has been used to assign the mass and the charge to each track.
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6.1.1.7 Covariance matrix calculation

After the particle identification step, the 7 × 7 covariance matrix has been
calculated for each track: it contains the 6× 6 covariances of momentum and
position components given by Geane after the backpropagation of the tracks
to their vertex.
Concerning the seventh row (and column) of the matrix, it contains the co-
variances of energy, computed in the following way:

Cov(i, E) = Cov(E, i) =
1

E
[px Cov(i, px) + py Cov(i, py) + pz Cov(i, pz)]

(6.3)
with i = x, y, z, px, py, pz. The variance of E is computed as:

Var(E) =
1

E2

[
x,y,z∑
i

p2
i Var(pi) +

x,y,z∑
i,j
i 6=j

2 pi pj Cov(pi, pj)

]
. (6.4)

6.1.2 Analysis results

6.1.2.1 D candidates selection

The output of the PID is a list of charged and neutral1 candidates. For this
specific channel, the charged candidates have been then classified as kaons and
pions by using the Monte Carlo truth.
Since the D± mesons have been set to decay into K∓π±π± with branching
ratio 100%, the requirement for the selection of D candidates is the presence
of one reconstructed kaon and two reconstructed pions with a common vertex.
First of all, only events with at least three charged “well” reconstructed tracks
were selected. In order to a have an idea of the quality of the reconstruction,
a cut has been applied on a Kalman flag, that indicates if the fit has been
done (positive flag) or has failed (negative flag). In spite of this, a positive flag
(fit done) does not necessarily mean that the fit result is good when compared
with the expected value from simulation. Nevertheless, this check is useful at
least to reject tracks for which the fit has completely failed.
Once the events with at least three fitted tracks have been selected, a check
on the (Monte Carlo) vertices is performed.
At this point, the D meson candidates have been identified and the square of
the invariant mass M2

D± has been calculated:

M2
D± = (pD±)2 = (pK∓ + pπ± + pπ±)2 =

(∑
i

Ei

)2

−
∑

i

pi

2

(6.5)

where pK∓ and pπ± are the four–momenta of the kaons and pions respectively.
Fig. 6.5 shows the invariant mass distributions of the selected D± mesons.

1In this thesis, we are not interested in neutral candidates, since the chosen decay channels
are such that only charged particles are present in the final states.
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Figure 6.5: Invariant mass of the D+ (a) and D− (b) candidates. The dotted
line indicates the input mass value mD = 1869.3 MeV/c2. The dashed lines
define the mass window at mD ± 0.3 GeV/c2 for the selection of D+D− pairs.

6.1.2.2 Ψ(3770) candidates selection

The next step of the analysis consisted in the identification of the Ψ candidates:
first of all, the events with at least one D+ and one D− candidates have been
selected.
After that, a mass cut has been applied to the D candidates: only the ones
included in the mass windows identified by the dashed line of Fig. 6.5 are
considered. Mathematically, the candidates have to satisfy the condition:

|MKππ −mD| ≤ 0.3 GeV/c2, (6.6)

where MKππ is the invariant mass of the system (Kππ) and mD is the mass of
the D mesons.
With the selected D+D− pairs, the invariant mass is computed:

M2
Ψ = (pD+ + pD−)2 (6.7)

where pD+ and pD− are the four–momenta of the D mesons, obtained as in
Eq. 6.5.
The resulting invariant mass of the selected Ψ candidates is shown in Fig. 6.6.
On the selected events, a kinematic fit has been then applied.

6.1.2.3 Kinematic fit: general theory

A kinematic fit is a mathematical procedure in which the “external knowledge”
of physical laws describing a particle interaction or decay is used as constraint.
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Figure 6.6: Invariant mass of the Ψ(3770) candidates. The dotted line indicates
the input mass value mΨ = 3769.9 MeV/c2.

The aim is to govern the behaviour of the fit, forcing it to conform to physical
conditions which are unknown by the internal variables of the fit itself, thus
improving the results that describe the process.
For example, forcing two tracks to come from a common vertex or to be back–
to–back are commonly used constraints. In the first case, the external know-
ledge is the fact that the tracks had to emerge from a single space–time point.
In the second one, the knowledge of the kinematics of two body decay con-
straints the behaviour of the fit.
The kinematic fitting procedure is essentially a least squares fitting method
which incorporates the constraints among the variables by the use of the La-
grange multipliers. In particular, the procedure consists in imposing the con-
straints by adding a new term in the χ2 equation [8].
The χ2 minimisation enables us to find the best kinematic configuration repro-
duced by the fit among the infinite possible configurations for the fit variables
that satisfy the given constraints.
It is worth noting that the minimisation does not always have a solution. In
particular, by denoting with i the number of measured variables, with k the
number of the unknowns and with r the number of constraints, in order to be
able to determine the k unknowns, it must be r ≥ k. Let’s analyse in detail
the possible situations:

• r = k: the unknowns can in general be calculated without modifying the
i measured quantities. Thus the final solution implies χ2 = 0 but the
number of degrees of freedom is r−k = 0, so this is not a fitting problem;
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• r > k: this case is more interesting:

- r > i + k: in general, it will be impossible to choose values of the
i+ k variables satisfying all r constraint equations simultaneously;

- r = i+k: the variables can be calculated exactly from the constraint
equations and the χ2 is calculated directly;

- r < i + k: in this case, the (measured and unmeasured) variable
values are “adjusted” in order to satisfy the constraints. After the
minimisation, the χ2 value indicates if the measured variables, in
order to satisfy the kinematic equations, have been changed too
much with respect to the measured errors.

So the χ2 value is interpreted as the probability that our hypothesis about
the reaction is incorrect, enabling us to decide whether or not to accept it (χ2

test).
In conclusion, from the fit improved estimates of the track variables are ob-
tained: the extra information given by the constraints allows us to obtain the
values of the variables with an accuracy better than that from the measure-
ments alone. Furthermore, the fitted variables are physically consistent since
they satisfy the conservation equations [9].

For a detailed description of the mathematics of the kinematic fit, see Ap-
pendix A.1 [10].

6.1.2.4 Kinematic fitter in PandaROOT

In PandaROOT a kinematic fit is implemented inside Rho, the package de-
voted to the event analysis [11].
For the study of the Ψ(3770) decay channel, a four constraints fit (4C) with
mass conservation for the daughter particles has been used. The set of con-
straints can be written as:

nd∑
i

pµi − pµC = 0, µ = x, y, z, E (6.8)

where the sum is over the nd daughters (six for this channel) and pC is the
constrained four–momentum, set to be equal to the invariant mass of Ψ(3770).
The condition on the mass of the daughters implies that their masses cannot
be modified by the fit, but only their momenta and energy, accordingly (see
Appendix A.2 for the mathematical derivation of the formula used in the fit).

Before applying the 4C fit to the selected D+D− pairs, the fitter has been
tested with the 105 smeared simulated events of the Ψ decay used as input:
each position component has been sampled from a Gauss distribution with
the mean value equal to the component itself and σx = 0.5 cm. The same
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has been done for the momentum, with σp = 0.01 GeV/c2. Concerning the
7 × 7 covariance matrix, it has been set diagonal and its elements have been
computed as follows:

σ2
ii = σ2

x = 0.52 cm2

σ2
jj = σ2

p = 0.012 GeV/c2

σ2
EE =

px · σ2
px + py · σ2

py + pz · σ2
pz

E
where the index ii corresponds to xx, yy and zz, whereas jj means pxpx, pypy
and pzpz.
Under these hypotheses, the plots of the D meson invariant mass have been
produced. They are shown in Fig. 6.7: the red distributions are the invariant
masses before the kinematic fit, the blue ones have been obtained after the
kinematic fit. Since the starting points were the smeared true values, the
peaks of the invariant mass distributions were already centered around the
right value. So in this very “clean” case, the effect of the kinematic fit was
not on the mean value of the distribution but on its width and on its height,
which are smaller and higher with respect to those of the distributions before
the kinematic fit.
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Figure 6.7: D+ (a) and D− (b) invariant mass distributions before (red dashed
histogram) and after (blue empty histogram) the kinematic fit. The dotted
line indicates the input mass value mD = 1869.3 MeV/c2.

What is more interesting is the χ2 distribution, shown in Fig. 6.8.
By denoting with Q a random variable having a χ2 distribution and by χ2 its
values, it is true that Q(ν) ∼ χ2(ν) and the density of the variable Q with ν
degrees of freedom is:

pν(χ
2)dχ2 ≡ p(χ2; ν)dχ2 =

1

2
ν
2 Γ(ν

2
)
(χ2)

ν
2
−1e−

χ2

2 dχ2. (6.9)
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Figure 6.8: χ2 density distribution obtained with the Monte Carlo events.

It is easy to demonstrate [12] that the mean and variance are:

〈Q〉 =
1

2
ν
2 Γ(ν

2
)

∫ ∞
0

x(x)
ν
2
−1e−

x
2 dx = ν (6.10)

V ar[Q] =
1

2
ν
2 Γ(ν

2
)

∫ ∞
0

(x− µ)2(x)
ν
2
−1e−

x
2 dx = 2ν. (6.11)

So for ν = 4, the mean and the standard deviation of the distribution should
be 4 and

√
8 respectively. This is exactly the case of the distribution of Fig. 6.8

(see statistics box in the plot): it means that the kinematic fit implemented
into PandaROOT works fine.

6.1.2.5 Results

The kinematic fitter previously described has been applied to the selected
events.
In order to reject bad events, a cut has been applied in the χ2 density distri-
bution.
Since, according to the statistics theorem about random cumulative variables2,
C is always uniform, the quantile value of χ2 has been chosen such that the

2Having a random variable X with a continuous probability density p(x), the cumulative
variable:

C(X) =
∫ X

−∞
p(x) dx (6.12)

is always uniform in [0,1] (C ∼ U(0, 1)), whatever the starting distribution p(x) may be [12].
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probability distribution is almost flat. As shown in Fig. 6.9.b, it is more or less
uniform up to a value of 0.95 (dashed region); in the case of ν = 4, P = 0.95
corresponds exactly to a quantile value of 9.49. So the rejected events are the
ones with χ2 > 9.49, corresponding to the white region of Fig. 6.9.a and to the
right peak of Fig. 6.9.b.
As shown by the dashed line in Fig. 6.9.a, the chosen cut value is 9.49: this is
the quantile value of χ2 such that the probability that Q ∈ [0, χ2] is:

P = P{0 ≤ Q(ν) ≤ χ2} =

∫ χ2

0

pν(χ
2)dχ2 = 0.95, (6.13)

where pν is the probability density of Eq. (6.9).
The probability of Eq. (6.13) is equal to the probability that the cumulative
variable C belongs to the interval [c1 ≡ c(0), c2 ≡ c(χ2)].
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Figure 6.9: a: χ2 distribution for the selected Ψ candidates. The dashed line
indicates the χ2 value (9.49) up to which the candidates are accepted (dashed
region). The statistics box is referred to the dashed distribution. b: Probability
associated with the χ2.

The kinematic fit has been applied to the events passing the χ2 cut.
Fig. 6.10 and Fig. 6.11 show the invariant mass distributions of the Ψ(3770)
and D± candidates before (red histogram) and after (blue histogram) the fit.
Concerning the first plot, since the invariant mass of the system of the daughter
particles was forced to mΨ by the kinematic constraint of Eq. (6.8), it is obvious
that almost all the events fall in the histogram bin corresponding to the input
mass value 3769.9 MeV/c2. So it is meaningless to say anything about the
mass resolution of the Ψ(3770) meson.
Concerning the D± mesons, Fig. 6.11 shows the effects of the kinematic fit, in
particular on the width and on the height of the distributions: the momenta of
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Figure 6.10: Ψ(3770) invariant mass distribution before (red dashed histogram)
and after (blue empty histogram) the kinematic fit applied to the events se-
lected by the χ2 cut.
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Figure 6.11: D+ (a) and D− (b) invariant mass distributions before (red dashed
histogram) and after (blue empty histogram) the kinematic fit. The dotted line
indicates the input mass value mD = 1869.3 MeV/c2.

the daughter particles (kaons and pions) have been adjusted in order to satisfy
the constraint equation (Eq. (6.8)), resulting in a better mass distribution also
for the D candidates.
Since the spread of the antiproton beam momentum was assumed to be zero,
the width of the D± invariant mass distributions should give directly the de-
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tector invariant mass resolution.
In Fig. 6.12 the invariant mass distributions obtained after the kinematic fit
(the blue distributions of Fig. 6.11) are reported and fitted with a Gauss func-
tion in the range mD± ± 0.03 GeV/c2, in order to get information about the
resolution. The mean and σ values of the D± masses after the gaussian fit and
the corresponding mass resolutions are reported in Tab. 6.3.
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Figure 6.12: Gaussian fit (red curves) of the D+ (a) and D− (b) invariant mass
distributions after the kinematic fit (Fig. 6.11) in the mass range 1.8693 ±
0.03 GeV/c2. In the statistics boxes, the mean and σ values of the fitted
distributions are also reported.

Table 6.3: D± mass resolutions (see Fig. 6.12). The errors on µ and σ are the
ones of the gaussian fit; the error on the resolution is the squared sum of the

relative errors on µ and σ (σR = R ·
√

(σµ/µ)2 + (σσ/σ)2).

D+ D−

µ (GeV/c2) 1.871 ± 0.0001 1.869 ± 0.0001
σ (GeV/c2) 0.0137 ± 0.0004 0.0146 ± 0.0004
resolution (%) 0.73± 0.02 0.78± 0.02

Concerning the reconstruction efficiency, it has been noticed that it is quite
low. In order to have a closer look at the values, the efficiencies at each step of
the analysis chain are reported in Tab. 6.4 and Tab. 6.5 for single tracks and
events, respectively.
Starting with the single track efficiencies (Tab. 6.4), it can be noticed that only
∼84% of the single generated tracks survive the global reconstruction made by
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Table 6.4: Reconstruction efficiency related to single tracks.

n◦ of tracks % of tracks
Simulated tracks 600000
Output tracks from prefit 503293 83.88 (w.r.t. simul.)
Good tracks from Kalman fit 418186 83.09 (w.r.t. prefit)
Good tracks from backpropagation 407428 80.95 (w.r.t. prefit)

the devoted package. Of the ∼16% of the lost tracks, just ∼0.34% are the ones
with total momentum smaller than 50 MeV/c, which have been excluded from
the reconstruction due to the presence of software problems in dealing with
very low momentum tracks.
Apart from these tracks, the main reason for the low prefit efficiency is the
fact that the global tracking package used at present is not the best package
to perform a global tracking with the STT, because of the way the global fit is
implemented in it. In fact, as previously explained in Chap. 5, a local fit with
the straw tubes is first performed, giving as output the reconstructed coordi-
nates (the z coordinate only when skewed straws have been hit). Then, the
global merging of the hits from the different detectors is performed, as well as
another global fit, to derive the track parameters which are then given to the
Kalman filter. So the efficiency value that comes out from the global tracking
is the product of the efficiency of the local STT fit and of that of the global
fit, thus resulting in a value lower than the individual ones.
At the moment, a new algorithm which does not make use of the present global
tracking package is in preparation, in order to avoid the inconvenient of having
a double fit, so that the efficiency is expected to be improved.
Let’s consider now the 83.88% of prefit reconstructed tracks as the input tracks
(100%): for ∼83.1% of them, the Kalman fit has been performed without fail-
ing. Of the remaining percentage, some tracks may have been rejected be-
cause of a wrong reconstructed charge; concerning the others, the fit may have
failed because the prefit starting point and momentum were so wrong that the
Kalman fit was not able to improve them in the right direction.
Finally, another ∼2% of the tracks are lost in the backpropagation step: this
may be due to Geane failures, mostly in the case of events for which the Kalman
filter has been performed but the results were not good; so the starting point
and momentum for the backpropagation were so different from the real ones
that Geane could not find the point of closest approach to the track vertex.
Concerning the event reconstruction (Tab. 6.5), the efficiencies are worse with
respect to the ones for single tracks. This is obvious, since an event is counted
only if all its six tracks have been reconstructed: in particular, the event effi-
ciency is of the order of the sixth power of the track efficiency. So in this case,
just ∼34% of the simulated events pass the prefit cuts. Regarding the Kalman
and backpropagation, it can be assumed (and checked) that the behaviour of
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the event efficiency is the same.
At this point, the ∼26% of the events from the prefit which have been propa-
gated to their vertex should all be events with a Ψ candidate. Just ∼14% of
these events are considered good candidates: the rejected ones are the events
for which at least one of the D candidates is not included in the chosen mass
window. Finally, after applying also the χ2 cut at the kinematic fit step, just
∼3.6% of the events are selected. This percentage is really low: when simulat-
ing also background events, it would be hardly possible to see a clean signal
over the background if the reconstruction efficiency is so low.
Since the low efficiency, however, seems to be connected with software–related
problems, the new global fit in preparation which will avoid the use of the
present global tracking package should improve the results.

Table 6.5: Reconstruction efficiency related to six track events.

n◦ of events % of events
Simulated events 100000
Output eventss from prefit 34010 34.01 (w.r.t. simul.)
Good events from Kalman fit 10858 31.93 (w.r.t. prefit)
Good events from backpropagation 8889 26.14 (w.r.t. prefit)
Ψ(3770) candidates found 4803 14.1 (w.r.t. prefit)
Ψ(3770) candidates after kinematic fit 1236 3.6 (w.r.t. prefit)

6.1.2.6 Results with the resolution curve measured with the Jülich
prototype

The results shown up to now have been obtained by using the COSY–TOF
resolution curve (Fig. 4.9) as input in the digitization step to sample the recon-
structed isochrone radii, as explained in the related paragraph of the previous
section. All the steps of the analysis chain have been repeated from digitization
to the kinematic fit on the same simulated events with the σr(r) curve obtained
from the data analysis of the Jülich prototype (see Fig. 4.24 and Sec. 4.5.2).
The aim of this is to check how the different sampling of the reconstructed
drift radii in the digitization and the different isochrone errors influence the
invariant mass resolution. The results are presented in the following.
Fig. 6.13 shows the D± invariant mass distributions before (red histogram)
and after (blue histogram) the kinematic fit, to be compared with the corre-
sponding ones in Fig. 6.11.
The first comment that can be made concerns the number of Ψ candidates
identified in the two cases: with the COSY–TOF resolution curve, there are
1236 Ψ, whereas in this case only 934 candidates are found.
The shapes of the distributions are very similar but the RMS values of the
histograms are not compatible within the statistical errors, which are of the

169



6. Study of physics channels

Kinematic fit
Entries  934

Mean    1.873

RMS    0.02471

)2 (GeV/c+DM
1.6 1.7 1.8 1.9 2 2.1

E
n

tr
ie

s

0

20

40

60

80

100

120

140

160

Kinematic fit
Entries  934

Mean    1.873

RMS    0.02471

Kalman fit
Entries  934

Mean    1.867

RMS    0.07137

a

Kinematic fit
Entries  934

Mean    1.868

RMS    0.02239

)2 (GeV/c-DM
1.6 1.7 1.8 1.9 2 2.1

0

20

40

60

80

100

120

140

160

Kinematic fit
Entries  934

Mean    1.868

RMS    0.02239

Kalman fit
Entries  934

Mean    1.867

RMS    0.07241

b

Figure 6.13: D+ (a) and D− (b) invariant mass distributions before (red dashed
histogram) and after (blue empty histogram) the kinematic fit, as in Fig. 6.11,
obtained with the σr(r) curve measured with the Jülich prototype. The dotted
line indicates the input mass value mD = 1869.3 MeV/c2.

order of some hundreds of keV/c2. Nevertheless, the improvements due to the
kinematic fit are evident also in this case: the peaks of the blue histograms are
higher and the distribution widths are smaller with respect to the correspond-
ing ones of the red histograms.
Fig. 6.14 shows the invariant mass distributions after the kinematic fit (blue
histograms in Fig. 6.13), fitted with a Gauss function in the range mD± ± 0.03
GeV/c2.

Tab. 6.6 reports the comparison of the fit parameters of the invariant mass
distributions obtained with the two resolution curves. The fit mean values are
compatible within the errors, but it is not the same for the σ of the distribu-
tions, since the errors on this variable are of the order of hundreds of keV/c2.
Concerning the resolution values, they are not compatible within the errors,
neither for D− nor for D+. This shows that the use of the resolution curve
obtained with the Jülich prototype, which is about a factor 2 worse than the
COSY–TOF resolution curve (see Sec. 4.5.1), turns out into a loss in resolution
of about 10%.

6.2 Analysis of pp→ ηc(2979)→ K0
SK

+π−

The ηc(1
1S0) state of charmonium occupies a special place in the study of

heavy quarkonia. It is the only ground state of a heavy quarkonium system
which has been experimentally identified and it is the only confirmed heavy
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Figure 6.14: Gaussian fit (red curves) of the D+ (a) and D− (b) invariant mass
distributions after the kinematic fit (Fig. 6.13) in the mass range 1.869± 0.03
GeV/c2, as in Fig. 6.12. In the statistics boxes, the mean and σ values of the
fitted distributions are also reported.

Table 6.6: Comparison of the fit parameters of the D± invariant masses
obtained with the COSY–TOF and Jülich prototype resolution curves (see
Fig. 6.12 and 6.14).

D+ COSY–TOF Jülich prototype
µ (GeV/c2) 1.871 ± 0.0001 1.871 ± 0.001
σ (GeV/c2) 0.0137 ± 0.0004 0.0155 ± 0.0006
resolution (%) 0.73± 0.03 0.83± 0.03

D− COSY–TOF Jülich prototype
µ (GeV/c2) 1.869 ± 0.0001 1.869 ± 0.001
σ (GeV/c2) 0.0146 ± 0.0004 0.0163 ± 0.0007
resolution (%) 0.78± 0.02 0.87± 0.04

quarkonium singlet state. Therefore, an accurate knowledge of the parameters
of the ηc is important to understand and test QCD models.
The ηc, however, represents a challenge to experiment. In fact, it cannot be
formed directly at e+e− colliders since its quantum numbers (JPC = 0−+) are
different from 1−− of the γ and its indirect production via M1 radiative decay
of J/ψ and ψ′ leads to small branching ratios. The ηc can be produced exclu-
sively in photon–photon fusion reactions (e+e− → e+e−ηc) [13] and inclusively
as decay products of B mesons produced in B–factories [14]. The uncertain-
ties in ηc resonance parameters, however, remain large; even with improved
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statistics, the above techniques depend critically on a detailed understanding
of the detector calibration and resolution [2].
On the contrary, in experiments like PANDA, the formation of the ηc in a
reaction as pp → ηc is not forbidden by quantum number conservation and
it can be used advantageously to measure M(ηc), Γtot(ηc) and other partial
widths, as long as the large hadronic background can be controlled.
In the past, E760 [15] and E835 [2] detected the decay channel pp→ ηc → γγ:
the 2γ signature helps cleaning the hadronic background besides allowing the
calculation of Γ(ηc → γγ), that has a high theoretical relevance. The ηc mass
and width can be determined from the excitation curve with a scan obtained
by varying the antiproton beam energy and measuring the resonant cross sec-
tion at the different CMS energies.
With this technique, the systematic uncertainties are greatly reduced com-
pared with the e+e− production experiments, since they depend only on the
error on the antiproton beam momentum. Since this error for the PANDA
experiment is expected to be δp/p < 7 · 10−6, that would ensure a resolution
in the ηc parameters far superior than the previous experiments. In addition,
it would be possible to study ηc decaying also into KKππ, KKπ, 4K, 4π and
ηππ, which have a relative BR higher than the γγ channel, thus allowing to
collect a much higher statistics than in the past and to improve the statistical
errors on the measurements of the ηc mass and total width.

The ηc decay channel that has been chosen for this thesis is:

pp→ ηc(2979)→ K0
SK

+π−,

having only charged particles in the final state.
Since the cross section of the pp→ ηc → γγ channel around 3-5 GeV is about
200-300 pb ([2, 15]) and the branching ratio BR(ηc → γγ) = (2.8± 0.9) · 10−4

[1], it results3 that:

σ(pp→ ηc) ' 800 nb. (6.14)

Using the branching ratio ηc → KKπ = 7.0± 1.2 · 10−2 [1], from Eq. (6.14) we
obtain:

σ(pp→ ηc → K0
SK
±π∓) ' 19± 3 nb. (6.15)

Knowing the annihilation branching ratios around 3.6 GeV/c of antiproton
beam momentum, it is possible to evaluate the contamination due to the com-
peting annihilation channels. The results are shown in Tab. 6.7; in particular,
it is worth noting the rather high value of the direct production pp→ K0

SK
±π∓

[18]:

σ(pp→ K0
SK
±π∓) = 11± 6 µb. (6.16)

3This cross section has been obtained from experimental data measured with a beam
spread of 0.3 MeV/c. It is orders of magnitude larger than the ηc indirect production in
e+e− annihilation, which is of the order of few pb at 3-5 GeV [16, 23].
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By applying appropriate kinematical cuts on total energy and momentum, ge-
ometrical cuts on both primary and secondary vertices and the kinematical fit,
it should be possible to select the ηc signal with a low contamination probabil-
ity by the background reactions K+K−π+π− and 2π+2π−, as shown in Ref. [3]
(see Sec. 13.5.4.3, Tab. 13.13): with the cuts used in the analysis presented
there, no background events survived, apart from the non resonant K0

SK
±π∓

channel.

Table 6.7: Comparison between the pp → ηc(2979) → K0
SK
±π∓ channel to

other background final states.

Reaction Cross section Ratio S/N pp (GeV/c) Ref.
ηc → K0

SK
±π∓ 19± 3 nb - ' 3.6 -

pp→ K0
SK
±π∓ 11± 6 µb 1/1100 3.66 [18]

pp→ 2π+2π− 430± 30 µb 1/40000 3.59 [19]
pp→ K+K−π+π− 240± 30 µb 1/24000 2.90 [20]

6.2.1 Event simulation

6.2.1.1 Generation

As for the Ψ(3770) decay, 105 pp → ηc events have been generated with the
EvtGen generator at the vertex position (0, 0, 0). The decay file used to gener-
ate the events is the following:

Decay etac

1.00 K0S K+ pi- PHSP;

Enddecay

Decay K0S

1.00 pi+ pi- PHSP;

Enddecay

End

This means that the decay of the ηc has been set to K0
SK

+π− with branching
ratio 1 and that the K0

S meson decays into π+π− with 100% probability in
order to have only charged particles in the final state; the decay model used is
the PHSP model.
In order to have an energy in the CMS equal to the ηc mass, the antiproton
beam momentum has been set to 3.676 GeV/c2 along the z direction.
The input K0

S mass to the simulation is 0.49767 GeV/c2, while for the ηc the
mass is 2.9798 GeV/c2 and the width is 0.0270 GeV/c2.
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6.2.1.2 Simulation

The EvtGen ASCII output file has been given as input to the simulation –
digitization – reconstruction chain. Each of these steps has been performed
exactly in the same conditions described in Sec. 6.1.1.

One comment can be related to the angular distribution of the decay products:
also in this channel, they are emitted mostly in the forward direction, as shown
in Fig. 6.15 and 6.16. The first picture represents the momentum distributions
of K+ (a) and π± (b) as a function of the θ angle; the second plot shows the
angular distributions of those particles.
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Figure 6.15: Momentum distributions of the generated kaons (a) and pions
(b).

Tab. 6.8 reports the percentages of tracks traversing the different regions of
the Central Tracker, as illustrated in Fig. 5.9.

Table 6.8: Angular distribution of the simulated kaons and pions for the ηc
decay channel.

Angular range (◦) Kaons (%) Pions (%)
0 - 10.6 7.67 7.04

10.6 - 27.7 33.57 30.87
27.7 - 133.6 57.99 60.52
133.6 - 159.5 0.62 1.28
159.5 - 180 0.15 0.29
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Figure 6.16: Angular distributions of the generated kaons (a) and pions (b).
α = 10.6◦, α′ = 27.7◦, β′ = 133.6◦ and β = 159.5◦ (see Sec. 5.7.2.1 for a
detailed explanation of the five regions the θ angular range has been divided
into).

These numbers show that, since many tracks are emitted in the forward direc-
tion, they do not have so many hits in the Straw Tube Tracker and this may
have an effect on the reconstruction efficiency and also on the quality of the
track fitting.
In addition to this, it should be pointed out that the K0

S decay is not at (0, 0, 0)
because the K0

S travels through the apparatus before decaying (cτ = 2.684 cm
assuming CPT [1]). So not all the tracks have the maximum possible number
of hits in the STT and this may affect the efficiency as well.

6.2.2 Analysis results

6.2.2.1 K0
S candidates selection

The first step after the reconstruction and particle identification has been the
selection of tracks for which the Kalman fit was successful4.
The next step was the candidate selection: since the K0

S decay has been set to
π+π− with branching ratio 1, the requirement for the selection ofK0

S candidates
is the presence of two reconstructed pions with a common vertex.
Unfortunately, the preparation of a vertex fitter is still ongoing: hence, again,
the position of the secondary decay vertex is known a priori from the Monte

4Successful Kalman fit for a track means that the fit has been performed, no matter how
good the reconstructed momentum and position are compared with the Monte Carlo truth
(see Sec. 6.1.2.1).
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Carlo truth.
Once the K0

S candidates have been identified, the invariant mass is computed
as follows:

M2
K0
S

= (pπ+ + pπ−)2 = 2 · [m2
π + (Eπ+Eπ− − pπ+ · pπ−)], (6.17)

where pπ are the reconstructed momenta at vertex and the energy is calculated
via Eπ =

√
m2
π + |pπ|2.

Fig. 6.17 shows the invariant mass distribution for the selected π+π− pairs.
The blue dotted line indicates the input K0

S mass value to the simulation;
the red dashed lines define a mass window5 (mK0

S
± 0.015 GeV/c2) in which

a gaussian fit of the distribution has been performed (red curve in the plot).
From this peak fit, it results:

µ = 0.4972± 0.0001 GeV/c2

σ = 0.0065± 0.0001 GeV/c2.

Hence, the K0
S mass resolution results to be 1.31± 0.02%.
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Figure 6.17: K0
S invariant mass distribution. The blue dotted line indicates

the input value of the K0
S mass to the simulation (mK0

S
= 497.67 MeV/c2).

The red dotted lines set the mass window (mK0
S
± 15 MeV/c2). The red full

curve is the gaussian fit of the distribution in the mass window; the parameters
obtained from the fit are reported in the statistics box.

5The width of the mass window has been chosen as in Ref. [21].
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6.2.2.2 ηc candidates selection

In order to select the ηc candidates, only the π+π− pairs whose invariant mass
is included in the mass window defined above have been considered. The ηc
invariant mass has been calculated with:

M2
ηc = (pπ− + pK+ + pπ+(K0

S) + pπ−(K0
S))

2. (6.18)

The invariant mass distribution is shown in Fig. 6.18.
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Figure 6.18: ηc invariant mass distribution. The blue dotted line indicates the
input value for the ηc mass (mηc = 2979.8 MeV/c2). The red full curve is the
gaussian fit of the distribution in the interval [mηc − 150,mηc + 150] MeV/c2;
the parameters obtained from the fit are reported in the statistics box.

From the fit peak in the interval mηc ± 0.150 GeV/c2, it results:

µ = 2.976± 0.001 GeV/c2

σ = 0.0392± 0.0009 GeV/c2. (6.19)

Since the ηc has an intrinsic width, it is necessary to take it into account in
order to calculate the mass resolution due to the detector. This can be done
as follows:

σ2
res = σ2

reco − σ2
intr ' 37.5 MeV/c2, (6.20)

where σintr = Γsim/2.35 = 11.5 MeV/c2, Γsim being the intrisic width value
assumed in the simulation (27 MeV/c2). σreco is the value obtained from the fit
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of the distribution in Fig. 6.18 (σreco = 39 MeV/c2). This leads to an invariant
mass resolution of 1.26± 0.03%.
The obtained resolution can be compared, as an example, to the resolution
of 0.5% declared in Ref. [22] for the ηc invariant mass reconstruction in the
channel B → KK0

SK
−π+. Our result is 2.5 times worse than the resolution in

Ref. [22], but it must be stressed that in the present analysis the kinematic fit
has not been used. Further improvements are expected once the vertex fit will
be ready and could be applied.

6.2.2.3 Results

Concerning the reconstruction efficiency, the results are similar to the ones
obtained for the Ψ decay channel. The percentages are shown in Tab. 6.9 for
single tracks and in Tab. 6.10 for the events.

Table 6.9: Reconstruction efficiency related to single tracks.

n◦ of tracks % of tracks
Simulated tracks 400000
Output tracks from prefit 343989 85.99 (w.r.t. simul.)
Good tracks from Kalman fit 255511 74.28 (w.r.t. prefit)
Good tracks from backpropagation 235528 68.47 (w.r.t. prefit)

Table 6.10: Reconstruction efficiency related to four track events.

n◦ of events % of events
Simulated events 100000
Output events from prefit 56086 56.09 (w.r.t. simul.)
Good events from Kalman fit 14882 26.53 (w.r.t. prefit)
Good events from backpropagation 10126 18.05 (w.r.t. prefit)
K0
S candidates found 25769

K0
S candidates in the mass window 15530

ηc candidates found 5228 9.32 (w.r.t. prefit)

By looking at the values in the tables, the same remarks as for the Ψ channel
can be made.
The difference between the two decay channels is that in the ηc decay only four
tracks instead of six are needed to be reconstructed in order not to reject the
event. As a consequence, the event efficiencies are equal to the fourth power
(instead of sixth power) of the single track efficiency; hence, they are obviously
higher with respect to the corresponding efficiencies in the Ψ case.
In addition, the only cut applied in the analysis step is the one on the mass
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window for the K0
S candidates; any kinematic fit has been applied, so the

events do not have been selected by a χ2 cut. The consequences of this is
that the final percentage of ηc candidates is higher (9.32%) with respect to the
percentage of Ψ(3770) candidates (3.6%). On the other hand, the resolution
both of the ηc and K0

S invariant masses (∼1.25 and 1.31%, respectively) are a
little worse than the D± resolution (∼0.73 - 0.78%).
When a vertex fitting will be ready, the resolution is expected to improve.

6.2.2.4 Results with the resolution curve measured with the Jülich
prototype

The results presented in the previous paragraph have been obtained by using
the COSY–TOF resolution curve (Fig. 4.9) in the sampling of the reconstructed
isochrone radii during the digitization.
As for the Ψ(3770) decay channel (Sec. 6.1.2.6), the simulated data have
been digitized also with the resolution curve measured from the prototype
(Fig. 4.24). The analysis has then been performed as previously described and
the results are shown here.

The K0
S and ηc invariant mass distributions in Fig. 6.17 and 6.18 have to

be compared with the ones in Fig. 6.19 and 6.20 respectively.

First off, it is worth noting that in this case the efficiency values obtained with
the COSY–TOF and the prototype resolution curves are compatible within
1σ.
Concerning the mass resolutions, Tab. 6.11 reports the values of the parameters
of the fitted data, going from 1.31 to 1.40% for K0

S and from 1.26 to 1.48%
in the case of ηc. So the use of the resolution curve obtained with the Jülich
prototype, which is about a factor 2 worse than the COSY–TOF resolution
curve, turns out into a loss in mass resolution of about 9% and 17% in the case
of K0

S and ηc, respectively.

6.3 p−4He annihilations

As already mentioned in Sec. 1.3.3, antiproton annihilations on light nuclei
(such as 4He) could favour the transition to exotic states and quark–gluon
plasma. In addition, it could allow strangeness and charm production studies
in exclusive annihilation channels.
In the light of these interesting perspectives, it has been decided to perform
studies of p−4He annihilations to test the PANDA detector performances ap-
plied to these specific events.
The study is of interest despite the fact the PANDA at present does not plan
to have a 4He target, since similar effects are expected on other light nuclei.
Moreover, in the future a 4He target could be designed for the experiment.
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Figure 6.19: K0
S invariant mass distribution as in Fig. 6.17, obtained with the

resolution curve measured with the Jülich prototype. The parameters reported
in the statistics box are referred to the Gauss function that fits the distribution
in the mass window (mK0

S
± 15 MeV/c2) indicated by the red dashed lines in

figure.

Table 6.11: Comparison of the fit parameters of the K0
S and ηc invariant masses

obtained with the COSY–TOF and Jülich prototype resolution curves (see
Fig. 6.17–6.20).

K0
S COSY–TOF Jülich prototype

µ (GeV/c2) 0.4972 ± 0.0001 0.4971 ± 0.0001
σ (GeV/c2) 0.0065 ± 0.0001 0.0070 ± 0.0006
resolution (%) 1.31± 0.02 1.40± 0.01

ηc COSY–TOF Jülich prototype
µ (GeV/c2) 2.976 ± 0.001 2.974 ± 0.001
σreco (GeV/c2) 0.0392 ± 0.0009 0.0455 ± 0.0009
σres (GeV/c2) 0.0375 ± 0.0009a 0.0440 ± 0.0009
resolution (%) 1.26± 0.03 1.48± 0.03

aRecalling that σres is calculated with Eq. (6.20), the error on σres is the same of σreco
because the error on σint = 0 since the intrinsic meson width Γsim assumed in the simulation
is given without error.
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Figure 6.20: ηc invariant mass distribution as in Fig. 6.18, obtained with the
resolution curve measured with the Jülich prototype. The parameters reported
in the statistics box are referred to the Gauss function that fits the distribution
in the mass window mηc ± 150 MeV/c2.

6.3.1 Event simulation

6.3.1.1 Generation

104 antiprotons at 1.5 GeV/c momentum annihilating on 4He have been gener-
ated with the Ultrarelativistic Quantum Molecular Dynamic (UrQMD) gener-
ator. A detailed description of the UrQMD generator can be found in Refs. [23,
24, 25].
At present, there is no unique theoretical description of nucleus–nucleus in-
teractions, but the UrQMD model is the most appropriate one for the energy
range of the PANDA experiment.
It is a microscopic model based on a phase space description of nuclear reac-
tions. The phenomenology of hadronic interactions at low and intermediate
energies (

√
s < 5 GeV) is described in terms of interactions between known

hadrons and their resonances. At higher energies (
√
s > 5 GeV), the excitation

of colour strings and their subsequent fragmentation into hadrons are taken
into account.
According to the standard UrQMD generator, only direct annihilations on a
single nucleon are possible. In addition, the residual nucleons may interact
with the annihilation products; this rescattering is usually called final state
interaction (FSI).
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6.3.1.2 Simulation chain

The output of the UrQMD generator is a ROOT file that has been used as input
for the simulation – digitization – reconstruction chain. Each of these steps
has been performed exactly under the same conditions described in Sec. 6.1.1.
Just to briefly review, all the sensitive detectors have been included both in
the simulation and in the digitization, in order to take into account the whole
material budget; on the contrary, the global tracking has been performed in
the reconstruction step by using only the information from the tracking de-
tectors of the Target Spectrometer (MVD, STT, GEM). As a consequence,
only charged particles have been reconstructed and not the neutral ones. The
Kalman filter has been applied to the reconstructed tracks. Concerning the
particle identification, the Monte Carlo truth has been used to assign the mass
and the charge to each track.

6.3.2 Analysis results

6.3.2.1 Proton spectra

The momentum distributions of the particles produced in the p−4He annihila-
tions have been studied. Most interesting is the protons distribution, reported
in Fig. 6.21 for the simulated (a) and reconstructed (b) tracks.
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Figure 6.21: Simulated (a) and reconstructed (b) proton momentum distribu-
tions. In plot (a), the blue curve fits the contribution of the spectator protons;
the red curve fits the contribution of the “fast” protons involved in the final
state interactions.

In the simulated spectrum it is easy to identify two different contributions: the
first contribution at low momentum values, around 0.15 GeV/c (blue gaussian
fit in the figure), is associated with the spectator protons (∼ 58%), the ones
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not directly involved in the annihilation, having a momentum equal to the
Fermi momentum. The gaussian fit of the peak suggests it can be estimated
to vary within the range [0, 0.3] GeV/c. The contribution at higher momenta
(red gaussian fit in the figure) is due to the “fast” protons, the ones involved
in the interaction of the final states.
Unfortunately, it is no longer possible to recognize these two peaks in the
reconstructed plot; in fact, after the reconstruction procedure, less than 1%
of the protons survive, as shown in Fig. 6.21.b. This is partially due to a
cut implemented in the algorithm that performs the global tracking: protons
having a momentum smaller than 50 MeV (∼ 5%) are not tracked. Concerning
the other missing protons, their absence may be connected with failures in
the global reconstruction, especially for tracks with low momentum, due to
instabilities in the global tracking code. In addition, a certain number of
reconstructed tracks may have been rejected after the Kalman fit in case it is
failed (negative Kalman flag).

6.3.2.2 p− E plots

In p–nucleus annihilations the use of kinematic fitting is usually impossible
due to the presence of many unmeasured particles. However, useful pieces of
information can be derived from the analysis of the p − E plots that will be
presented in this section [26].

The p−4 He annihilation reactions can be summarised by the following scheme,
according to the role of the initial and final particles:

p4He→ A+ S → (M + U) + S, (6.21)

where A indicates the system composed of the antiproton plus the interacting
nucleons; S stands for the spectator nucleons, the ones with low momentum,
not directly involved in the annihilation process; M are the measured particles,
usually charged mesons and fast protons and U are the unmeasured particles,
mainly π0, K0, n, ps (slow protons) but also missed charged particles.
If the total measured energy and momentum are denoted by E and p, respec-
tively, and the total unmeasured energy and momentum by Eu and pu, the
conservation laws can be written as follows:

E0 = Ep̄ +m4He = E + Eu +ms, (6.22)

pp̄ = p + pu, (6.23)

being ms the mass of the spectator nucleons (∼ hmp, h = 1, 2, 3) and |pp| = 1.5
GeV/c. By introducing the invariant mass Mu of the unmeasured particles,

M2
u = E2

u − |pu|2, (6.24)

from the previous equations it is easy to obtain

pu ≡ |pu| =
√
E2
u −M2

u =
√

(E0 −ms − E)2 −M2
u . (6.25)
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So for fixed values of Mu and ms, pu is a decreasing function of E and becomes
zero when E = Emax = E0 −ms −Mu.
If all the tracks of each event were reconstructed, the events would accumulate
in a blob around the point (pu = 0, E = Emax); if not, they would be spread in
the (pu, E) plane; in particular, they would be placed in the area of the (pu, E)
plot on the left of the line identified by Mu = minimum.
Two physical effects may contribute to the spreading of the events in the (pu, E)
plane far from the sites described by Eq. (6.25): in case the fast unseen nucle-
ons have an invariant mass higher than the sum of their masses, the measured
energy is smaller than expected and the events are shifted to the left–side of
the lines with B = 1, 2, 3. If the annihilating nucleons have some initial mo-
mentum due to the binding in the nucleus (Fermi momentum), instead of a
null momentum, the events are shifted above the point (pu = 0, E = Emax).

Fig. 6.22 shows the event distribution in the (pu, E) plane after the applica-
tion of the Kalman filter to the reconstructed tracks: events with only mesons
(and protons, if present) in the final state have been selected, regardless of the
number of nucleons involved in the annihilation. The spectator nucleons are
not included in the plot.
The coloured lines drawn on the distribution are described by Eq. (6.25), in
correspondence of different values of ms and Mu. In particular, the green
curve refers to the antiproton annihilation on one proton (B = 0) with three
spectators and without unseen particles:

E0 = Ep +m4He

ms = mp + 2mn

Mu = 0.

The maximum energy available in this case is E0 −ms = E1nucl ' 2.68 GeV.
If the annihilations were all of such kind, the events would be distributed in the
left side of the plot and the right side delimited by the green curve (unphysical
region) would be empty. This is not the case since the model used to generate
the p−4He annihilation reactions foresees annihilations on one nucleon plus
final state interactions (SNA + FSI).
The other curves are referred to the antiproton annihilation on two protons
(B = 1) with two spectator neutrons and with various unseen particles: none
(black), one pion (orange), one kaon (violet), one proton (yellow) or one Λ0

(red); in this case:

E0 = Ep +m4He

ms = 2mn

Mu = 0, mπ, mK , mp, mΛ0 .

For these events, the maximum available energy is E0 −ms = E2nucl ' 3.62
GeV.
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Figure 6.22: punseen vs. Emeasured for antiproton annihilations on 4He. Events
with only mesons (and protons) in the final state have been selected. The green
curve identifies the B = 0 annihilations without unseen particles; the other
curves are referred to the B = 1 annihilations, without unseen particles (black
curve), with one unmeasured pion (orange), kaon (violet), proton (yellow) or
Λ0 (red).

As before, the region on the right side of the black curve is the unphysical
one. The points located in that region are associated with tracks with not well
reconstructed momentum (and energy).

The possibility to use the (pu, E) plots to distinguish between annihilations
on a different number (h = 1, 2, 3, 4) of nucleons has been studied.
According to the physical model used to generate these events, only in case of
annihilation on a single nucleon (SNA) the annihilation is direct; when more
than one nucleon is involved in the annihilation, the process comes out from
the interaction of the final state (FSI).
According to the shape of the Monte Carlo momentum distribution of the pro-
tons shown in Fig. 6.21.a (the one for neutrons is similar), nucleons having
a momentum smaller than 0.3 GeV/c can be considered to be spectators in
the annihilation process. So by checking the Monte Carlo momentum of the
nucleons, the number of spectators is deduced; this allows to classify the events
in different groups, depending on how many nucleons are involved in the an-
nihilation, being it SNA or FSI.
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The event distributions in the (pu, E) plane are reported in Fig. 6.23 as a
function of the number of involved nucleons: the figures show the unseen mo-
mentum vs. the measured energy for antiproton annihilations into charged
and/or neutral mesons (π±, π0, K±, K0) in case the annihilation is on one (a),
two (b), three (c) or four (d) nucleons. Fast nucleons (when present), as well
as the spectator ones, have not been included in the plot.
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Figure 6.23: Monte Carlo punseen vs. Emeasured for p−4He annihilations on
one proton (a), two protons (b), three (c) and four (d) nucleons into mesons.
Fast nucleons, when present, have not been included in the plot, as well as
the spectator nucleons. The black curve in (a) is the pu(E) line in the case
B = 0 without unseen particles; the curves in the other plots are the pu(E)
functions for B = 1, 2, 3 annihilations with one, two and three unseen nucleons,
respectively.
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From the figure it is clear that the four groups of events populate different
regions in the (pu, E) plane: in particular, in the case of single nucleon an-
nihilations (Fig. 6.23.a) the events are accumulated in a blob at pu ' 0 and
E ' Emax = E1nucl ' 2.68 GeV. Due to the Fermi motion of the nucleons
inside the 4He nucleus, which cannot be neglected, the contours of the blob
are not well–defined and the spot is positioned at energies slightly higher than
the maximum allowed.
In the case of annihilations on two protons (Fig. 6.23.b), the events are dis-
tributed at higher values of unseen momentum with respect to the previous
case and lie on the pu(E) function for B = 1 and Mu = mp.
Concerning the other two plots (Figs. 6.23.c–6.23.d), the events are more
spread in the (pu, E) plane than in the previous two cases; most of these
events are characterised by unseen momentum values in the range [0.3, 1.2]
GeV/c and energy values in the interval [2.1, 2.5] GeV.
Thanks to the features of these distributions, associated with specific regions
of the (pu, E) plane, it would be possible to identify which kind of annihilation
characterise a certain set of experimental data.
All the plots shown up to now have been produced with Monte Carlo data. In
principle, if the PANDA detector allowed to perform a good track reconstruc-
tion, not only for the charged particles but also for the neutral ones, and in the
hypothesis that no tracks are lost during the global tracking procedure due to
reconstruction failures, the analogous plots filled with the reconstructed data
would be very similar to the simulated ones.
This is not the case if only MVD, STT and GEMs are used to perform the
global tracking: since these subdetectors can track only charged particles, all
the neutral ones are unseen. This results in a spread of the events in the (pu, E)
plot.
To check if it is possible to distinguish between the different kinds of annihi-
lations by looking at the (pu, E) plots and to have a qualitative idea of the
change in the distributions, the events shown in Fig. 6.23 have been reported
in Fig. 6.24 excluding all the neutral particles: not only fast neutrons possibly
present, which were already excluded from the plot, but also neutral mesons
in the final state.
Events with only charged mesons in the final state still occupy the same posi-
tion in the (pu, E) plane; the other events are spread in the plane, depending
on the number of the unseen particles, their masses and momentum values.
Qualitatively, the events with annihilation on a single nucleon (SNA) tend to
form a “cloud” that lies along the B = 0 curve (Fig. 6.24.a); in addition, a
small group of events (the ones with only charged particles in the final state)
still form a spot in correspondence of (pu ' 0, Em ' Emax = E1nucl = 2.68
GeV/c).
Figs. 6.24.c and 6.24.d related to annihilations on more than one nucleon show
that the points are accumulated in a more central region of the plane.
So in this case it is still quite easy to distinguish between SNA and FSI, but
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Figure 6.24: Monte Carlo punseen vs. Emeasured for p−4He annihilations on one
(a), two (b), three (c) or four (d) nucleons into mesons. The events are the
same as in Fig. 6.23, but in these plots neutral particles are considered as
unseen particles (hence, not included). Fast nucleons, when present, have not
been included in the plot, as well as the spectator nucleons. The meaning of
the lines is defined in Fig. 6.23.

it is no longer possible to discriminate between annihilations on two, three or
four nucleons.
It is even more difficult to identify the various annihilation processes from the
(pu, E) plots when the reconstructed data are used. The distributions for the
reconstructed events are reported in Fig. 6.25.
The shapes of all distributions are different with respect to the corresponding
ones of Fig. 6.24: in particular, the events tend to accumulate in the region
where the momentum approaches 1.5 GeV/c and the energy approaches 140
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GeV6. This means that there are many events in which a very small number
of particles has been reconstructed. The low efficiency is mainly due to the
software–related problems already pointed out in the previous sections.
From Fig. 6.25 it is clear that at present it is not possible to distinguish be-
tween SNA and the various cases of FSI only from the analysis of the (pu, E)
plots.
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Figure 6.25: Reconstructed punseen vs. Emeasured for p−4He annihilations on
one (a), two (b), three (c) or four (d) nucleons into mesons. Fast nucleons,
when present, have not been included in the plot, as well as the spectator
nucleons. The meaning of the lines is defined in Fig. 6.23.

6For the events included in the plot, at least one meson has to be reconstructed; so the
minimum measured energy corresponds to the mass of one pion.
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6.3.3 Exotic channel

Another aim of this study is to estimate the ability of the PANDA detector to
extract “exotic” channels from the background.
In order to perform this test, the following channel has been chosen:

p (pp)→ π+π−K+Λ0 → π+π−K+(π−p). (6.26)

This reaction is “exotic” with respect to the antiproton annihilations on hydro-
gen at rest, since in this case it is impossible to produce Λ0 mesons.
The Monte Carlo data presented in Sec. 6.3.2 are used as background, since
they have been generated according to a model that foresees annihilations on
a single nucleon plus interaction of the final states.
The signal events have been generated with the EvtGen generator, by setting
the antiproton annihilations directly on two protons, in order to emulate a
multinucleon annihilation in the case p−4He. The output file of the generation
has then been given as input to the simulation – digitization – reconstruction
chain, with the same procedure described in Sec. 6.1.1. The (pu, E) plot for
the reconstructed events, filled with the momentum values obtained after the
Kalman filter, is shown in Fig. 6.26.
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Figure 6.26: punseen vs. Emeas for the reconstructed events of the annihilation
channel p (pp) → π+π−K+Λ0 → π+π−K+(π−p). The meaning of the lines is
defined in Fig. 6.23.
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The event distribution is particularly interesting and can be easily explained,
since the particles that should be present in the final state are known.
First off, it is evident that the reconstruction efficiency is not 100%: if it
was the case, all the events would accumulate in a spot around the point
(Pu ' 0, E = Emax = E2nucl ' 3.62 GeV).
The effect of the reconstruction is the spreading of the events in the plane. The
area between the orange and the red curves, corresponding to B = 1 annihila-
tion events with one unmeasured pion and Λ0, respectively, are characterised
by a higher population. In particular, the Λ0 missing band is populated by the
events in which both the proton and the pion produced in the Λ0 decay (thus
having an invariant mass of ∼1.12 GeV/c2) have not been meausered.
In order to estimate the capabilities of the detector to extract this specific sig-
nal from the background, the (pu, E) plots for the signal and the background
(Figs. 6.22 and 6.26) have been compared.
For sure, the probability to be able to identify the signal is low if a momen-
tum/energy region where many background events are accumulated is chosen,
like the region at energy values smaller than 1.5 GeV (see Fig. 6.22): with such
a choice, the signal would be merged into the noise represented by the other
channels. On the contrary, it is easier to look for it in a less populated region,
in order to have a higher signal to noise ratio. For this reason, it has been
decided to investigate the region defined by the black lines in Fig. 6.27, where
a large number of events is accumulated in the plot related to the channel
(Fig. 6.26) but there are not so many entries in the background plot.

Fig. 6.28 shows the event distribution in the chosen band for the background
(a) and for the signal (b).
The projections of these plots on the energy axis give the energy profile of
the two distributions: they are reported in Fig. 6.29 for the background (a)
and the signal (b). The different shapes and mean values of the two energy
distributions could be useful for the signal detection.

Suppose now to observe experimentally a distribution such that 10% of the
events are signal events and the remaining 90% are background events. Since
there are no real data from PANDA at present, the“experimental”distribution
has been obtained as described in the following.
First off, it is worth noting that the background and the signal distributions
have almost the same number of reconstructed events (72286 vs. 72111): hence,
taking 10% of the background events corresponds to take 10% of the signal
events. In addition, sampling a certain percentage of events from the original
distribution and looking for the subset of this percentage lying in the selected
band is equivalent to sample the same percentage of events directly from the
original ones that fill the band region.
That being so, the“experimental”distribution has been obtained by adding two
distributions: one obtained by sampling 90% of the events from the background
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Figure 6.27: Same as in Fig. 6.26; in addition, the two black lines define the
region where exotic signals are looked for in the background.
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Figure 6.28: Event distribution for the background (a) and signal (b) events
in the band defined by the black lines (see also Fig. 6.27).

distribution in the band (Fig. 6.29.a) and the other one by sampling 10% of
the signal events lying in the band (Fig. 6.29.b).

192



6.3. p−4He annihilations

Mean    2.337

RMS    0.3938

1 1.5 2 2.5 3 3.5

E
n

tr
ie

s

0

50

100

150

200

250
Mean    2.337

RMS    0.3938

a Mean    2.585

RMS    0.4097

 (GeV)measE
1 1.5 2 2.5 3 3.5

0

100

200

300

400

500

600

700

Mean    2.585

RMS    0.4097

b

Figure 6.29: Energy distributions for the background (a) and signal (b) events
contained in the bands reported in Fig. 6.28.

The “experimental” distribution is the black empty one in Fig. 6.30; the red
dashed histogram represents the background distribution (from Fig. 6.29.a).
The difference between these two histogram is the blue filled distribution, which
represents the signal.
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Figure 6.30: Energy distributions obtained as described in the text. Black
empty histogram: “experimental” distribution; red dashed histogram: back-
ground events; blue full histogram: signal events.
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In order to check the statistical significance of the signal over the background,
the following formula has been used:

n =
Ns√

2Nb +Ns

, (6.27)

where Ns and Nb are the number of signal and background events, respectively,
and n indicates the significance level. In this case, Ns = 1816 and Nb = 9982;
hence the value obtained for the significance is n = 12.3. It means that the
signal can be extracted from the background with statistical significance, being
5 the minimum required.
The same analysis has been repetead by choosing other two bands in the (pu, E)
plot, to check whether there is a region that allows to better identify the signal
from the background. A wider and a narrower bands have been defined: they
are delimited by the black lines in Fig. 6.31.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 (
G

e
V

/c
)

u
n

s
e
e
n

P

0

0.5

1

1.5

2

2.5

3

3.5

0

5

10

15

20

25

30

a

 (GeV)measE
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

1.5

2

2.5

3

3.5

0

5

10

15

20

25

30

b

Figure 6.31: Same as in Fig. 6.27, with a different choice of the bands (defined
by the black lines) in which the signal is search for in the background.

The “experimental” energy distributions have been obtained as previously de-
scribed and subsequently compared with the background distributions; the
signals obtained are the blue filled distributions in Fig. 6.32.

In these two cases, Eq. (6.27) gives the following results:

a. in the case of the wider band (Fig. 6.31.a):

n =
Ns√

2Nb +Ns

=
1600√

2 · 10695 + 1600
= 10.6; (6.28)
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Figure 6.32: Same as in Fig. 6.30 for the bands defined in Fig. 6.31.

b. in the case of the narrower band (Fig. 6.31.b):

n =
Ns√

2Nb +Ns

=
1522√

2 · 6548 + 1522
= 12.6. (6.29)

In both cases, the statistical significance is high.

The significance values obtained when the signal is 10% of the “experimen-
tal” distribution allows to state that, having as a reference a Monte Carlo code
including single nucleon annihilations (SNA) plus final state interactions (FSI),
it would be possible to extract the signal from the background with a statisti-
cal significance greater than 5σ even if the signal is 4–5% of the “experimental”
distribution.
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Conclusions

The PANDA detector is a state–of–the–art internal target detector that will
be built at the FAIR facility in order to study fundamental questions of hadron
and nuclear physics by means of interactions of antiprotons with nucleons and
nuclei. Thanks to the high–intensity cooled antiproton beams that will be
provided by the High Energy Storage Ring (HESR), gluonic excitations, the
physics of strange and charm quarks and studies of the nucleon structure will
be performed with very high accuracy, allowing tests of the strong interaction.
For this reason it is fundamental that the detector is designed to achieve re-
sults with an unprecedented precision.
This thesis is mainly dedicated to the design of the Straw Tube Tracker (STT),
one of the two proposed configurations of the PANDA Central Tracker, used
for the determination of charged particles position, momentum and energy
loss. The performances of all the tracking systems of the PANDA Target
Spectrometer, consisting in the Micro–Vertex Detector (MVD), the STT and
the external Gas Electron Multiplier (GEM) stations placed downstream of
the STT, have been studied too.

After a review of the PANDA physics program (Chap. 1) and of the pro-
posed layout of the detector (Chap. 2), the attention has been focused on the
STT and its components.
First of all, the time and charge responses of the single straw tube have been
described in detail; a description of the simulation of all these processes, from
the electron drift, to the charge multiplication and collection, to the signal
formation, is reported (Chap. 3).

The simulation results have been compared with the experimental ones ob-
tained from the analysis of the data collected with a small prototype available
at the Institut für Kernphysik at the Jülich Forschungszentrum.
Although it is not a complete full–scale prototype of the PANDA STT and it
is equipped with non–dedicated electronics, it consists of four double–layers of
straw tubes similar to the PANDA ones: the tubes have the same geometrical
properties (radius, length, wall thickness), are filled with the same gas mixture
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and are operated at the same high voltage and pressure. So tests with this
small prototype can provide useful hints for the design and construction of the
PANDA STT, as well as for the data analysis.
The experimental data collected with the prototype (cosmic ray events) have
been analysed with software tools implemented ad hoc. A great effort has been
devoted to develop a dedicated method based on an autocalibration technique,
to obtain an accurate knowledge of the space–time information (r(t) relation),
necessary to perform a good track fitting. In addition, a dedicated track re-
construction algorithm has been implemented too.
The results obtained have been discussed in detail (Chap. 4). The attention
has been mainly focused to the spatial resolution of a single tube, which has
resulted to be of about 175 µm. This value is very close to the design goal
of 150 µm, which could be certainly reached by using a dedicated electronics
with a better time resolution.
A plot of the electron drift velocity has been obtained too, showing a good
agreement with the corresponding simulated plot.

Then, systematic studies have been performed with Monte Carlo simulations
with the aim of determine the optimal design parameters for the Central
Tracker, thus allowing to reach the best performances in terms of geometrical
acceptance of the proposed layout, momentum resolution and reconstruction
efficiency (Chap. 5).
The tracker performances as a function of different geometric parameters have
been investigated by using single track events generated with fixed total mo-
mentum and uniformly distributed in the polar and azimuthal angular ranges,
or with fixed total momentum and fixed polar angle θ. In particular, two op-
tions have been compared: one with 120 cm long straw tubes plus four GEM
chambers placed upstream the STT and another one with 150 cm long tubes
plus three GEM chambers. A fine scan of the forward angular region, where
the momentum resolution and efficiency may be mostly affected by the short-
ening of the tubes, has been performed too.
The simulated data have been analised with the software tools implemented
in the PANDA code structure. Their purpose is to reconstruct the particles
path, assuming a large range of approximations at a first step (global track
fitting with helix) and, in a later stage, taking into account the widest range
of path distorsions (Kalman filter recursive method) in order to improve the
momentum resolution. To do this, a track follower is also used (GEANE): it
transports the track parameters and the covariance matrix from one point of
the path to another one.
The results have been extensively discussed. They demonstrate that the perfor-
mances of the two options for the Central Tracker are substantially equivalent
and that the proposed layout allows to reach a resolution close to the design
goal of ∼ 1 − 2%, ranging from 0.72% to 3.6% in case of tracks generated at
the interaction point with fixed total momentum (from 0.3 GeV/c to 5 GeV/c)
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and randomly distributed in θ and φ.

The performances of the Central Tracker have been tested also by studying
two benchmark channels covering relevant topics of the PANDA physics pro-
gram (Chap. 6). The aim is to demonstrate that the proposed detector setup
can fulfil the physics case and that the invariant mass resolution values ob-
tained from the simulations are comparable with the well known results from
other experiments.
The channels that have been simulated realistically are pp → Ψ(3770) →
D+D− and pp → ηc(2979) → K0

SK
+π−, such that only charged tracks (the

only ones the Central Tracker is able to reconstruct) are present in the final
states.
The events have been analised by using the tracking tools mentioned above; in
addition, for the Ψ(3770) channel, a kinematic fit has been tested and applied,
in order to further improve the results.
The attention has been focused on the invariant mass resolutions: for the
Ψ(3770) decay channel, theD± mesons have been reconstructed by the PANDA
Central Tracker with a resolution of 0.73% and 0.78%, respectively, after the
kinematic fit. In the case of the other decay channel, the ηc and K0

S mass
resolutions are ∼ 1.25% and 1.31%, respectively.
Some tests have been also performed to evaluate the dependence of the invari-
ant mass resolution on the spatial resolution of the single straw tubes.
It has been shown that a factor two in the spatial resolution of the single
tube turns out into a loss in invariant mass resolution. In particular, this loss
amounts to ∼ 10% for the D± mesons in the case of the pp → Ψ(3770) →
D+D− channel and of ∼ 9% and ∼ 17% for the K0

S and the ηc, respectively,
in the case of the other decay channel.

Finally, starting from recent results on p−4He annihilations, it has been pre-
sented a proposal for a study of the antiproton annihilations on light nuclei,
since they could allow strangeness and charm production studies in exclusive
annihilation channels and could be a powerful tool to discover possible exotic
signals, like the quark–gluon plasma (QGP) formation.
The p−4He simulated annihilations have been analised with the tracking al-
gorithms already presented and through the study of the punseen − Emeasured
plots: the results obtained show that they could be used to distinguish between
annihilation on a single nucleon (SNA) and SNA combined with the final state
interaction (FSI).
In addition, it has been proved that PANDA would be able to disentangle an
“exotic” signal from the background with a statistical significance of 5σ if the
signal amount is down to 4-5% of the background.

All the results discussed in this thesis have been systematically presented at
the collaboration meetings within the last three years and have converged into
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various technical reports, articles and internal notes.
The work is still ongoing, both from the experimental and the simulation point
of view. In fact, due to the postponed start of the experiment, the software
development has been delayed too, so not all the tools needed for the presented
analyses were available. Once all the software instruments will be ready, the
results will certainly improve.
Despite this, they already demonstrate the feasibility of the PANDA Straw
Tube Tracker and make a decisive step towards its realisation. Globally, as
emerges from this thesis, the proposed layout allows to reach a resolution close
to the required one.
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Appendix A
Mathematics of Kinematic
Fitting

A.1 General algorithm

Let’s denote with α the column vector which represents the np parameters for
each track of a set of n tracks, for a total of N = np × n parameters:

α =


α1

α2
...
αN

 . (A.1)

α0 is the vector of the unconstrained values of the track parameters, for ex-
ample the ones obtained from the track fit.
The r functions describing the constraints can be written as H(α) = 0, H(α)
being a vector H ≡ (H1, H2, · · · , Hr). Expanding about a convenient point
αA, we obtain the linearized equations:

H(α) = H(αA) +
∂H

∂α


αA

(α−αA) = 0. (A.2)

By introducing the r ×N matrix D:

D =



∂H1(αA)
∂α1

∂H1(αA)
∂α2

· · · ∂H1(αA)
∂αN

∂H2(αA)
∂α1

∂H2(αA)
∂α2

· · · ∂H2(αA)
∂αN

...
...

. . .
...

∂Hr(αA)
∂α1

∂Hr(αA)
∂α2

· · · ∂Hr(αA)
∂αN


(A.3)
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and the r × 1 column vector d:

d =


H1(αA)

H2(αA)

...

Hr(αA)

 , (A.4)

Eq. (A.2) can be written as:

H(α) ≡ Dδα+ d = 0, (A.5)

where δα = α−αA.
The χ2 without constraints is:

χ2 = (α−α0)TV−1
α0

(α−α0) (A.6)

where Vα0 is the block diagonal covariance matrix obtained from the track
fitting.
The constraints can be imposed by adding a new term to the χ2 equation; it
is at this stage that the Lagrange multipliers enter the problem:

χ2 = (α−α0)TV−1
α0

(α−α0) + 2λT(Dδα+ d) (A.7)

where λ is the vector of the r Lagrange multipliers.
The solution for α is obtained by minimising the χ2 of Eq. (A.7) with respect

to α and λ. The minimisation conditions
∂χ2

∂α
= 0 and

∂χ2

∂λ
= 0 yield the

following equations:

V−1
α0

(α−α0) + DTλ = 0, (A.8)

Dδα+ d = 0. (A.9)

The ∂
∂λ

equation (A.9) generates the constraint conditions.

The solution of Eq. (A.8) is:

α = α0 −Vα0D
Tλ (A.10)

and shows that α is equal to α0 plus a term proportional to λ, i.e. the con-
straints “pull” the parameters α away from their unconstrained values.
Then, by substituing Eq. (A.10) in Eq. (A.9), we obtain:

0 = D(α0 −Vα0D
Tλ−αA) + d

= Dδα0 −DVα0D
Tλ+ d (A.11)

with δα0 = α0 −αA. Hence:

λ = (DVα0D
T)−1(Dδα0 + d)

= VD(Dδα0 + d) (A.12)
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where the matrix VD = (DVα0D
T)−1 has been introduced.

The full covariance matrix of the new parameters can be computed as:

Vα = Vα0 −Vα0D
TVDDVα0 . (A.13)

Finally, using the conditions in Eq. (A.8) and (A.9), the χ2 of Eq. (A.7) can
be written as:

χ2 = (α−α0)TVα0(α−α0)

= (Vα0D
Tλ)TDTλ

= λT(DVT
α0

DT)λ

= λTV−1
D λ (A.14)

= λT(Dδα0 + d) (A.15)

where Eq. (A.12) has been used in (A.14).
The expression for the χ2 shows quite clearly that it is the sum of r distinct
terms, one per constraint. However, it is possible to identify each of these terms
with a particular constraint just in a very loose sense, since their contributions
are all correlated through VD.
The χ2 value that results from Eq. (A.15) is a measure of how much the
parameters have been “pulled” away from the unconstrained values to satisfy
Eq. (A.2): a high χ2 value means that the parameters have been changed a lot
with respect to their starting unconstrained values. Hence, the track should
be rejected by a χ2 cut (see Sec. 6.1.2.3 and 6.1.2.5).

A.2 The 4C fitter

In the following, the general fitting algorithm described in the previous para-
graph will be specialised for the case of a 4 constraints fit (r = 4) with mass
conservation for the daughter particles. This means that the masses of the par-
ticles are fixed and cannot be modified by the fit. So each track is described
just by three parameters (np): they are the momentum components px, py and
pz. Hence, if we denote the number of tracks (n in Sec. A.1) with nd (number
of daughters of the resonance), α becomes a 3nd × 1 column vector:

α =



px1

py1

pz1
...

pxnd
py nd
pz nd


. (A.16)
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α0 is the vector with the unconstrained values obtained from the backpropa-
gation of each daughter particle to its own vertex:

α0 =



p0
x1

p0
y1

p0
z1

...
p0
xnd

p0
y nd

p0
z nd


. (A.17)

The set of four constraints can be written as:
nd∑
i

pµi − pµC = 0, µ = x, y, z, E (A.18)

where the sum is over the nd daughters and pC is the constrained 4-momentum.
For example, for the decay channel described in Sec. 6.1, pC is set to be equal
to the invariant mass of Ψ(3770). In detail, H(α) = 0 is now:

H1 = px1 + px2 + px3 − pxC = 0

H2 = py1 + py2 + py3 − pyC = 0

H3 = pz1 + pz2 + pz3 − pzC = 0

H4 = E1 + E2 + E3 − EC = 0. (A.19)

By choosing αA = α0, the 4× nd D matrix (Eq. (A.3)) becomes:

D =



∂H1(α0)
∂px1

· · · ∂H1(α0)
∂pz1

∂H1(α0)
∂px2

· · · ∂H1(α0)
∂px3

· · ·
∂H2(α0)
∂px1

...
∂H2(α0)
∂pz1

... · · · ... · · ·
∂H3(α0)
∂px1

...
∂H3(α0)
∂pz1

... · · · ... · · ·
∂H4(α0)
∂px1

· · · ∂H4(α0)
∂pz1

∂H4(α0)
∂px2

· · · ∂H4(α0)
∂px3

· · ·



=



1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

p0
x1

E0
1

p0
y1

E0
1

p0
z1

E0
1

p0
x2

E0
2

· · · · · · · · · · · · · · ·

 , (A.20)

where E0
i and p0

µi (µ = x, y, z and i = 1, 2, · · · , nd) are the energy and momen-
tum components of each track at its vertex, as given by the track reconstruction
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algorithm.
Taking into account the constraint equations (A.19), the 4 × 1 d vector of
Eq. (A.4) is now:

d =


p0
x1 + p0

x2 + p0
x3 − pxC

...

E0
1 + E0

2 + E0
3 − EC

 . (A.21)

Because of the choice αA = α0, δαA = 0; hence, from Eq. (A.14) χ2 = λTd.
The new track parameters α are then computed with Eq. (A.10), where now
λ = VDd. In the hypothesys of a 4C fit with mass conservation, the energy is
then computed with:

E =
√
p2
x + p2

y + p2
z +m2, (A.22)

where pi are the new momentum components, adjusted in order to satisfy the
constraints and m is the unchanged initial mass value, which has been set in
the particle identification step.
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