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Introduction

The hadronization or fragmentation process is the process describing the tran-
sition from a partonic system, namely a physical system composed only of
quarks and gluons, to a system composed of hadrons, namely mesons and
baryons. Considering the color degree of freedom, this transition corresponds
to the confinement of the color inside the hadrons, starting from a system of
colored objects. The hadronization process is driven by the QCD dynamics
in a low energy regime, a condition in which not many theoretical tools use-
ful to make prediction from theory are available. In particular perturbation
theory, which is the general framework used to obtain theoretical predictions
from the QCD in high energy Physics, is not available in this situation because
of the behavior of the strong coupling constant as a function of the energy:
as will be described in the first chapter of the present thesis, the lower the
energy/virtuality of the process and the higher the value of the QCD coupling
constant, with the consequence that, at the hadronization energy regime, a
power series expansion of the QCD transition probability in the coupling con-
stant itself is not possible. Other theoretical approaches, for example Lattice
Field Theory, are more suited for the analysis of static proprieties of the QCD,
like the calculation of the hadron mass spectra.

Because of the above reason, the description of the QCD dynamics for the
hadronization energy range is based, at present, on the usage of various phe-
nomenological models which try to explain the hadronization process starting
from different hypothesis and including different features of the fundamental
theory of reference, like the QCD preconfinement or the behavior of the color
field. One of these approaches, which is also the first one historically developed,
preceding the introduction of the QCD itself, is strongly based on a statistical
formulation of the hadronization problem: these phenomenological models are
globally known as Statistical Hadronization Models and have been introduced
originally by Fermi and Hagedorn, who formulated the hypothesis that in a
high energy collision a set of extended objects, called clusters, are being cre-
ated. In this set of models the hadrons come from the hadronization of these
objects, which are considered as equivalent to a set of statistical ensembles
whose particular states correspond to the possible hadronization channels. Dif-
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INTRODUCTION

ferent approaches are possible within this class of models, depending on which
kind of statistical ensemble is associated to the clusters, namely the micro-
canonical, canonical or grandcanonical one. These formulations give different
levels of conservation of the quantities involved in the hadronization process,
like energy-momentum and electric charge. In particular, as will be discussed,
the microcanonical formulation is the one which assures the exact conservation
of the considered physical quantities and therefore is the most suited for the de-
scription of the hadronization process in a high energy collision. Nevertheless,
this is also the most demanding approach from a computational point of view,
with respect to the other formulations, and for this reason the largest part of
the data analysis based on the Statistical Hadronization Model has been done
using the (grand)canonical approach. This is one of the general motivations of
the present work, namely to begin an extensive analysis to evaluate the power
of the microcanonical model to reproduce the experimental data.

One of the most effective ways to verify the validity of a hadronization
model is based on its implementation in a Monte Carlo event generator, which
gives the opportunity to check the predictions of the hadronization model via
a comparison of the results obtained by the numerical simulation with the
corresponding experimental data. A large set of hadronization models have
been implemented in the available Monte Carlo event generators, in particular
in the ones focused on High Energy Physics. Nevertheless no one of these
codes gives the possibility to use the statistical model for the simulation of the
hadronization step: this is the main motivation of the present work, which is
focused on the development of a Monte Carlo code, MCSTHAR++, implementing
the Statistical Hadronization Model (in particular in the microcanonical formu-
lation) and on the inclusion of this hadronization module in the available event
generators, with the final goal of checking the reliability of this model and of
building a statistical hadronization ”plug-in”which could be used alternatively
to the standard hadronization codes.

The present thesis will describe the above research work, starting from the
description of the hadronization problem and a discussion on the available
hadronization models contained in the first chapter. The second chapter is
focused on the microcanonical formulation of the statistical model, the one on
which MCSTHAR++ is based, and gives a description of the model itself beginning
from an overview of the original Fermi and Hagedorn models to arrive to the
modern formulation of the Statistical Hadronization Model. In particular,
starting from the fundamental hypotheses of the model, the microcanonical
transition probability, which represents the probability to produce a particular
channel, is derived, describing the inclusion of the quantum statistics, related
to the presence of identical particles in the final state, and of the interactions
among the produced hadrons. Finally a discussion on the free parameters
needed by the model is presented.

The details of the developed code, of the various algorithms used and of the
interfacing of MCSTHAR++ to the external event generators HERWIG6.510 and
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INTRODUCTION

Herwig++ will be discussed in the third chapter. More in detail, after a descrip-
tion of the general structure of the code, the single steps performed during the
hadronization process are discussed giving the details of the algorithms used to
choose the hadronization channels, the corresponding kinematical configura-
tions, the initial merging procedure on the input clusters and of the procedure
used to get the information about the microcanonical partition functions of the
clusters appearing during the simulation, an information needed to correctly
normalize the event weight. The last part of the chapter is focused on the par-
ticular strategy adopted to obtain this information in a fast way and on the
description of the interfacing of MCSTHAR++ to HERWIG6.510 and Herwig++.

Finally, in the fourth and last chapter the numerical results obtained for
LEP experimental setup, for a center of mass energy of 91.2 GeV , will be pre-
sented, together with a discussion on a preliminary tuning of the hadronization
model and a comparison with the predictions of HERWIG6.510 and its standard
hadronization model: after a description of the considered observables, whose
definitions are reported in the appendix of the present thesis, the results ob-
tained for the hadronization of light quarks only and the ones for the full
hadronization process are shown, with a comparison against the correspond-
ing LEP data and HERWIG6.510 results, for a large set of particle multiplicities,
event shape and single particle distributions. The search for a preliminary best
fit configuration of the MCSTHAR++’s parameters is also discussed, in view of
the final tuning of the code.
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Chapter 1
Event generator structure and
hadronization models

In the present chapter a description of the hadronization problem, together
with an overview of the hadronization phenomenological models implemented
in the available Monte Carlo event generators for High Energy Physics, will be
given setting the general framework of the present work. The main features
of each model are discussed in order to better understand the differences and
advantages characterizing the Statistical Hadronization Model, which will be
presented in the next chapter.

1.1 Event evolution and the hadronization process

The description of the evolution of an high energy collision, in a Monte Carlo
event generator, is based on the separation of the whole event in a set of steps,
which can be summarized in the following list:

1. Considering for example a hadron-hadron collision, the first step is the
choice of the interacting partons and of their momentum, which is done
using the parton distribution functions.

2. The description of the parton evolution, due to the emission of colour
radiation. This step is performed using a parton shower algorithm.

3. The hard-scattering between the evolved partons: this step is associated
to the calculation of a matrix element describing the transition probabil-
ity for the elementary processes involved in the main collision.

4. The description of the radiation emission by the hard scattering final
state partons, obtained as in item 2.

5. The inclusion of the interactions among the partons not involved in the
hard scattering (Underlying events).
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1. Event generator structure and hadronization models

6. The transition from the partonic state, composed only of quarks and glu-
ons, to the hadronic state, in which the QCD parton colors are confined
within the hadrons (mesons and baryons).

7. The processing of the produced unstable hadrons, whose decay gives the
final state particles.

The above separation is strongly related to the factorization theorem [1],
which allows to compute/simulate each step separately by factorizing the
long-distance contributions to the collision cross section from the short-distant
one. The emphasized step is known as hadronization (or fragmentation) pro-
cess and, as it has been said in the introduction, it is the general topic of
this thesis. The possiblity to describe the previous steps within the QCD per-
turbative framework, as can be done for example for the hard-scattering and
the radiative correction calculations, is related to the behaviour of the QCD
coupling constant αs as a function of the process energy/virtuality. As can be
seen in Fig. (1.1), the αS constant behaviour is such that at energies smaller
than about 1 GeV the perturbative calculations are not possible anymore.
This range of energy is the one characterizing the parton-hadron transition
point of a collision evolution, so that a fundamental description of the confine-
ment process is not possible and the introduction of phenomenological models
describing the hadronization process is mandatory. Actually, even though a
description of this process based on the QCD perturbative framework is un-
available, it is important to remember that within this framework some ”hints”
of the above transition are present. In particular, these hints are related to the
QCD preconfinement property [2], which in its turn is related to the angular
ordering in the parton emission of the QCD shower. Thanks to this ordering
condition, the partons producing a colour singlet appear close to each other in
the event phase space and the production of these colourless pairs can be seen
as the first step towards the production of physical hadrons.

As will be described in the next section, different approaches can be used
in the development of a phenomenological model describing the hadronization
process. In particular at present two different classes of models are available in
the Monte Carlo codes: the cluster models, which are strongly inspired by the
above mentioned QCD preconfinement property, and the string models, which
describe the hadronization process as a fragmentation of a string connecting
the partons, which in its turns represents the color field describing the interac-
tions among the partons themselves. Moreover a completely independent class
of hadronization models, inspired by statistical mechanics and describing the
hadronization as a termodynamical process, exists even if at present no one of
these models is available in a Monte Carlo event generator. This last class is
the main subject of this thesis and will be introduced in the next chapter.
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1.2. Overview of the available hadronization models

Figure 1.1: αs value measured by JADE experiment in 4-jet production events,
together with the corresponding results from OPAL, ALEPH and DELPHI
experiments at LEP. The lines indicate the QCD prediction for the running of
αs with αs(MZ0) = 0.1182 ± 0.0027 [20].

1.2 Overview of the available hadronization models

Many different hadronization models have been developed and implemented in
the Monte Carlo event generators for High Energy Physics. In the following
lines a short description of these models and of the corresponding free param-
eters will be given while more detailed information can be found in the cited
event generator manuals.

The first model presented is the Independent fragmentation model [3], stud-
ied by Field and Feynman and available as alternative fragmentation model in
Pythia [10, 11]. In this model the confined states are produced by an iterative
algorithm which works on each single parton present at the end of the QCD
shower, so that the hadronization of a set of quarks is obtained as a set of
independent fragmentation processes. More in detail, the algorithm produces
the hadrons starting from a quark q, for example, picking from the vacuum
a q1q̄1 pair and coupling the anti-quark q̄1 to the quark q to produce a me-
son qq̄1 and similarly for the involved antiparticles. The flavor of the quark
q1 is randomly chosen with probability given by u : d : s = 1 : 1 : λS with
λS = 0.3. When a gluon appears at the end of the shower one of the following
two alternative strategies is followed, before starting again the previous algo-
rithm: the first consists in splitting the gluon into a qq̄ pair according to the
Altarelli-Parisi splitting function [12] . The alternative one is based again on
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1. Event generator structure and hadronization models

the split of the gluon into a qq̄ pair, but in this case the gluon’s momentum is
entirely assigned to one of the two new partons with equal probability, so that
the gluon behaves as a quark (or antiquark). In each case the quark flavor
is again randomly extracted among u,d and s with relative probability given
by the proportion 1 : 1 : λS. An important drawback of this model, which is
common also to other models which will be described here, is that the frag-
mentation algorithm gives information only about the flavor composition of
the produced mesons and baryons, but it does not choose a particular hadron.
This problem is solved, for this model, considering as possible hadrons only
the set of particles included in the light multiplets and introducing a set of free
parameters to choose the spin of the produced hadrons.

While this model is available in Pythia as alternative hadronization model,
the main model of this event generator is the String fragmentation model (or
Lund model) [5]. In this model a color string is supposed to connect the final
state partons trying to keep them close to each other with an attractive linear
potential. Considering for simplicity a string connecting a quark q to an anti-
quark q̄, the hadron production is obtained in the following way: as the quarks
move apart the string length increases and because of the color potential also
the amount of potential energy carried by the string increases, so that at some
point it becomes energetically more convenient to break the string into shorter
fragments with a smaller overall potential energy, using the energy excess to
pick parton-antiparton pairs from the vacuum which, together with the already
present partons, represent the extremes of the new string fragments. This pro-
cess is then repeated iteratively on the new string fragments, until the energy
carried by the new strings is large enough to allow a convenient energy bal-
ance in the fragmentation algorithm, otherwise the parton pairs connected by a
string fragment are considered as final hadrons. The transverse momentum of
the new partons picked from the vacuum is obtained by two independent sam-
plings of a gaussian distribution, this transverse momentum being transferred
to the newly created hadron. The longitudinal momentum pz and the energy
E of the new hadron are defined as a fraction 1 − z of the same quantities
belonging to the original pair using a fragmentation function f(z), while the
remaining fraction z is assigned to the unpaired parton. Actually, only one of
the two previous quantities can be fixed, since a constraint on the transverse
momentum is already present. Therefore, to obtain the longitudinal boost
invariance in a iteration from the quark end, the quantity considered is the
combination E +pz (and E−pz). In particular the energy-momentum transfer
is given by

(E + pz)new = (1− z) (E + pz)old (1.1)

(E − pz)new = (E − pz)old −
m2

t

z (E + pz)old

, (1.2)

where m2
t = m2 + p2

x + p2
y. In this formulation the fragmentation function
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1.2. Overview of the available hadronization models

f(z), which determines the distribution of z, can be chosen almost arbitrarily.
However, assuming for simplicity a 2-jet event, if a symmetry condition on the
result of the fragmentation process with respect to the quark taken as starting
parton for the fragmentation algorithm is required, the choice being between
the quark and the antiquark coming from the hard scattering, the definition
of the fragmentation function is almost unique and represented by the Lund
symmetric fragmentation function:

f(z) ∝ 1

z
(1− z)a exp (−bm2

t /z), (1.3)

where a and b are two free parameters and where mt is the transverse mass of
the created hadron.

The baryon production can not be included in this hadronization algorithm
in a unique way and two different procedures have been introduced to solve
this problem: the diquark picture [10] and the popcorn picture [6]. In the first
case the baryon production is obtained by simply assuming that also diquarks
could be picked from the vacuum during the string breaking and then using
the same machinery described above. In the second framework a different
procedure, which does not involve diquarks, is used: normally the quark pair
picked from the vacuum (q1q̄1) is a color singlet carrying the same color of
the quark and antiquark pair (qq̄) whose connecting string has been broken
to create the new pair. In this case the new quark (antiquark) q1 (q̄1) is
pulled, by the color field, toward the old preexisting antiquark (quark) q̄ (q)
creating a new color singlet q1q̄ (qq̄1). Occasionally the new pair can have a
different color, a condition with no net color field acting among the old and
new partons, the only field being between the new quark and antiquark. In this
field an additional pair q1q̄2 can be created, where now q2 (q̄2) is pulled toward
the pair qq1 (q̄q̄1). In these conditions a baryon (antibaryon) made up of q1, q2

and an additional quark q4 produced between q and q1 (q̄1, q̄2 and an additional
quark q̄5 produced between q̄ and q̄1) would be created. Also this model gives
only the information about the flavor composition of the new hadrons but
says nothing about the particular mesons and baryons produced during the
hadronization process. Again, this problem is solved by the introduction of a
set of free parameters which are used to choose a particular hadron given its
flavor composition.

The list of free parameters characterizing the String model is quite long and
partially dependent on the user choices for the particular algorithms adopted
during the fragmentation process. The full set of parameter can be found in
the code’s manual, while a shorter list of the parameters involved in the last
tuning of the generator is the following [13]1:

1In the lists of free parameters, only the parameters strictly belonging to the hadroniza-
tion model have been included: the QCD shower cutoffs and energy scale for example, which
are parameters common to all the generators presented here, are therefore excluded from
the list even if they are fundamental in the determination of the hadronization results.
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1. Event generator structure and hadronization models

• PARJ(1): this parameter determines the suppression of diquark-antidiquark
pair production in the colour field compared with quark-antiquark pro-
duction.

• PARJ(2): same as above but for the suppression of s quark pair produc-
tion compared with u or d pair production.

• PARJ(3): same as above but for the extra suppression of strange diquark
production compared with the normal suppression of strange quarks.

• PARJ(4): same as above but for the suppression of spin 1 diquarks com-
pared with spin 0 ones (excluding the factor 3 coming from spin count-
ing).

• PARJ(11): this parameter fixes the probability that a light meson (con-
taining u and d quarks only) has spin 1.

• PARJ(12): same as above but for the probability that a strange meson
has spin 1.

• PARJ(13): same as above but for the probability that a charm or heavier
meson has spin 1.

• PARJ(21): this parameter corresponds to the width σ in the Gaussian
px and py transverse momentum distributions for primary hadrons.

• PARJ(41): this parameter gives the a parameters of the symmetric Lund
fragmentation function (1.3).

• PARJ(42): same as above but for the b parameter.

• PARJ(47): this parameter allows the modification of the Lund symmetric
fragmentation for heavy endpoint quarks, in this case for b quark.

• PARJ(25): this parameter sets the extra suppression factor for η produc-
tion in fragmentation.

• PARJ(26): same as above but for η′.

A completely independent hadronization model is represented by the Clus-
ter hadronization model [4], the fragmentation model used by the event gener-
ator Herwig [8, 9]. This model is based on the QCD preconfinement property
which has been described in the previous section: after the QCD shower and
the non perurbative split of the potentially present gluons, the final partons,
which thanks to the preconfinement are disposed in the phase space in such a
way to form colorless pairs, are coupled to build colorless objects called clus-
ters. These objects, composed of a quark-antiquark, diquark-antidiquark or
quark-antidiquark (and vice versa) pair, are characterized by a mass spectrum
independent of the main process energy and collision type (e+e−, pp̄ or pp).
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1.2. Overview of the available hadronization models

For this reason they can be considered as pseudo resonances and decayed into
hadrons as it would be for real particles, following the procedure described in
the following lines. In the general case a two-body decay is considered, with
the cluster decaying into a hadron pair in which the particles, whose flavor is
determined as described in what follows, are chosen with probability propor-
tional to phase space availability and spin multiplicity. However, to be the two
body decay a reasonable hypothesis, the cluster mass has to be not too high.
In particular it must be under a maximum limit fixed by the formula:

MCLPOW = CLMAXCLPOW + (m1 + m2)CLPOW, (1.4)

where M is the maximum mass limit, m1 and m2 the mass of the partons
composing the cluster and CLMAX and CLPOW two phenomenological parameters
of the model which need to be fixed by the tuning of the model predictions
on the experimental data. All the too heavy clusters, with mass larger than
the limit fixed by the previous equation, are fissioned into two lighter clusters,
picking from the vacuum a qq̄ pair chosen among the light quarks only, which
is used together with the partons composing the original cluster to build the
two new clusters, in a way similar to the one which will be described for
the hadron production step. This fission procedure is repeated iteratively on
all the clusters to be hadronized until all their masses are under the mass
limit. Moreover it is also possible, for a cluster, to be too light for a two
body decay: in this case the cluster itself is considered to be a hadron, in
particular the lightest one with the same flavor content, shifting the mass
of the light cluster to the correct value by a momentum exchange with a
neighbouring cluster. This procedure would fail for a light diquark-antidiquark
cluster: in this case the momentum exchange among the clusters is used to put
the mass of the cluster above the two body decay threshold. At this point the
remaining clusters are ready to be hadronized in the standard way: for each
one of them a flavor-antiflavor ff̄ is chosen randomly with f among u, d,
s, their six combinationsin a diquark and c. These new partons are used to
build the two primary hadrons into which the cluster will decay isotropically
with the following recipe: supposing to start from a f1f̄2 cluster, the primary
hadrons will have flavor compositions f1f̄ and ff̄2. Also in this case, of course,
the flavor composition is not enough to fix a particular hadron: within this
framework, once the hadron flavors have been determined, the decay products
are randomly chosen among the particles with appropriate flavor composition,
according to the phase space availability and spin degeneracy of each possible
channel.

The list of the free parameters of the model involved in the tuning of the
model itself on the experimental data [14] is given by:

• CLMAX: as can be seen in Eq. (1.4), this is one of the two parameters
which determine the maximum allowed cluster mass value. Above this
limit the cluster split process is called.

11



1. Event generator structure and hadronization models

• CLPOW: this is the second parameter which defines the maximum cluster
mass.

• CLMSR(1): in the decay of a cluster, this parameter controls the gaussian
smearing of the hadron direction with respect to the direction of the
constituent quark, for light and charm quarks.

• CLMSR(2): similarly to the previous parameter, this one controls the
gaussian smearing for the bottom quark.

• PSPLT(1): this parameter determines the mass distribution in a cluster
splitting, for u, d, s and c quarks only.

• PSPLT(2): this parameter has the same role of the previous one but for
b quark.

• DECWT: this parameter gives the relative weight for the production of
decuplet baryons compared to octect baryons.

The last hadronization model presented in this short overview is the Modi-
fied cluster hadronization model [7], which has been implemented in the event
generator Sherpa [15]. This model is quite similar to the previous one, since
also in this case the partons present at the end of the QCD shower and af-
ter the non perturbative gluon splitting are paired to build colorless clusters,
which are decayed with a procedure very similar to the previously discussed
one. Nevertheless some interesting new features are present here, with respect
to the standard cluster model, starting from the cluster building, since in this
new model also non planar diagrams (and therefore parton pairings) are taken
into account and chosen according to the suppression factor 1/N2

c , where Nc

is the number of colors. Another fundamental difference with respect to the
original cluster model is given by the diquark spin, which in this new model
is explicitly taken into account. As a consequence, diquarks with the same
flavour can appear, during the hadronization process, with different spin con-
figurations: a diquark state like ud, for example, can appear both as ud0 and
ud1.

In this case the list of free parameters involved in the hadronization process
is [16]:

• STRANGE_FRACTION: this parameter defines the rate of strange quark pro-
duced from the vacuum during the cluster decay.

• BARYON_FRACTION: same as above but for the diquark production.

• P_{QQ_1}/P_{QQ_0}: this parameter determines the relative ratio of pro-
duction of spin-1 diquarks with respect to spin-0 ones.

• P_{QS}/P_{QQ}: same as above but for the diquarks containing a strange
quark with respect to lighter diquarks.

12



1.2. Overview of the available hadronization models

• P_{SS}/P_{QQ}: same as above but for ss diquarks.

• TRANSITION_OFFSET: this parameter sets the maximum mass value for a
cluster decaying in 1 hadron.

• DECAY_OFFSET: same as above, but for 2-body decay.

• C->H_TRANSITION_FACTOR: this parameter is used to change the relative
probability ratio between the cluster transition into one hadron and its
decay in a hadron pair.

• C->HH_DECAY_EXPONENT: this parameter is used to tune the 2-body decay
probability, allowing to increase the production of heavy hadrons.

• SINGLET_SUPPRESSION: this parameter reduces the transition probability
to single-octet mixed states in the meson sector.

• MULTI_WEIGHT_L0R0_PSEUDOSCALARS: this parameter is used to change
the pseudoscalar hadron multiplet production probability. The following
parameters have the same role for different hadron multiplets.

• MULTI_WEIGHT_L0R0_VECTORS

• MULTI_WEIGHT_L0R0_TENSORS2

• MULTI_WEIGHT_L1R0_SCALARS

• MULTI_WEIGHT_L1R0_AXIALVECTORS

• MULTI_WEIGHT_L1R0_TENSORS2

• MULTI_WEIGHT_L2R0_VECTORS:

• MULTI_WEIGHT_L0R0_N_1/2

• MULTI_WEIGHT_L0R0_N*_1/2

• MULTI_WEIGHT_L0R0_DELTA_3/2

• C->HH_DECAY_THETA_EXPONENT: this parameter characterizes the trans-
verse momentum distribution of the hadrons produced in the cluster
hadronization.

13
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1.3 The Statistical Hadronization Model and
Heavy Ion Physics

As will be discussed in the next chapters, a completely different approach for
the description of the hadronization process based on a statistical formulation
is possible. The hadronization models built within this framework are known as
Statistical Hadronization Models: even though these models are not available
in the Monte Carlo event generators for High Energy Physics, they are widely
used by the Heavy Ion Physics simulation codes, like SHARE [17], THERMUS
[18] and THERMINATOR [19]. The first two codes are focused on the statistical-
thermal analysis of the heavy ion collision data, allowing the calculation, in
the statistical framework, of hadron abundances starting from the set of free
parameters needed by the model used for the analysis, with the possibility
to choose among different formulations of the statistical model itself. The
third code, THERMINATOR, is to some extent an extension of the previous ones:
including a description of the fireball evolution and dynamics, it is able to
give the full space-time and momentum information of the produced particles,
allowing the calculation of a set of interesting distributions like the transverse
momentum of the identified particles. With the described features, each one of
the above codes gives the possibility to test the physical hypothesis adopted,
both for the theoretical model used and for the corresponding free parameters,
thanks to a best fit of the theoretical predictions on the available experimental
data of heavy ion collisions.

A similar public tool, which could be used to study the performances of
the statistical model in High Energy Physics is still missing: in the next chap-
ters the development of a prototype of such a kind of code will be described,
with a particular emphasis on the microcanonical framework. Moreover, the
developed code allows for an analysis of the Statistical Hadronization Model
performances within a full event simulation including all the steps of a high
energy collision, a missing feature of the codes listed above.
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Chapter 2
The Statistical Hadronization
Model

The Statistical Hadronization Model can be built starting from different sta-
tistical hypothesis, leading to different formulations of the model itself. The
present work however is focused on the microcanonical formulation of the
model itself which, as will be discussed, is the most suited for the high en-
ergy collisions considered here. In the next sections, after a brief overview of
the historical evolution of this model, its microcanonical formulation will be
derived and its most relevant features discussed, giving the information needed
for the development of the Monte Carlo code which will be described in the
next chapter.

2.1 General features of the model

As it has been discussed, a completely independent set of hadronization mod-
els, based on a statistical interpretation of this process, exists. The history of
these models begun with a work by Fermi [21] who, trying to explain the mul-
tiparticle production in pp collisions, hypothesized that the particles produced
in such a kind of collisions originate from an excited region with an uniform oc-
cupation of the available phase space states. However, the isotropical particle
emission in the center of mass frame of the reaction, which is one of the con-
sequences of the hypothesis of Fermi’s model, disagrees with the experimental
data.

This problem has been addressed some years later by Hagedorn [22], who
refined the model introduced by Fermi postulating the existence of two ex-
cited regions emitting the hadrons and moving apart longitudinally in the
collision center of mass. In its model, which is known as Statistical Bootstrap
Model, Hagedorn hypothesized also a full equivalence between these excited
objects, which he called clusters or fireballs, and a thermodynamical ensemble
of hadrons at equilibrium. Because of this condition it follows that the mass
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2. The Statistical Hadronization Model

spectrum of the resonances can be derived from the calculation of the multi-
hadronic state density, obtained considering all the hadrons and clusters with
mass smaller than the mass value at which the spectrum is calculated. To
understand the above general consideration it is useful to consider a particular
case, for example the one of the nuclear matter: considering a set of b nucleons,
the total number of possible ”clusterizations” of these particles (from the state
given by b/2 two-particle clusters to the one given by two (b/2)-nucleon clus-
ters), which can be viewed as the possible states of the ensemble, are described
by a function ρ(b) obeying the equation

ρ(b) = ρ(1)δ(b− 1) +
b∑

j=2

1

j!

∑

{bi}j

δ(
j∑

i=1

bi − b)
j∏

i=1

ρ(bi), (2.1)

where the sum is over all the sets with j elements (clusters) with bi ∈ {1, ..., b−
1} and where the conservation of the baryonic number is imposed by the Kro-
necker delta function. Switching to a continuos variable m, which can be seen
as the mass of the system, the above equation becomes

d(m) = d0(m) +
∞∑

j=2

1

j!

∫ ∞

0

dm1

∫ ∞

0

dm2 · · ·
∫ ∞

0

dmjδ(m−
j∑

i=1

mi)
j∏

i=1

d(mi).

(2.2)
The previous equation reflects the fact that a cluster described by d(m) consists
of an arbitrary number of clusters of smaller mass, each of which is in its turn
made of an arbitrary number of lighter clusters as can be obtained iterating the
equation itself. The above equation is the simplest and most generic bootstrap
equation, whose solution is given by the exponential function

d (m) ∝ ma exp (m/T0), (2.3)

where m is the resonance mass and where a and T0 are two free phenomenolog-
ical parameters. It is important to note that the same exponential behavior is
present also in the experimental data, as can be seen in Fig. (2.1), in particular
in the small mass range, where the resonance spectrum is better known.

The interest in this phenomenological model of strong interactions has been
reduced by the introduction of the QCD and its fundamental approach, while
the Statistical Hadronization Model has conserved its importance in the study
of ultrarelativistic heavy ion collisions [23], in particular thanks to the hy-
pothesis that an equilibrated hadron source gas in this kind of collisions could
be a signature of the formation of a transient Quark Gluon Plasma. Indeed
the production of an almost equilibrated hadron gas in ultrarelativistic heavy
ion collisions has been confirmed [24] and, at the same time, the interest in
the Statistical Model has been also revived thanks to its capacity to repro-
duce with very good agreement the particle multiplicities observed in different
elementary collisions [29, 30, 31] together with their transverse momentum
distribution [32].
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2.1. General features of the model

Figure 2.1: Hadronic experimental mass spectrum [25]

Various formulations of the Statistical Hadronization Model are possible,
assuming a different statistical ensemble for the multi-hadronic system: mi-
crocanonical, canonical, grandcanonical and so on, each of which corresponds
to a different level of conservation of the physical quantities of interest for
the considered system. Even if the microcanonical formulation, which corre-
sponds to the exact conservation of all the quantum numbers of a cluster in
the hadronization of the cluster itself, is the correct one as it is described in
[27], the largest part of the data analysis based on the statistical framework
has been done using the canonical and grandcanonical formulations: within
this frameworks the quantum numbers are conserved only on average, with
the advantage of dealing with more easier calculations compared to the micro-
canonical case, while the (grand)canonical model is a good approximation of
the microcanonical one for heavy clusters. However it is worth to face the com-
putational problems involved in using the last formulation to obtain a more
precise check of the reliability of the Statistical Hadronization Model, in par-
ticular for high energy collisions since, in this case, the clusters are on average
light enough to exclude the above approximation [26].

For the same reason it must be also taken into account that some observ-
ables, which could be used to check the theoretical predictions of the model,
are determined not only by the hadronization process but also by the previ-
ous steps of the event evolution, like the QCD parton shower. Therefore it
would be useful to have at disposal a full event generation using the Statisti-
cal Hadronization Model for the hadronization process, to make a comparison
between theoretical predictions and experimental data on a large set of observ-
ables.
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2. The Statistical Hadronization Model

2.2 The microcanonical formulation of the statistical
model

The next chapters will describe the implementation of the Statistical Hadroniza-
tion Model in its microcanonical formulation in a Monte Carlo code and the
comparison between the experimental data and the theoretical predictions ob-
tained using that code to simulate high energy collisions, therefore it is now
mandatory to give a rigorous formulation of the model. As it is described in
[27] and [28], the fundamental assumptions of the Statistical Hadronization
Model are the following:

• In a high energy collision a set of extended objects made of pre-hadronic
matter, called clusters or fireballs, are being created.

• Each of these clusters is a colorless object with well defined physical
quantities, like energy-momentum and electric charge, which hadronizes
according to a specific statistical law.

• In the present case, which refers to the microcanonical formulation of the
model, in the hadronization of each cluster all the multi-hadronic states
confined within the cluster itself and conserving all its physical quantities
are equally likely.

Various sets of conservation laws can be used, with reference to the the last
item: in the present work, in particular, the conservation is imposed on energy-
momentum (P ) and on the set of abelian charges composed of electric charge
(Q), strangeness (S), baryonic number (B), charm (C) and beauty (Bt).

Starting from the fundamental assumptions of the model, the transition
probability for the cluster hadronization will be now derived. The first step is
the calculation of the microcanonical partition function Ω, which is defined as

Ω =
∑

hV

〈hV | P̂i | hV 〉, (2.4)

where the sum is over all the multi-hadronic states | hV 〉 confined inside the
cluster of volume V and P̂i is the projector on the conserved quantities, which
in the present case are the energy-momentum and the abelian charges. How-
ever, to be useful in the event generation, it is necessary to obtain the proba-
bility to produce, in the hadronization of a cluster, an asymptotic state | f〉:
in most cases the difference between confined and asymptotic states is ne-
glected, working in the so called large volume approximation in which the two
kind of states are identical. Nevertheless, the finite volume condition leads
to important effects which are among the most notable features of the model,
namely the Bose-Einstein and Fermi-Dirac statistics effects due to the presence
of identical particles in the final states. For this reason in the present work
the large volume approximation will not be adopted, taking into account the
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2.2. The microcanonical formulation of the statistical model

difference between confined and asymptotic states and deriving the transition
probabilities as described in the following lines.

Using the identity spectralization on the final state set, the previous equa-
tion can be written as

Ω =
∑

hV

〈hV | P̂i | hV 〉

=
∑

hV ,f

〈hV | P̂i | f〉〈f | hV 〉

=
∑

f

〈f | P̂V P̂i | f〉,

(2.5)

where

P̂V =
∑

hV

| hV 〉〈hV |

is the projector on the confined states. The previous equation can be slightly
modified adding another projector on the conserved quantity P̂i, obtaining the
following modified partition function:

Ω′ =
∑

f

〈f | P̂iP̂V P̂i | f〉. (2.6)

The modification introduced gives a sum over positive defined quantities
whose value is proportional to the real microcanonical partition function (2.4):

Ω′ =
∑

f

〈f | P̂iP̂V P̂i | f〉

=
∑

hV ,f

〈f | P̂i | hV 〉〈hV | P̂i | f〉

=
∑

hV ,f

〈hV | P̂i | f〉〈f | P̂i | hV 〉

=
∑

hV

〈hV | P̂i
2 | hV 〉

= a
∑

hV

〈hV | P̂i
2 | hV 〉 = aΩ,

(2.7)

where a is a positive and divergent constant which takes into account the ”nor-
malization” of the projector on continuous quantities like energy-momentum.
At this point the transition probability for the hadronization of a cluster into
a final asymptotic state | f〉 can be defined as

pf =
〈f | P̂iP̂V P̂i | f〉

Ω
. (2.8)
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2. The Statistical Hadronization Model

As it has been discussed, in the present work the conservation laws to which
the projector P̂i refers are energy-momentum conservation and abelian charge
conservation, therefore the explicit definition of that operator is given by

P̂i = δ4(P − P̂ )δQ,Q̂, (2.9)

where P̂ is the energy-momentum operator, Q̂ the vector operator collecting
the abelian charges, P is the cluster energy-momentum and Q the vector of
its abelian charges.

Considering now explicitly the energy-momentum and charge configura-
tions of the final state | f〉, given by Pf and Qf respectively, the transition
probability (2.8) can be written as

pf =
δ4(P − Pf )δQ,Qf

Ω

∑

hV

|〈f | hV 〉|2 . (2.10)

More in detail, to perform the calculation of the scalar products contained
in the previous equation, the multi-hadronic states can be represented in the
Fock space as follows:

| f〉 =| {N f
1 , N f

2 , ..., N f
K}, pf〉 =| {N f

j }, pf〉
| hV 〉 =| {NV

1 , NV
2 , ..., NV

K}, pV 〉 =| {NV
j }, pV 〉,

(2.11)

where {N f
1 , N f

2 , ..., N f
K} ({NV

1 , NV
2 , ..., NV

K}) is the asymptotic (confined) mul-
tiplicity K-tupla describing a state composed of Nj particles of species j (with
j = 1, 2, ..., K), K is the total number of hadronic species included and where
pf (pV ) represents the kinematical configuration corresponding to the asymp-
totic (confined) multiparticle K-tupla.

To obtain the final result it is useful to introduce the following condition
of orthogonality:

〈{N f
j }, pf | {NV

j }, pV 〉 = 0 if N f
j &= NV

j for at least one j. (2.12)

The previous equation holds only in non relativistic quantum mechanics, while
in relativistic field theory the number of particles confined inside a volume,
in the present case the cluster volume, is not a good quantum number. How-
ever the above condition can still be used, at least approximatively, when the
linear dimensions of the confining volume are larger than the Compton wave-
length λC of the lightest particle considered, which in this case is the pion with
λC = 1.4 fm. Considering for simplicity to have at maximum one particle for
each one of the included hadronic species (the generalization to multiple iden-
tical particles will be shown in the following section), and assuming to have
the same multiplicity configuration in the confined and asymptotic state, the
previous scalar product can be rewritten as
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2.2. The microcanonical formulation of the statistical model

〈{N f
j }, pf | {NV

j }, pV 〉 =
N∏

i=1

〈pi
f , σ

i
f | pi

V , σi
V 〉 (2.13)

by splitting the scalar product into N single particle products to be performed
in the corresponding single particle Hilbert spaces and where the product is
over the N particles of the considered states and the particle spins σi

f and σi
V

have been considered explicitly. Assuming the set of states | pi
V , σi

V 〉 to be a
complete one-particle set of states in the cluster region A, which is supposed
to be a spherical region of volume V , and given the spatial representation for
these states

〈r, τ | pV , σV 〉 =

{
ψpV (r) UσV ,τ r ∈ A
0 otherwise

, (2.14)

where UσV ,τ is an element of an unitary operator Û , it follows that

∑

pV ,σV

|〈p, σ | pV , σV 〉|2 =
∑

pV ,σV

〈p, σ | pV , σV 〉〈pV , σV | p, σ〉

=
∑

pV ,σV

∫

A

d3r

∫

A

d3r′〈p, σ | r, σ〉〈r, σ | pV , σV 〉〈pV , σV | r′, σ〉〈r′, σ | p, σ〉

=
∑

pV ,σV

∫

A

d3r

∫

A

d3r′
eip·r′−ip·r

(2π)3 ψpV (r) UσV ,σψ
∗
pV

(r′) U∗
σ,σV

=
∑

pV ,σV

∫

A

d3r

∫

A

d3r′
eip·(r′−r)

(2π)3 ψpV (r) ψ∗
pV

(r′) |UσV ,σ|2

(2.15)

Since the ψp functions are a complete set of eigenfunctions in A the following
condition holds:

∑

p

ψp (r) ψp (r′)∗ =
∑

p

〈r | p〉〈p | r′〉 = δ3 (r− r′) . (2.16)

Using the previous condition and the unitarity of the operator Û , the (2.15)
becomes

∑

pV ,σV

|〈p, σ | pV , σV 〉|2 =

∫

A

d3r

∫

A

d3r′
eip·(r′−r)

(2π)3 δ3 (r− r′) =
V

(2π)3 ,

(2.17)

which leads to the following formula for the transition probability (2.10):
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pf =
δ4(P − Pf )δQ,Qf

Ω

V N

(2π)N

N∏

i=1

(2Ji + 1) , (2.18)

where Ji is the spin module of the i-th particle and where a sum over the
particle spins has been performed.

At this point it is also possible to obtain an explicit formula for the micro-
canonical partition function, using the results previously derived and consid-
ering the correspondence

∑

f

→
∑

{Nj}

N∏

i=1

(
∑

σi

∫
d3pi

)
. (2.19)

Therefore the partition function Ω is given by

Ω =
∑

{Nj}

K∏

j=1

[
(2Ji + 1) V

(2π)3

]Nj
∫ N∏

i=1

d3piδ
4(P − Pf )δQ,

PN
i=1 Qi

=
∑

{Nj}

Ω{Nj}δQ,
PN

i=1 Qi
,

(2.20)

where the quantity Ω{Nj} is the baryonic phase space for the hadronization
channel {N1, N2, ..., NK} and N the number of particles contained in the chan-
nel itself.

2.3 Identical particles

In the more general case it is possible to have more than one particle of the
same kind in the confined and asymptotic states, condition which leads to
some modifications to the previous equation. Assuming to have only one kind
of hadron and considering a channel composed of N particles of that kind,
taking into account the spin-statistics theorem the multi-particle states of Eq.
(2.15) becomes

| N, pf〉 =
∑

π

χ(π)b

√
N !

N∏

i=1

| pf π(i), σf π(i)〉

| N, pV 〉 =
∑

π

χ(π)b

√
N !n1!n2! · · · nM !

N∏

i=1

| pV π(i), σV π(i)〉,
(2.21)

where π is a permutation of the integers 1, 2, ..., N and χ(π) the parity of the
permutation itself. The ni integers count the number of particles composing
the confined state which are in the same momentum-spin state and b is the
symmetry factor of the considered particle (b = 0 fo bosons and b = 1 for
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2.3. Identical particles

fermions). It must be noted that, in the asymptotic state, the last set of
integers is not present because of the continuous nature of the momentum
variable in infinite systems. With these new states the hadronic phase space
becomes

ΩN =
N∏

i=1

∑

σi

∫
d3piδ

4 (P − Pf )

∑

pV

∣∣∣∣∣
∑

π

χ(π)b 1√
N !n1!n2! · · · nM !

N∏

i=1

〈pf i, σf i | pV π(i).σV π(i)〉

∣∣∣∣∣

2

,

(2.22)

Expanding the square modulus, the sum over the localized states can be written
as

∑

pV

∣∣∣∣∣
∑

π

χ(π)b 1√
N !n1!n2! · · · nM !

N∏

i=1

〈pf i, σf i | pV π(i), σV π(i)〉

∣∣∣∣∣

2

=

∑

pV

∑

ππ′

χ(π)bχ(π′)b 1

N !n1!n2! · · · nM !
×

N∏

i=1

〈pf i, σf i | pV π(i), σV π(i)〉〈pV π′(i), σV π′(i) | pf i, σf i〉 =

1

N !2

∑

ππ′

χ(ππ′)b
N∏

i=1

∑

pV i,σV i

〈pf π(i), σf π(i) | pV i, σV i〉〈pV i, σV i | pf π′(i), σf π′(i)〉

(2.23)

Summing over the permutations π′, the previous quantity becomes

1

N !

∑

π

χ(π)b
N∏

i=1

∑

pV i,σV i

〈pf π(i), σf π(i) | pV i, σV i〉〈pV i, σV i | pf i, σf i〉, (2.24)

and summing over the confined states by inserting two identity spectralizations
on the position eigenstates it becomes
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1

N !

∑

π

χ(π)b
N∏

i=1

∑

pV i,σV i

〈pf π(i), σf π(i) | pV i, σV i〉〈pV i, σV i | pf i, σf i〉 =

1

N !(2π)3N

∑

π

χ(π)b
N∏

i=1

∫
d3xd3x′e−i(pf i−pf π(i))·x×

∑

pV i,σV i

ψ∗
pV i

(x′)ψpV i(x)Uσf i,σV iU
∗
σf π(i),σV i

=

1

N !(2π)3N

∑

π

χ(π)b
N∏

i=1

δσf i,σf π(i)

∫
d3xei(pf π(i)−pf i)·x.

(2.25)

Finally the hadronic phase space is given by

Ω{Nj} = ΩN =
∑

π

χ(π)b

N !

∑

σ1,...,σNj

∫ N∏

i=1

d3pi×

N∏

i=1

δσi,σπ(i)

1

(2π)3

∫

V

d3xeix·(pπ(i)−pi)δ4(P − Pf ).

(2.26)
It is worth noting that, in case of identical particles, the hadronic phase space
is given by the sum of N ! phase spaces, as it can be seen in the previous
equation. Roughly speaking, the effect of the presence of identical particles
in the considered channel, which is represented by the integral of the expo-
nential function in Eq. (2.26), leads to a modulation of the microcanonical
weight as a function of the phase space configuration: the effect of this mod-
ulation is the enhancement (suppression) of the microcanonical weight for the
phase space configurations characterized by identical bosons (fermions) with
similar momenta. These effects are known as Bose-Einstein and Fermi-Dirac
quantum statistics and are one of the most important features of the Statis-
tical Hadronization Model. A similar condition is obviously present also in
the more general case of K hadronic species: the derivation of the formula for
the hadronic phase space is analogous to the previous case and leads to the
equation

Ω{Nj} =
k∏

j=1




∑

πj

χ(πj)bj

Nj!

∑

σ1,...,σNj

∫ N∏

i=1

d3pi×

Nj∏

ij=1

δσij ,σπj(ij)

(2π)3

∫

V

d3xeix·(pπj(ij)−pij )



 δ4(P − Pf ).

(2.27)
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2.4. Strangeness suppression

2.4 Strangeness suppression

The previously derived equations for the hadronic phase space require now
a modification, which is common also to the canonical and grandcanonical
formulations of the model, related to the production during the hadronization
process of hadrons containing strange quarks and involving the introduction
of a phenomenological parameter, which is known as strangeness suppression
parameter (γS). This parameter is needed to implement a phenomenological
extra suppression of the production of hadrons containing strange quarks to
reproduce the experimental data, modifying the hadronic phase space in the
following way:

Ω{Nj} → Ω{Nj}γ
PK

j=1 Njsj

S , (2.28)

where Nj is the number of hadrons of kind j contained into the channel {Nj}
and sj the total number of valence strange and antistrange quarks contained in
the j-th hadron. The strangeness suppression is needed also for the set of light
unflavoured mesons, like the η meson, which are supposed to be characterized
by a superposition of states possibly containing strange quarks, with a wave
function with the general form

Cuuū + Cddd̄ + Csss̄ with |Cu|2 + |Cd|2 + |Cs|2 = 1. (2.29)

For this kind of hadrons it is supposed to be suppressed only the ss̄ part of
the wave function or, equivalently, the |Cs|2 fraction of the observed particles,
with a suppression factor given by

1− |Cs|2 + |Cs|2γ2
S, (2.30)

so that, with the strangeness suppression, the hadronic phase space is given
by

Ω{Nj} → Ω{Nj}

K∏

j=1

f
Nj

j , (2.31)

where

fj =

{
1− |Cs|2 + |Cs|2γ2

S Unflavored mesons
γ

sj

S Otherwise
(2.32)

2.5 Interactions

Until now the hadrons produced in the hadronization process have been consid-
ered as free particles, since no interactions among them has been introduced.
However it exists a relatively easy way to include, at least approximatively,
the effects coming from the strong interactions, which is based on the Dashen-
Ma-Bernstein hadron-resonance gas model [33]: one of the most important
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results of the previous work is related to the interactions among the particles
composing the hadron gas, since it is shown that it is possible to take into
account with good approximation these effects by switching from the gas of
free hadrons to a gas of free hadrons and resonances, considering the mass of
the unstable particles as distributed with a Breit-Wigner distribution:

pBW (m) =
1

π

m0Γ

(m2 −m2
0)

2 + m2
0Γ

2
, (2.33)

where m is the mass of the resonance, m0 its central value and Γ its width.
This condition, which corresponds to the assumption of dominance of resonant
scattering among the interactions, leads to the following modification of the
microcanonical partition function (2.20):

Ω =
∑

{Nj}

K∏

j=1

[
(2Ji + 1) V

(2π)3

]Nj
∫ NR∏

i=1

dmi pBW (mi)

∫ N∏

i=1

d3pi δ4(P−Pf )δQ,
PN

i=1 Qi
,

(2.34)
where NR is the number of resonances contained in the channel {Nj}. The
previous equation refers for simplicity to the easiest case, which neglects the
quantum statistics effects described in the previous section, however the same
modifications hold also for the more general and complex case.

2.6 Free parameters

One of the most important features of the Statistical Hadronization Model
presented in the previous sections, besides its ability to include the effects of
the quantum statistics (Sec. (2.3)) and of the interactions among the hadrons
(Sec. (2.5)), is the number of free parameters which characterizes the model
itself, limited to 2. These parameters are the strangeness suppression parame-
ter γS, introduced in Sec. (2.4), and the cluster energy density ρ. This second
parameter has not been described explicitly in the previous sections but, nev-
ertheless, it is present in the equations derived in this chapter for the transition
probabilities and for the microcanonical partition function: in these equations
the cluster volume V , originated by the wave function integration over the
cluster spatial extension, appears but, since the input information about these
objects is limited to their momentum and flavor composition, a conversion fac-
tor which could be used to obtain the cluster volume from its mass is needed.
This factor is represented by the energy density parameter ρ.

These two quantities, which are not predicted by the model itself, need
to be tuned by a comparison between the theoretical predictions of the im-
plemented model and the corresponding experimental data, with particular
attention, as will be discussed in the last chapter, to the possible interplay
between the above parameters belonging to MCSTHAR++ alone and the set of
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phenomenological parameters used by the main event generator: some ”quanti-
ties” of fundamental importance for the hadronization procedure, in particular
the cluster composition and phase space distribution, strongly depend on the
QCD shower process preceding the hadronization itself. For this reason, a
study of the impact of the changes in the setup of the QCD showering algo-
rithm on the hadronization results is mandatory, to obtain a fine tuning of the
statistical model on the experimental data.

However, it must be noted that the above condition holds also for the other
hadronization models previously described, with a fundamental difference in
the number of free parameters needed by each of them, as can be seen from
the discussion of Chapter 1. Obviously, the small number of phenomenological
parameters needed by the Statistical Hadronization Model is a measure of the
predictivity of the model itself.

More details on the tuning procedures and on the main generator free
parameters involved will be given in the last chapter presenting the results
obtained with MCSTHAR++.
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Chapter 3
MCSTHAR++

As it has been described in the introduction, the main objective of the present
work is the development of a Monte Carlo code implementing the hadroniza-
tion process in the statistical framework, in particular in the microcanonical
formulation described in the previous chapter. In the following sections the
development of a prototype of such a kind of code, MCSTHAR++ (Monte Carlo
STatistical HAdronization in high energy Reactions), the details of the im-
plementation of the algorithms used for the event generation as well as the
interfacing of this code to HERWIG6.510 [8] and Herwig++ [9] will be discussed.

3.1 General structure of MCSTHAR++

MCSTHAR++ is a Monte Carlo code, written in Object Oriented C++, performing
the hadronization process as described in the microcanonical formulation of the
Statistical Hadronization Model. It is built to take as input a set of clusters and
to give in output a set of hadrons, both stable and unstable, coming from the
microcanonical hadronization, with exact conservation of energy-momentum
and abelian charges, of each single cluster.

A set of C++ classes and functions has been developed in order to describe
the hadronization process: the following lines will go through the whole event
generation describing, when they occur, the above elements. The first step to
run MCSTHAR++ is a call to the hadrsetup function: this function fixes some
parameters needed at runtime that will be described in the next chapter, calls
the iosetup function which allows the user to modify the free parameters of the
model and other generation parameters, and loads the hadron set to be used in
the hadronization of the clusters, using the fs_set class. These operations are
performed only once in a run and before the event generation cicle. After these
preliminary steps, the generation begins following the standard procedures of
the external event generator, from the QED/QCD (depending on the kind of
colliding beams) initial state radiation emission to the cluster creation.

At this point the MCSTHAR++ function hadronization is called, perform-
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ing the hadronization process and producing the primary hadrons. The first
operation inside this function is the load of the incoming external clusters,
described by the cluster class: this loading operation is performed by the
clustering class, which is used to manage the clusters and the fusion process
which can be called in case of too light clusters, as will be described in the next
section. The clusters to be hadronized are then passed to the cl_to_hadro
function, which represent the ”kernel” function of the hadronization process:
the first step performed here is, starting from the mass of the cluster, its abelian
charges and the values of the free parameters of the hadronization model, to
find the value of the microcanonical partition function of the cluster itself.
This operation is performed by the Z_interpolator class using an interpola-
tion method described in the next section: if the value is zero it means that
no hadronization channels are available for the particular combination of mass
and abelian charges of the cluster and therefore the current event is rejected,
otherwise the hadronization algorithm continues towards the sampling of the
hadronization channel. To perform this operation, for some reasons that will
be explained later, the hadron set is broken into some subsets classified in func-
tion of particle abelian charges and the single particle mean production rates
are calculated, actions managed by the hadrongr and multsampl classes. The
second of the previous classes plays also the fundamental role of hadronization
channel generator, using the algorithms discussed in the next section. The next
and final step of the hadronization process of a cluster, when the hadronization
channel has been produced, is the generation of the corresponding kinematical
configuration, operation performed by the kingen class. The output coming
from this last step is described by the hadro class, which contains the infor-
mation about the particles, represented by the particle class, produced in
the hadronization of a cluster, the weight of the event produced and the kine-
matical configuration. Finally, these information are loaded in a global event
record, containing the complete output coming from the hadronization of all
the clusters, and represented by the cluevt class.

At this point the hadronization process is closed adding to the external
event record, belonging to the main generator, the new clusters which could
have been produced during the initial fusion process and the primary hadrons
coming from the hadronization of the clusters and updating the event weight
using the microcanonical weight.

3.2 Algorithms

Some of the actions performed by the classes described in the previous section
need to be discussed in detail, playing a fundamental role in the event gener-
ation. The following sections will give a deep explanation of these operations.
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3.2.1 Cluster fusion

The first of the above actions is about the set of clusters taken as input for the
hadronization process: since the predictions of the microcanonical hadroniza-
tion model are in a better agreement with experimental data when it is used
on sets of relatively heavy clusters, it has been introduced in MCSTHAR++ an
optional merging procedure working on the set of external ”primary” clus-
ters in order to obtain an heavier set of these objects, which could then be
hadronized with better results. The above merging procedure is performed by
the clustering class, which analyzes the set of incoming clusters and finds
the too light ones, with respect to a mass cut value which has to be set by
the user. If one or more light clusters are found an iterative fusion process is
activated, which merges the cluster pairs containing at least one light object
into heavier clusters, repeating this procedure until no light clusters remain.
When more than one combination for a light cluster is possible, a condition
which occurs when more than two primary clusters are present, the pair which
will be merged is the one with the smallest invariant mass, therefore a higher
priority is given to the merging of clusters close to each other in the collision
phase space.

This procedure can be understood considering a particular case: supposing
to have a set of four primary clusters coming from the external event gener-
ator, numbered from 1 to 4, two of which, for example the clusters 2 and 4,
lighter than the imposed low cut mass, the first operation performed by the
clustering class is to check the presence of light clusters. If no one of them
is found the simulation continues with the hadronization of the primary clus-
ters, otherwise, like in the considered case, the merging procedure is called:
the merging algorithm begins considering all the possible pairings of the four
clusters containing at least one light object, namely the pairs (1,2), (1,4), (2,3),
(2,4) and (3,4), and calculating for each of them the invariant mass

m(i, j) =
√

(pi + pj)
2, (3.1)

where i and j are the cluster indexes and pi and pj the corresponding 4-momenta.
As can be seen, different pair configuration are possible, for example referring
to the present example the possible combinations would be (1,2) and (3,4),
(1,4) and (2,3) or 1, 3 and (2,4) (the clusters 1 ad 3 are not paired in this
case): the choice among these possibilities is performed ordering the invariant
masses and selecting the lighter ones avoiding any repetition of the cluster
indexes. Supposing, for the present example, the pair (3,4) to be the lighter
one, the other pair to be considered would be necessarily the pair (1,2): two
new clusters, numbered 5 and 6, will be produced assigning to these objects a
4-momentum and a charge configuration given by the sum of the 4-momenta
and charge configurations of the clusters composing the considered pairs. At
this point two new clusters are present, while the old ones involved in the
merging procedure are being deleted, and the algorithm restarts on these new
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objects by checking their mass: if they are heavier than the mass cut the
simulation continues with the hadronization of these two clusters, otherwise
a merging process is performed on them. These operations are iteratively re-
peated on the new clusters appearing after every merging process until all the
clusters have a mass above the cut or only one cluster remains after the fusion
procedure.

The drawback of this fusion procedure is given by the mass cut value, which
needs to be tuned on the experimental data as it must be done for the energy
density and strangeness suppression paramenter, adding a phenomenological
parameter to the model.

3.2.2 Partition function interpolation

The second step to be analyzed is relative to the microcanonical partition
function of the clusters subject to the hadronization procedure: as it has been
described in the previous chapter, a transition probability given by eq. (2.10),

pf =
δ4(P − Pf )δQ,Qf

Ω

∑

hV

|〈f | hV 〉|2 ,

corresponds to the hadronization of a cluster into a state | f〉. In this equation
the microcanonical partition function of the cluster Ω appears in the denom-
inator and it is needed to correctly normalize the transition probability. The
problem here is that Ω is a function of the mass and abelian charges of the clus-
ter and of the free parameters γS and ρ, and therefore it should be computed
at runtime for each cluster to be hadronized. However, this is a quite CPU
intensive quantity to be calculated and to make such a calculation during the
event generation would be impossible. In the present work the problem to get
the information about the partition function at runtime has been solved using
the following approximate approach: after a preliminary study of the cluster
abelian charge configurations and mass spectrum appearing during the event
simulation, a grid of partition functions for each one of the possible charge
configurations has been built, where the grid points correspond to different
sets of values for γS, ρ and for the cluster mass. During the simulation this set
of grids is loaded by the Z_interpolator class and the values of the needed
partition functions are obtained using a method of the above class which finds
the values by a linear interpolation among the grid points. The studies per-
formed in order to estimate the error associated to this interpolation procedure
show, on average, a maximum discrepancy of about 10% between the exactly
calculated values and the interpolated ones.

The need for a normalization of the transition probability is strictly related,
in the present work, to the use of the importance sampling method for the
hadronization event generation, as it will be described in the next section.
Other sampling and channel generation techniques could be used, for example
the Metropolis algorithm [34] which would not need the knowledge of the
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normalization factor. However, in order to obtain a generator which could be
used for an intensive comparison with experimental data and for the study of
the hadronization model, this sampling method is not convenient because of
its slowness compared to the adopted importance sampling algorithm.

The need of the microcanonical partition function, moreover, introduces the
problem of calculating the function itself to build the described grids, a quite
expensive task from a computational point of view: in Sec. (3.4) a detailed
description of the techniques adopted to make the above calculation can be
found, even if it must be noted that the computation of the set of grids of
partition functions has to be performed only once or in case of changes in the
set of hadrons used.

3.2.3 Hadronization channel generation

The next fundamental issue to be discussed, which is strongly related to the
partition function calculation, is about the algorithm used to generate the de-
cay channel during the hadronization process. For a given charge configuration
the number of allowed hadronization channels increases almost exponentially
with the mass of the cluster itself. For this reason a random choice of the
channel proportional to its microcanonical weight would be computationally
too expensive, also because for each channel the calculation of the hadronic
phase space would be needed. Therefore, discarding the Metropolis algorithm
for the described reasons, the solution that has been adopted is represented by
the importance sampling method. To apply this technique in the most effective
way it is of fundamental importance to find a sampling function which could
be, in its turn, sampled efficiently and which at the same time could repro-
duce with good accuracy the behavior of the phase space as a function of the
hadronization channel. A possible sampling function with the above features
is given by a product of poissonian distributions, one for each of the included
hadronic species, as described in [28]. In this case the sampling function Π{Nj}
would be given by:

Π{Nj} =
K∏

j=1

exp (−νj)
ν

Nj

j

Nj!
, (3.2)

where νj is the mean number of particles of kind j, K the number of hadronic
species included and Nj the number of particles of kind j contained in the
channel {Nj}. The choice of this particular function is related to the fact that
it represents the multi-species multiplicity distribution in the grandcanonical
ensemble, when the corrections due to the quantum statistics discussed in
Sec. (2.3) are not included. The mean multiplicities νj, cited in Sec. (3.1)
describing the operations performed by the hadrongr and multsampl classes,
are free parameters which should be fixed with the objective to reach the most
efficient sampling function: the recipe presented in [28] and adopted in the
present case is to set each mean multiplicity equal to its grandcanonical value
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for a cluster with volume and average energy given by the volume and mass
of the cluster whose hadronization channel will be sampled using the above
function, using the grandcanonical equation

νj =
(2Jj + 1) V

2π2
m2

jTK2

(mj

T

) ∏

i

λ
qji

i , (3.3)

where V is the cluster volume, T is the ensemble temperature, Jj the j-th
hadron spin and mj its mass and K2 the modified Bessel function of the second
kind. Moreover, the product is over the abelian charges and λi is the fugacity
corresponding to the i-th charge Qi. Temperature and fugacity can then be
fixed by setting the grandcanonical mean energy and charges equal to the mass
M and charges Q of the cluster, using the grandcanonical equations

M = T 2 ∂

∂T

K∑

j=1

zj (T )
∏

i

λ
qji

i (3.4)

Q =
K∑

j=1

qjzj (T )
∏

i

λ
qji

i (3.5)

with

zj (T ) =
(2Jj + 1) V

2π2
m2

jT K2

(mj

T

)
, (3.6)

where Q and qj are the vectors of the abelian charges of the cluster and j-th
hadron respectively.

The sampling performances related to the use of the function (3.2) can
be improved, reducing the rejection rate due to charge conservation, using a
multi-step extraction algorithm which works on the hadron groups previously
cited and managed by the hadrongr class, instead of extract independently
the number of each hadron kind as would be done using the sampling function
in the presented form. More in detail, the whole set of hadrons is broken into
the following 11 groups: (anti)bottomed hadrons, (anti)charmed hadrons, light
(anti)baryons, light strange (anti)mesons, light charged (anti)mesons with zero
strangeness and neutral light mesons. Moreover, the following feature of the
multi-poissonian function is used: excluding for simplicity the first 4 groups
and the relative charge conservations, the original sampling function with an
extra Kronecker delta added to impose the conservation of the abelian charges
can be written as
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K∏

j=1

exp (−νj)
ν

Nj

j

Nj!
δP

i Niqi,Q =
K∏

j=1

πj (Nj) δP
i Niqi,Q

=
∏

bar

πb
j (Nj)

∏

antibar

πb̄
j (Nj)

∏

mes

πm
j (Nj) δP

i Niqi,Q

= Πbar (Nb)Πantibar (Nb̄)×
P (N b

1 , N
b
2 , ... | Nb)P (N b̄

1 , N
b̄
2 , ... | Nb̄)×∏

mes

πm
j (Nj) δP

i Niqi,Q,

(3.7)
where

Πx (Nx) = exp (−νx)
νNx

x

Nx!
, (3.8)

is the poissonian distribution of the total number of baryons (x = b) and
antibaryons (x = b̄) and where the corresponding mean multiplicity νx is given
by the sum of the mean multiplicities of the single baryons or antibaryons,
while the functions P are the conditioned multinomial distribution of the single
hadronic species, namely

P (Nx
1 , Nx

1 , ... | Nx) ∝ Nx!
∏ ν

Nx
j

j

Nx
j

, (3.9)

with, again, x = b for baryons and x = b̄ for antibaryons.
The above decomposition of the original multipoissonian, restricted to a

smaller subset of particles, corresponds to a change in the channel generation
algorithm: the original function would lead to an independent sampling of
the number of each hadron kind, with a subsequent check of abelian charge
conservations and an eventual rejection of the sampled channel. With the
presented decomposition the sampling algorithm is instead the following:

1. Extract the number of baryons and antibaryons with the distributions
Πb (Nb) and Πb̄ (Nb̄).

2. Check if the baryonic number is conserved. If not reject the sampling
and go to point 1, otherwise extract the single baryons and antibaryons
using the multinomial distribution (3.9).

3. Extract the single mesons using the initial multipoisson distributions.

4. Check the conservation of the remaining abelian charges, taking into
account the already extracted baryons and antibaryons. If the check
is not passed start again with point 1, otherwise the sampled channel
is momentarily accepted and the corresponding phase space availability
can be verified.
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The above sampling algorithm is equivalent to the first one from the point
of view of the sampled channel distribution, while it is more efficient because
of the smaller number of random extractions in case of rejected attempts. It
must be noted that the described sampling method is a simplified version of
the one actually implemented in MCSTHAR++, which works in a very similar way
on the larger set of hadron groups previously cited, with a special treatment for
heavy flavored hadrons and clusters: the clusters containing only light partons
are supposed to hadronize into channels composed only of light baryons and
mesons since, because of charm and beauty conservation, the heavy flavored
hadrons would be produced in this case only in pairs, a condition strongly
suppressed because of phase space availability reasons. Therefore the standard
algorithm, based on the decomposed multipoissonian, is used in this case.
Heavy clusters are instead supposed to hadronize into channels containing one
heavy hadron and a set of light particles, again because of the phase space
availability conditions: the particular heavy hadron is sampled with probability
Ph given by

Ph ∝ e−mh/T , (3.10)

where mh is the mass of the hadron and T the temperature parameter, while
the remaining part of the channel is randomly chosen using the same algo-
rithm applied for the hadronization of light clusters. This modification of the
sampling function makes the sampling procedure even more efficient, since the
use of the standard algorithm also for charmed and bottomed hadrons would
result in a low multiplicity sampling of these particles because of their large
mass which, in its turn, leads to very small mean multiplicities in Eq. (3.2)

3.2.4 Phase space configuration

The last item to be discussed, which refers to the kingen class, is the sam-
pling of the multi-particle phase space configuration: when a hadronization
channel of a cluster has been generated with the methods described in the
previous section, a check on the phase space availability is performed and then
a kinematical configuration for the produced particles needs to be sampled. In
the present work a strategy inspired by the multi-particle decay phase space
integration described in [35] has been followed.

The starting point to obtain the kinematical configuration and the corre-
sponding weight for a channel containing N particles with masses m1, m2, ...,mN

and for a cluster of mass M is the phase space integral of Eq. (2.20):

PS(M, m1, m2, ...,mN) =

∫ N∏

i=1

d3piδ
4

(
P −

N∑

i=1

pi

)
, (3.11)

the needed quantity will follow from the numerical solution of the above in-
tegral. As discussed in [35], the following condition holds for the relativistic
N -body phase space element:
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dΦN(P ; p1, p2, ..., pN) =dΦN−J+1(P ; Q, pJ+1, ..., pN)×
dΦJ(Q; p1, p2, ..., pJ)(2π)3dQ2 (3.12)

for J < N , where

dΦN(P ; p1, p2, ..., pN) = δ4

(
P −

N∑

i=1

pi

)
N∏

i=1

d3pi

(2π)32Ei
(3.13)

and

Q2 =

(
J∑

i=1

Ei

)2

−

∣∣∣∣∣

J∑

i=1

pi

∣∣∣∣∣

2

.

The initial integral can be trasformed in order to deal with a relativistic phase
space volume instead of the non relativistic one, with the result

PS(M, m1, m2, ...,mN) =

∫ N∏

i=1

d3pi

(2π)32Ei
δ4

(
P −

N∑

i=1

pi

)
N∏

i=1

(2π)32Ei

=

∫
dΦN (P ; p1, p2, ..., pN)

N∏

i=1

(2π)32Ei.

(3.14)

The integration procedure adopted is based on the split feature of Eq. (3.12),
represented in Fig. (3.1) for a 4-body decay: splitting recursively the phase
space elements in order to deal only with 2-body decays, the above integral
becomes

PS(M, m1, m2, ...,mN) =

∫ N−3∏

i=0

dΦ2 (qi; pi+1, qi+1) (2π)3dq2
i+1×

dΦ2 (qN−2; pN−1, pN)
N∏

i=1

(2π)32Ei,

(3.15)

with q0 = (M,0). The integral of a 2-body phase space gives

∫
dΦ2 (k1; k2, k3) =

∫
d3k2

(2π)32k0
2

d3k3

(2π)32k0
3

δ4 (k1 − k2 − k3)

=

∫
dΩk2

1

(2π)32k0
2

1

(2π)32k0
3

| k2 |2,
(3.16)

with
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| k2 |2 =

(
(k1)2 −

(√
(k2)2 +

√
(k3)2

)2
) (

(k1)2 −
(√

(k2)2 −
√

(k3)2
)2

)

4 (k1)
2

=
λ ((k1)2, (k2)2, (k3)2)

4 (k1)
2 ,

(3.17)

as can be seen imposing the energy-momentum conservation condition and
where

λ (x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz

is the Kallen lambda function. Therefore, solving the 2-body integration, Eq.
(3.15) becomes

PS(M, m1, m2, ...,mN) =

∫ N−3∏

i=0

dq2
i dΩqi

| qi |2

(2π)34q0
i E

0
i

×

dΩpN−1

| pN−1 |2

(2π)64p0
N−1p

0
N

N∏

i=1

(2π)32ECM
i

=
N−3∏

i=0

∫ q2 max
i

q2 min
i

∫

4π

dq2
i dΩqi

| qi |2

(2π)34q0
i E

0
i

×

∫

4π

dΩpN−1

| pN−1 |2

(2π)64p0
N−1p

0
N

N∏

i=1

(2π)32ECM
i ,

(3.18)

where the q2
i integral limits, for i = 1, ..., N − 2, are given by

q2 min
i =

(
N∑

j=i+1

mj

)2

q2 max
i =

(√
(qi−1)2 −mi

)2

and where ECM
i is the energy of the i-th particle in the cluster rest frame.

It must be noted that each one of the above 2-body integrals in dq2
i is a

relativistic invariant solved in the rest frame of the 4-momentum qi−1, in which
the condition pi = qi holds, while the energies contained in the last product of
Eq. (3.18) and added to obtain the relativistic phase space, refer to the initial
reference frame, namely the cluster rest frame. Therefore it is necessary to
perform a number of relativistic boosts during the integration, as will be clear
from the integration algorithm described in the following lines and based on a
Monte Carlo flat sampling of q2s an Ωs variables. Assuming to have a number
of particles N > 3, the integration/generation algorithm is the following:

40



3.2. Algorithms

1. Sample the value of q2
1 in [q2 min

1 , q2 max
1 ] and the direction of q1, in q0

rest frame, in 4π. Build the 4-vector p1, which is already in the correct
reference frame, and calculate the integrand function

Wi=1 =
| qi |2

(2π)34q0
i E

0
i

. (3.19)

2. Sample the value of q2
2 in [q2 min

2 , q2 max
2 ] and the direction of q2, in q1

rest frame, in 4π. Build the 4-vector p2, calculate the integrand function
W2 defined in Eq. (3.19) for i = 2 and boost p2 in the cluster rest frame
using the q1 4-vector. Boost the q2 4-vector in the cluster reference frame
redefining it as q2 = q1 − p2.

3. Repeat the previous steps on qi and pi for i = 3, ..., N − 2.

4. Sample the direction of pN−1 and calculate its module in qN−2 rest frame.
Calculate the integrand function

WN−1 =
| pN−1 |2

(2π)64p0
N−1p

0
N

, (3.20)

boost pN−1 in the cluster rest frame and calculate pN , which will be
already in the right reference frame, as pN = qN−2 − pN−1.

5. Calculate the energy product and the sampling weight WS as

WS(q1, q2, ..., qN) = (4π)N−1
N−2∏

i=1

[
q2max
i − q2min

i

]
. (3.21)

In case of N = 3 after the step 1 the algorithm continues skipping the step 2
and 3. In case of N = 2 the situation is even easier, since only the direction
of one of the two particle momenta has to be sampled, everything else being
fixed by energy-momentum conservation: in this case the sampling weight WS

is equal to 4π. Finally, the total weight WK corresponding to the sampled
kinematical configuration is given by

WK =
WN−1

WS

2∏

j=1

(2π)32ECM
j (3.22)

for N = 2 and

WK =

N−2∏

i=1

Wi

N∏

j=1

(2π)32ECM
j

WS(q1, q2, ..., qN)
(3.23)

for N > 2.
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Figure 3.1: Graphical representation of the splitting procedure used by the
multibody phase space generators for a 4-body decay.

3.3 Implementation in HERWIG6.510 and Herwig++

As it has been discussed in the introduction, the research project to which
the present work refers has been focused not only on the development of the
hadronization module MCSTHAR++ but also on its interface to a ”general pur-
pose” Monte Carlo event generator, with the aim of replacing the standard
hadronization code block, in order to check the accuracy of the statistical model
by a comparison against the experimental data of the model’s theoretical pre-
diction coming from full event generation. At present MCSTHAR++ has been
interfaced to HERWIG6.510 and Herwig++ for simplicity reasons: as discussed
in Chapter 1, these two event generators implement the cluster hadronization
model and therefore the algorithms which build the clusters that can be used
by MCSTHAR++ as primary input clusters are already implemented in the main
generator. In the following lines the details of the interface of the developed
code to HERWIG6.510 and Herwig++ will be given.

• HERWIG6.510

This is a FORTRAN77 Monte Carlo code which works by setting the needed
parameters in the available common blocks, to choose for example the
beam particles, the hard scattering process and the beam energy, and
by calling a sequence of subroutines to generate an event. To the stan-
dard version of the Monte Carlo code used in the present work, the only
modification introduced is about the non-perturbative splitting of the
gluons at the end of the QCD shower: the release setup of the code
would let the gluons to produce only quark-antiquark pairs. This leads
to the production of clusters with zero baryonic number only, which
can be sources of baryon production using the standard hadronization
model while they strongly suppress the production of this kind of parti-
cles using MCSTHAR++: because of the features of the statistical model, in
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the hadronization of these ”mesonic” clusters baryons can be produced
only as baryon-antibaryon pairs, a condition which is suppressed in a
large number of cases because of the corresponding small phase space
availability. However, it is possible to obtain from HERWIG also bary-
onic clusters without any changes in the source code, just modifying the
value of the QDIQK variable belonging to the HWPRAM common block. This
variable represents the scale at which the gluons can split into diquarks,
therefore setting it to 2ms, where ms is the mass of the strange quark,
will let the gluons to split not only in quark-antiquark pair but also in
diquark-antidiquark pairs with flavor content u, d or s.

With respect to the classes and functions belonging to MCSTHAR++ and
previously described, few FORTRAN functions have been added to the
source code to realize the interface of the new hadronization module
to the main code, in particular to load HERWIG’s clusters in MCSTHAR++:
these functions are used to find the original clusters inside the HEP-
EVT common block of HERWIG, which contains the information about the
particles and clusters involved in the current event and to calculate the
cluster charges. Because of the language used to build the new hadroniza-
tion module, a translation from FORTRAN77 to C++ data structures and
back is mandatory: the solution adopted here is a wrapper header file
containing the C++ structures corresponding to the F77 common blocks.
This wrapper file is also used to allow MCSTHAR++ to access the HEPEVT
common block to update the list of particles and clusters of the current
event, in particular including the objects produced during the hadroniza-
tion process. Other F77 and C++ source codes containing the definition
of the routines, functions and classes used to perform the analysis and to
build the corresponding distributions and histograms have been added:
the set of analysis included and their definitions will be described in the
next chapter.

• Herwig++

As discussed in [9], Herwig++ is a general purpose Monte Carlo event
generator with many similarities with its FORTRAN77 version but with
a completely new structure. In particular it has been written in C++
using the building blocks offered by ThePEG [36], a framework for the
implementation of Monte Carlo event generators: this is a C++ class
library providing all parts of an event generator structure which do not
depend on the particular physics models implemented in the generator
itself. More in detail, each part of Herwig++ is a C++ class representing
the implementation of a theoretical model used by Herwig++ itself and
each one of the above classes inherits from an abstract base class of
ThePEG. Among these classes, a central role is played by the ”handler”
classes, which are used to manage the various steps of the simulation as,
for example, the CascadeHandler, which generates the parton shower,
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the DecayHandler, which manages the decay of the unstable hadrons and
elementary particles, and the HadronizationHandler, which performs
the hadronization step.

In this case MCSTHAR++ has been implemented in the main generator
following the general structure of the generator itself, making use of a
set of handler classes to interface the new hadronization module to the
external code. More in detail, the above HadronizationHandler class
uses a number of ”helper” classes to perform the actions required by
the implemented cluster hadronization model as, for example, the Clus-
terFinder class, responsible for building the clusters starting from the
partons, the ClusterFissioner class, which splits the large mass clus-
ters into lighter ones, and the ClusterDecayer class which decays the
clusters into hadron pairs as described by the hadronization model. The
implementation of MCSTHAR++ in Herwig++ is based on a set of classes
similar to the previous handlers and helpers, which realize the required
interfacing operations from cluster building to the final update of the
event record with the particles coming from the hadronization process,
while the ”kernel” operations performing the hadronization of the in-
coming clusters are realized using the same set of classes and functions
which characterizes the implementation of MCSTHAR++ in HERWIG6.510
described in the previous item.

3.4 Microcanonical partition function calculation

As it has been discussed in Sec. (3.2.2), the knowledge of the partition function,
at least in an approximated way, of a cluster to be hadronized is of fundamen-
tal importance in order to correctly normalize the weight associated to the
hadronization process. Nevertheless the calculation of the microcanonical par-
tition function is a quite expensive task from a computational point of view,
because it involves a sum over all the available channels, which are expensive
to be found, and because for each channel a phase space integral is required.
In the next lines the adopted calculation techniques will be discussed.

Given a cluster with mass M , energy density ρ and abelian charges Q and
given a strangeness suppression parameter γS, the microcanonical partition
function is defined as

Ω (M,Q, ρ, γS) = Ω =
∑

{Nj}

Ω{Nj}δQ,Q{Nj}
, (3.24)

where Ω{Nj} is the hadronic phase space for the channel {Nj}. As it has been
said, the number of available channels which respecting the abelian charges
conservation have to be included in the above sum increases exponentially
with the mass of the cluster itself, while at the same time a large number
of these channels have a relatively small corresponding hadronic phase space
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which, therefore, could be neglected in the sum over the channels. For these
reasons it is not always worth the computational cost of taking into account
all the channels to perform the above sum, especially for the heavy clusters.

For the present work two strategies have been adopted to perform the
partition function calculation: for small mass values an algorithm which builds
all the possible hadronization channels is used, therefore making the above sum
in an exact way, without discarding any of the possible channels. For a given
configuration of the abelian charges, however, to build all the available channels
becomes very CPU time demanding increasing the cluster mass. Above a
particular mass value, an importance sampling method identical to the one
described in Sec. (3.2.3) is more convenient and therefore adopted instead of
the exact method previously described.

The second computational task to be performed to obtain the microcanon-
ical partition function of a cluster is, for each considered channel, the calcu-
lation of the hadronic phase space. As will be discussed in the next chapter,
in the present work and for this first round of tests of the developed code, the
quantum statistics and the interactions among the hadrons, which modify the
following equations, are not included for simplicity reasons. Therefore, with
these conditions, the hadronic phase space Ω{Nj} for a channel {Nj} is given
by

Ω{Nj} =
K∏

j=1

(2Ji + 1)Nj V Nj

(2π)3Nj Nj!

∫ N∏

i=1

d3piδ
4(P − Pf ), (3.25)

where N is the total number of particles contained in the considered chan-
nel. Following the method proposed by Cerulus and Hagedorn [37] and later
adopted by Werner and Aichelin [38], the above equation can be rewritten as

Ω{Nj} =
V NT 3N−4

(2π)3N

K∏

j=1

(2Ji + 1)Nj

Nj!
Φ (M, m1, m2, ...,mN) , (3.26)

where mi is the mass of the i-th particle of the channel,

T = M −
N∑

i=1

mi

is the available kinetic energy and Φ (M, m1, m2, ...,mN) is the adimensional
integral

Φ (M, m1, m2, ...,mN) =
1

T 3N−4

∫
d3p1d

3p2 · · · d3pNδ4(P − Pf ). (3.27)

For two particles the above integral can be easily solved with the result

Φ (M, m1, m2) =
4πp

T 2

E1E2

M
, (3.28)
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where Ei =
√

p2 + m2
i and

p =
1

2

[
M2 − 2

(
m2

1 + m2
2

)
+

(m2
1 −m2

2)
2

M2

] 1
2

.

For N > 2 the integral of Eq. (3.27) can be written in the following way,
by a separation of the angular variables from the other integration variables:

Φ (M, m1, m2, ...,mN) =
(4π)N

T 3N−4

∫
dp1p1dp2p2 · · · dpNpN×

δ

(
M −

N∑

i=1

Ei

)
W (p1, p2, ..., pN) ,

(3.29)

with

W (p1, p2, ..., pN) =
1

(4π)N

∫
dΩ1dΩ2 · · · dΩNδ3

(
N∑

i=1

pip̂i

)
, (3.30)

where p̂i = pi/ | pi |. As it is shown in [38], the previous integral can be solved
explicitly, with the result

W (p1, p2, ..., pN) = − 1

2N+1π (N − 3)!p1...pN

P
σjpj≥0∑

{σ1...σN}

σ1...σN

(
N∑

i=1

σipi

)N−3

,

(3.31)
where σi = ±1 and where the external sum is over all the {σ1...σN} configura-
tions which give

∑
σjpj ≥ 0.

Since the above sum involves a large number of terms, which moreover in-
creases quickly with the number of particles involved, an alternative calculation
method is used when N increases to values such that the previous techniques
become too slow: since the equation

δ3

(
N∑

i=1

pip̂i

)
=

1

(2π)3

∫
d3u exp

(
−i

N∑

i=1

pip̂i · u
)

(3.32)

holds, the W function can also be written as

W (p1, p2, ..., pN) =
1

2π2

∫ ∞

0

duu2
N∏

i=1

sin (piu)

piu
. (3.33)

Setting now u = x/ (1− x), the above integral becomes
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W (p1, p2, ..., pN) =
1

2π2

∫ 1

0

dx
(1− x)N−4

xN−2

N∏

i=1

sin

(
pix

1− x

)

pi
. (3.34)

This integral can be solved numerically with a condition on the number of
particles involved, since the integrand function shows a strongly oscillating
behavior for small values of N which makes hard to obtain a stable result.

Finally, the external integral of Eq. (3.29) can be solved by means of Monte
Carlo techniques: after the following sequence of variable transformation,

pi =
√

ti (ti + 2mi) i = 1, 2, ..., N

ti = si − si−1 i = 1, 2, ..., N with s0 = 0 and sN = T

xi =
si

T
i = 1, 2, ..., N − 1

zi =
xi

xi+1
i = 1, 2, ..., N − 1 with xN = 1

ri = zi
i i = 1, 2, ..., N − 1,

(3.35)

and the integration of the Dirac’s delta on energy conservation, the initial
integral becomes

Φ (M, m1, m2, ...,mN) =

∫ 1

0

dr1dr2 · · · drN−1Υ(r1, r2, ..., rN), (3.36)

with

Υ(r1, r2, ..., rN) =
(4π)N T 3−2N

(N − 1)!

N∏

i=1

piEiW (p1, p2, ..., pN) . (3.37)
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Chapter 4
Numerical results

In the present chapter the results obtained with MCSTHAR++ for LEP experimen-
tal setup and for a center of mass energy equal to 91.2 GeV will be presented
and discussed. Even if a full tuning of the hadronization module and a study of
the influence of the main generator free parameter setup on the hadronization
model prediction is needed, the accurate and rigorous tuning procedure will be
left for a future work while in what follows a preliminary study on MCSTHAR++
performances will be presented, together with a discussion on the full set of
parameters which will be involved in the final tuning. All the MCSTHAR++ re-
sults presented in the next sections are obtained without the inclusion of the
quantum statistics and the interactions previously described.

4.1 Analysis

As it has been discussed in Sec. (3.3), a set of functions and classes has been
developed in order to analyze the results obtained during the simulations,
building the set of considered observables and the corresponding distributions,
and comparing them with the available experimental data. For the present
work the analysis of the following observables have been implemented1:

• Event shape: trust (T ), thrust major (M), thrust minor (m), oblate-
ness (O), sphericity (S), planarity (P ), aplanarity (A), C-parameter (C),
D-parameter (D), heavy hemisphere mass (Mh), light hemisphere mass
(Ml), difference of hemisphere masses (Md), wide hemisphere broadening
(Bmax), narrow hemisphere broadening (Bmin), total hemisphere broad-
ening (Bsum), difference of hemisphere broadenings (Bd), transverse mo-
mentum (in) with respect to thrust axis (P T

t ), transverse momentum
(out) with respect to thrust axis (pT

t ), transverse momentum (in) with
respect to sphericity axis (P S

t ), transverse momentum (out) with respect

1See the Appendix for the definitions of the considered quantities
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to thrust axis (pS
t ), rapidity with respect to thrust axis (yT ), rapidity

with respect to sphericity axis (yS).

• Momentum and energy analysis for the following particles: a±0 , η, η′, ω,
π±, π0, ρ±, ρ0, Σ∗−, Σ∗+, Ξ+, Ξ∗0, K±, K∗0, K0, p, ∆++, D∗, D0, f2, f0,
φ.

• Charged particle multiplicity.

• Mean multiplicities of 48 hadronic species plus charged particle number
and photon number.

During the event generation the above observables are computed and com-
pared with the experimental data. For each of them a χ2 value is then calcu-
lated, in order to estimate the discrepancy between data and theoretical pre-
dictions. For a histogram the χ2 value is computed as the sum on the channels
of the discrepancy between the theoretical prediction yi

t and the corresponding
experimental data yi

e normalized using the theoretical and experimental errors
σi

t and σi
e:

χ2 =
N∑

i=1

(yi
t − yi

e)
2

σi
t
2 + σi

e
2
, (4.1)

where N is the number of channels of the considered histogram. For the particle
multiplicities the corresponding quantity is computed in a similar way summing
over the list of considered particle instead of summing on the channels. In the
next pages also the reduced χ2 will be used: it must be noted that in the present
case this quantity is just a measure of the discrepancy between theoretical
and experimental results and not a real reduced χ2, being calculated as χ2/ν
where ν is the number of channels of the considered histogram or the number
of particles included in the analysis while, in the calculation of the real reduced
χ2, ν would be defined taking into account also the number of free parameters.

Even if no results coming from the implementation of MCSTHAR++ in Herwig++
will be presented here, it is worth to note that the above functions and classes
do not need to be used in this case, since Herwig++ provides by itself the code
needed to analyze an analogous set of observables.

4.2 Light quark hadronization

The first study performed to check MCSTHAR++ reliability and the theoretical
predictions of the Statistical Hadronization Model, numerically implemented
as described in the previous chapter, is focused on the hadronization of light
quarks only [39]. Therefore, the results presented here have been obtained
excluding from the set of used hadrons both charmed and bottomed particles
and considering only the elementary collisions e+e− → uū, dd̄, ss̄. Even if
among the LEP measurements only a small number of observables restricted to
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light flavor exists, some comparisons are possible: in particular the observables
studied here are the mean multiplicities of a subset of hadrons, the mean
number of charged particles, the charged particle scaled momentum

xp =
2 | p |√

s
(4.2)

and its logarithm

ξp = log

(
1

xp

)
, (4.3)

where p is the 3-momentum of the considered particle and
√

s the collision
center of mass energy.

The results reported in Tab. (4.1) and Fig. (4.1) and (4.2) show a compar-
ison among LEP data (OPAL [40] and DELPHI [41] experiments) at 91.2 GeV
center of mass energy, MCSTHAR++ predictions when interfaced to HERWIG6.510
as described in the previous chapter and a standard HERWIG6.510 release. As
it has been discussed, no tuning at all has been performed on MCSTHAR++: the
results reported here have been obtained with a reasonable choice of the free
parameters of the hadronization model, namely

γS = 0.65

and

ρ = 0.35 GeV/fm3,

and with no modification of HERWIG’s parameters except for the QDIQK = 2ms

condition discussed in Sec. (3.3). The cluster mass cutoff MC described in Sec.
(3.2.1) has been set equal to 1.8 GeV for the following reason: first of all it
must be noted that a selection has been introduced on the set of used hadrons,
since the hadron spectrum is experimentally well known only for mass values
smaller than about 1.8 GeV . Therefore the non charmed and non bottomed
hadrons with a mass greater than the above value have been excluded from
the simulations of the present work. Moreover, following Hagedorn’s origi-
nal hypothesis, the clusters should be considered as standard resonances and
therefore their mass and charge configuration should correspond to observed
particles, which are characterized by a discrete mass spectrum, a condition
which can not be respected by the cluster mass spectrum.

As discussed in [39], even if a full tuning of the model is mandatory
the preliminary results reported in this section show the good behavior of
MCSTHAR++ on the restricted set of observables chosen to study the hadroniza-
tion of light quarks. The performances of the developed code will be investi-
gated in more detail in the following section discussing the results obtained for
the full hadronization process, which includes also the heavy quarks, and on a
larger set of observables.
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Figure 4.1: Charged particle scaled momentum xp distribution: comparison
among MCSTHAR++, HERWIG6.510 and OPAL data [40] at 91.2 GeV center of
mass energy.
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Figure 4.2: Charged particle ξp distribution: comparison among MCSTHAR++,
HERWIG6.510 and OPAL data [40] at 91.2 GeV center of mass energy.

4.3 Tuning strategy

As discussed in Chapter 3, the hadronization model implemented in MCSTHAR++
requires two phenomenological parameters, γS and ρ, plus an additional parameter,
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Nch Nπ± NK± Np,p̄

MCSTHAR++ 19.53 ± 0.14 16.64 ± 0.11 1.65 ± 0.04 0.98 ± 0.07
HERWIG6.510 18.601 ± 0.006 15.022 ± 0.006 1.628 ± 0.002 1.736 ± 0.002

DELPHI 19.94 ± 0.34 16.84 ± 0.87 2.02 ± 0.07 1.07 ± 0.05

Table 4.1: Mean values of charged particles, charged pions, charged kaons and
(anti)protons multiplicities for the hadronization of light quarks only: com-
parison among MCSTHAR++, HERWIG6.510 and DELPHI data [41] at 91.2 GeV
center of mass energy.

the cluster mass cut MC , which however is more related to the interfacing of
MCSTHAR++ to HERWIG6.510 (and Herwig++) than to the hadronization model
itself. Moreover, the hadronization process is strongly influenced by the pre-
ceding collision steps, in particular by the QCD shower process and the cluster
formation: these processes are performed, in the present work, by a sequence of
HERWIG’s routines whose algorithms depend on a set of free parameters which
should be included in the tuning of the code. In particular, these parameters
are:

• the effective d and u quark masses RMASS(1) and RMASS(2);

• the gluon effective mass RMASS(13);

• the quark and gluon virtuality cuts VQCUT and VGCUT;

• the QCD energy scale QCDLAM.

More in detail, as discussed in [8], the parton shower process is stopped when
the virtuality reaches a cutoff value Qc given by

Qc = m + Q0, (4.4)

where m is the parton effective mass, given by the corresponding RMASS param-
eter, and Q0 is set by the quark and gluon virtuality cutoff parameters VQCUT
and VGCUT. Being involved in the definition of the virtuality condition which
stops the shower algorithm and in the calculation of the Sudakov form factor
which, again, is used in the shower process, the above parameters determine
the phase space distribution of the clusters and their composition.

The full tuning procedure of the introduced hadronization model should
therefore take into account also this set of parameters. A possible strategy to
obtain the best fit of the model on the experimental data, avoiding to work
on a large set of degrees of freedom, would be to obtain a preliminary tuning
on the pre-hadronization parameters studying the performances of the main
generator, in this case HERWIG6.510, on a set of observables not depending on
the hadronization results: a possibility would be, for example, to consider the
jet observables, which are more related to cluster phase space distribution and
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almost independent of the particles produced during the hadronization of the
clusters themselves. After the completion of this preliminary tuning, the final
one can be obtained considering a set of hadronization dependent observables,
such as the single particle mean productions, dealing with a smaller set of
parameters, namely the one strictly belonging to the hadronization model.

In the next section the results obtained in a set of runs with different
MCSTHAR++ parameter configurations will be presented and discussed, showing
the dependencies of the considered observables on the free parameters of the
model.

4.4 Full hadronization analysis

As discussed in the previous sections, a final tuning of MCSTHAR++ is yet to be
performed. Nevertheless a set of explorative runs, with various free parameter
configurations, has been collected in order to discriminate at least approxi-
matively which configuration provides a better agreement between theoretical
predictions and experimental data. For each run the χ2 has been computed
independently for the event shape, single particle and multiplicity distributions
listed in Sec. (4.1) in order to evaluate the capacity of the code to reproduce
each different set of observables. For this set of runs the only parameters which
have been varied are the MCSTHAR++’s free parameters γS, ρ and MC , while the
free parameters of HERWIG6.510 described in the previous section have been
set to their default values. Each run is given by about 108 e+e− → Z0/γ → qq̄
collisions, with q = u, d, s, c, b. The experimental data used for the comparison
come from the measurements of the LEP experiments ALEPH, DELPHI and
OPAL, again for a center of mass energy of 91.2 GeV .

The first study performed on the χ2 function is focused on its dependence
on the MC and ρ parameters, while the γS parameter has been fixed equal to
0.65: the obtained results are shown in Tab. (4.2).

Unfortunately, the obtained results did not show unambiguously which
parameter configuration is able to give the better agreement between theo-
retical predictions and data. In particular, the setup MC = 1.6 GeV and
ρ = 0.35 GeV/fm3, which provides the smaller χ2

red for the single particle
distributions, is not the best one if the event shape distributions are con-
sidered, since in this case the better setup would be MC = 1.6 GeV and
ρ = 0.45 GeV/fm3. This parameter configuration is the one, among the con-
sidered set, which gives also the smaller total χ2 value. Moreover the configu-
ration which shows the best agreement for the particle multiplicity predictions,
given by MC = 1.4 GeV and ρ = 0.45 GeV/fm3, is also the one which gives
the worst overall agreement with the experimental data. Some extra runs have
been considered to investigate the behavior of the discrepancy as a function of
the γS parameter, for the configurations showing the minimum χ2 value. The
results obtained moving this parameter are shown in Tab. (4.3), where it can
be seen that for both the above configurations the γs value which gives the
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MC(GeV ) ρ(GeV/fm3) χ2
red (ES) χ2

red (SP) χ2
red (PM) χ2

red

1.4 0.25 12.43 6.93 16.52 10.04
1.4 0.35 16.45 7.35 18.01 12.24
1.4 0.45 36.00 21.29 6.50 27.57
1.6 0.25 21.38 7.85 21.49 15.00
1.6 0.35 14.59 6.46 16.04 10.83
1.6 0.45 9.95 7.48 18.15 9.20
1.8 0.25 31.34 8.04 17.23 19.63
1.8 0.35 20.23 7.26 19.30 14.06
1.8 0.45 17.66 8.75 10.18 13.08

Table 4.2: Reduced χ2 values for event shape (ES) and single particle (SP)
distributions and for mean particle multiplicities (PM). The value of γS is set
to 0.65. The corresponding number of degrees of freedom are 425, 420 and
41 respectively. The total reduced χ2 value, for 890 degrees of freedom, is
reported in the last column.

best agreement between theoretical predictions and experimental data is 0.65,
namely the one considered in Tab. (4.2).

γS ρ(GeV/fm3) χ2
red (ES) χ2

red (SP) χ2
red (PM) χ2

red

0.60 0.35 16.41 6.55 18.44 11.86
0.65 0.35 14.59 6.46 16.04 10.83
0.70 0.35 31.01 12.90 8.72 21.34
0.55 0.45 11.25 6.94 25.63 9.94
0.60 0.45 10.86 6.55 23.25 9.45
0.65 0.45 9.95 7.48 18.15 9.20
0.675 0.45 11.85 5.88 20.17 9.45
0.70 0.45 18.92 6.15 14.41 12.67

Table 4.3: Reduced χ2 values for event shape (ES) and single particle (SP)
distributions and for mean particle multiplicities (PM). The value of MC is set
to 1.6 GeV .

In conclusion, the above analysis shows that the parameter setup able to
give the best overall reproduction of the experimental data is MC = 1.6 GeV ,
ρ = 0.45 GeV/fm3 and γS = 0.65. The following plots and tables, which
show in detail the comparison among MCSTHAR++ predictions, HERWIG6.510
predictions and LEP data, have been obtained with the previous parameter
configuration. The definitions of the considered event shape observables can
be found in the appendix, while for the single particle energy and momentum
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distributions the analyzed observables are the scaled momentum

xp =
2 | p |√

s
,

its logarithm

ξp = log

(
1

xp

)
,

and the scaled energy

xE =
2E√

s
,

where p and E are respectively the 3-momentum and the energy of the consid-
ered particle and

√
s the collision center of mass energy. The results obtained

for the various sets of observables will be now discussed.

Event shape: the comparison between MCSTHAR++ and LEP experimental
data shows a quite good agreement for the whole set of considered observ-
ables, even if in some cases an higher statistics would be needed to completely
understand the behavior of the new hadronization code, in particular for some
points in the thrust minor (Fig. (4.5)), aplanarity (Fig. (4.14)), D-parameter
(Fig. (4.17)) and Md (Fig. (4.20)) distributions. In other cases, for example for
the transverse momentum and rapidity distributions of Figs. (4.6)-(4.8) and
(4.10)-(4.12) and for the planarity distribution (Fig. (4.13)), the agreement
between theoretical predictions and data is appreciable, in particular for the
points located in the maximum zone of the distributions. While for some of
these observables, namely the transverse momentum observables, MCSTHAR++
fails to reproduce the distribution tail behavior of the experimental data which
is correctly predicted by HERWIG6.510.

Single particle: also in this case a good agreement between MCSTHAR++ pre-
dictions and LEP data is present for a large set of the considered single particle
observables, in particular for π± momentum distribution (Fig. (4.24)), π0, ω,
ρ±, a±0 , η and η′ scaled energy and momentum distributions (Figs. (4.27)-
(4.32) and (4.37)-(4.42)) as well as for Σ∗±, ρ0 scaled energy distributions
(Figs. (4.45)-(4.47)) and for f2 scaled momentum distribution (Fig. (4.52)),
with a better agreement near the maximum of the plotted distributions. On
the other hand, a wrong behavior of the theoretical predictions can be seen in
the D0 and D∗ scaled energy distributions (Figs. (4.48)-(4.49)): in these cases
also HERWIG’s predictions show a disagreement with the experimental data,
however the cluster model seems to be able to reproduce the general behavior
of these data better than MCSTHAR++.

Charged particle multiplicity: in this case the agreement between the
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4.4. Full hadronization analysis

theoretical predictions of the microcanonical model and the experimental data
is almost perfect, with the exception of a low statistics point with a large error,
compatible with the experimental data, which would need higher statistics to
confirm the goodness of the corresponding prediction. It is worth noting that
for this distribution, in particular looking at the distribution tails, the predic-
tions of MCSTHAR++ show a better agreement with the experimental data with
respect to HERWIG6.510’s results.

Particle multiplicities: the comparison on the mean particle multiplicities
(Tabs. (4.4) and (4.5)), for this preliminary tuning, shows a better agree-
ment with experimental data for MCSTHAR++ predictions, with respect of HER-
WIG6.510 results, in the 70% of the considered multiplicities. Moreover the
discrepancies of the new hadronization module results with respect to LEP
data are smaller than 3σ in the 72% of the reported measurements, a per-
centage which becomes 100% if only the charmed and bottomed hadrons are
considered.
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Figure 4.3: Thrust (T ) distribution: comparison among MCSTHAR++,
HERWIG6.510 and DELPHI data [42] at 91.2 GeV center of mass energy.
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Figure 4.4: Thrust major (M) distribution: comparison among MCSTHAR++,
HERWIG6.510 and DELPHI data [42] at 91.2 GeV center of mass energy.
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Figure 4.5: Thrust minor (m) distribution: comparison among MCSTHAR++,
HERWIG6.510 and DELPHI data [42] at 91.2 GeV center of mass energy.

58



4.4. Full hadronization analysis

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 2 4 6 8 10 12 14

1/
N

dN
/d

P
t T

(G
eV

−
1
)

P t
T (GeV )

MCSTHAR++
HERWIG6.510

DATA

Figure 4.6: Transverse momentum (in) with respect to thrust axis (P T
t ) distri-

bution: comparison among MCSTHAR++, HERWIG6.510 and DELPHI data [42]
at 91.2 GeV center of mass energy.
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Figure 4.7: Transverse momentum (out) with respect to thrust axis (pT
t ) distri-

bution: comparison among MCSTHAR++, HERWIG6.510 and DELPHI data [42]
at 91.2 GeV center of mass energy.
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Figure 4.8: Rapidity with respect to thrust axis (yT ) distribution: comparison
among MCSTHAR++, HERWIG6.510 and DELPHI data [42] at 91.2 GeV center
of mass energy.
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Figure 4.9: Sphericity (S) distribution: comparison among MCSTHAR++,
HERWIG6.510 and DELPHI data [42] at 91.2 GeV center of mass energy.
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Figure 4.10: Transverse momentum (in) with respect to sphericity axis (P S
t )

distribution: comparison among MCSTHAR++, HERWIG6.510 and DELPHI data
[42] at 91.2 GeV center of mass energy.
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Figure 4.11: Transverse momentum (out) with respect to sphericity axis (pS
t )

distribution: comparison among MCSTHAR++, HERWIG6.510 and DELPHI data
[42] at 91.2 GeV center of mass energy.
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Figure 4.12: Rapidity with respect to sphericity axis (yS) distribution: com-
parison among MCSTHAR++, HERWIG6.510 and DELPHI data [42] at 91.2 GeV
center of mass energy.
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Figure 4.13: Planarity (P ) distribution: comparison among MCSTHAR++,
HERWIG6.510 and DELPHI data [42] at 91.2 GeV center of mass energy.
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Figure 4.14: Aplanarity (A) distribution: comparison among MCSTHAR++,
HERWIG6.510 and DELPHI data [42] at 91.2 GeV center of mass energy.
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Figure 4.15: Oblateness (O) distribution: comparison among MCSTHAR++,
HERWIG6.510 and DELPHI data [42] at 91.2 GeV center of mass energy.
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Figure 4.16: C-parameter (C) distribution: comparison among MCSTHAR++,
HERWIG6.510 and DELPHI data [42] at 91.2 GeV center of mass energy.
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Figure 4.17: D-parameter (D) distribution: comparison among MCSTHAR++,
HERWIG6.510 and DELPHI data [42] at 91.2 GeV center of mass energy.
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Figure 4.18: Heavy hemisphere mass (Mh) distribution: comparison among
MCSTHAR++, HERWIG6.510 and DELPHI data [42] at 91.2 GeV center of mass
energy.
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Figure 4.19: Light hemisphere mass (Ml) distribution: comparison among
MCSTHAR++, HERWIG6.510 and DELPHI data [42] at 91.2 GeV center of mass
energy.
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Figure 4.20: Difference of hemisphere masses (Md) distribution: comparison
among MCSTHAR++, HERWIG6.510 and DELPHI data [42] at 91.2 GeV center
of mass energy.
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Figure 4.21: Wide hemisphere broadenind (Bmax) distribution: comparison
among MCSTHAR++, HERWIG6.510 and DELPHI data [42] at 91.2 GeV center
of mass energy.
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Figure 4.22: Narrow hemisphere broadenind (Bmax) distribution: comparison
among MCSTHAR++, HERWIG6.510 and DELPHI data [42] at 91.2 GeV center
of mass energy.
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Figure 4.23: Sum of hemisphere broadenings (Bsum) distribution: comparison
among MCSTHAR++, HERWIG6.510 and DELPHI data [42] at 91.2 GeV center
of mass energy.

67



4. Numerical results

0.0001

0.001

0.01

0.1

1

10

100

0.1 1 10 100

dσ
/d

|p
|

(G
eV

−
1
)

| p | (GeV )

MCSTHAR++
HERWIG6.510

DATA

Figure 4.24: Charged pion momentum (| p |) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [43] at 91.2 GeV center of mass
energy.
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Figure 4.25: Proton momentum (| p |) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [43] at 91.2 GeV center of mass
energy.

68



4.4. Full hadronization analysis

0.0001

0.001

0.01

0.1

1

10

0.1 1 10 100

dσ
/d

|p
|

(G
eV

−
1
)

| p | (GeV )

MCSTHAR++
HERWIG6.510

DATA

Figure 4.26: Charged kaon momentum (| p |) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [43] at 91.2 GeV center of mass
energy.
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Figure 4.27: π0 scaled momentum (ξp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [49] at 91.2 GeV center of mass
energy.
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Figure 4.28: ω scaled momentum (ξp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [49] at 91.2 GeV center of mass
energy.
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Figure 4.29: ρ± scaled momentum (ξp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [49] at 91.2 GeV center of mass
energy.
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Figure 4.30: η scaled momentum (ξp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [49] at 91.2 GeV center of mass
energy.
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Figure 4.31: η′ scaled momentum (ξp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [49] at 91.2 GeV center of mass
energy.
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Figure 4.32: a±0 scaled momentum (ξp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [49] at 91.2 GeV center of mass
energy.
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Figure 4.33: Ξ∗0 scaled momentum (ξp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [45] at 91.2 GeV center of mass
energy.
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Figure 4.34: Ξ− scaled momentum (ξp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [45] at 91.2 GeV center of mass
energy.
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Figure 4.35: Σ∗+ scaled momentum (ξp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [45] at 91.2 GeV center of mass
energy.
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Figure 4.36: Σ∗− scaled momentum (ξp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [45] at 91.2 GeV center of mass
energy.
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Figure 4.37: π0 scaled energy (xE) distribution: comparison among MCSTHAR++,
HERWIG6.510 and OPAL data [49] at 91.2 GeV center of mass energy.
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Figure 4.38: ω scaled energy (xE) distribution: comparison among MCSTHAR++,
HERWIG6.510 and OPAL data [49] at 91.2 GeV center of mass energy.
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Figure 4.39: ρ± scaled energy (xE) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [49] at 91.2 GeV center of mass
energy.
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Figure 4.40: η scaled energy (xE) distribution: comparison among MCSTHAR++,
HERWIG6.510 and OPAL data [49] at 91.2 GeV center of mass energy.
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Figure 4.41: η′ scaled energy xE distribution: comparison among MCSTHAR++,
HERWIG6.510 and OPAL data [49] at 91.2 GeV center of mass energy.
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Figure 4.42: a±0 scaled energy (xE) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [49] at 91.2 GeV center of mass
energy.
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Figure 4.43: Ξ∗0 scaled energy (xE) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [45] at 91.2 GeV center of mass
energy.
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Figure 4.44: Ξ− scaled energy (xE) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [45] at 91.2 GeV center of mass
energy.
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Figure 4.45: Σ∗+ scaled energy (xE) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [45] at 91.2 GeV center of mass
energy.
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Figure 4.46: Σ∗− scaled energy (xE) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [45] at 91.2 GeV center of mass
energy.
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Figure 4.47: ρ0 scaled energy (xE) distribution: comparison among MCSTHAR++,
HERWIG6.510 and DELPHI data [51] at 91.2 GeV center of mass energy.
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Figure 4.48: D0 scaled energy (xE) distribution: comparison among
MCSTHAR++, HERWIG6.510 and DELPHI data [52] at 91.2 GeV center of mass
energy.
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Figure 4.49: D∗ scaled energy (xE) distribution: comparison among
MCSTHAR++, HERWIG6.510 and DELPHI data [53] at 91.2 GeV center of mass
energy.
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Figure 4.50: ∆++ scaled energy (xE) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [44] at 91.2 GeV center of mass
energy.
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Figure 4.51: f0(980) scaled momentum xp distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [46] at 91.2 GeV center of mass
energy.
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Figure 4.52: f2 scaled momentum (xp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [46] at 91.2 GeV center of mass
energy.
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Figure 4.53: φ scaled momentum (xp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [46] at 91.2 GeV center of mass
energy.
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4.4. Full hadronization analysis
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Figure 4.54: K0 scaled momentum (xp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [48] at 91.2 GeV center of mass
energy.
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Figure 4.55: K∗0 scaled momentum (xp) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [47] at 91.2 GeV center of mass
energy.
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4. Numerical results

0.0001

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50 60

P
(N

)

N

MCSTHAR++
HERWIG6.510

DATA

Figure 4.56: Charged particle number (N) distribution: comparison among
MCSTHAR++, HERWIG6.510 and OPAL data [50] at 91.2 GeV center of mass
energy.
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4.4. Full hadronization analysis

MCSTHAR++ HERWIG6.510 LEP data ∆MCSTHAR++

Charged 22.34 ± 0.27 20.45 20.76 ± 0.16 5.00
γ 23.64 ± 0.33 20.11 20.97 ± 1.17 2.20
π0 10.98 ± 0.13 9.56 9.61 ± 0.29 4.33
π+ 9.33 ± 0.15 8.16 8.50 ± 0.10 4.55
η 1.18 ± 0.04 0.63 1.059 ± 0.086 1.26
ρ+ 1.16 ± 0.03 0.97 1.20 ± 0.22 −0.18
ρ0 1.42 ± 0.04 1.00 1.40 ± 0.13 0.13
ω 1.29 ± 0.03 0.97 1.024 ± 0.059 4.10
η′ 0.13 ± 0.01 0.10 0.166 ± 0.047 −0.61

f0(980) 0.12 ± 0.01 0.010 0.1555 ± 0.0085 −2.43
a+

0 0.12 ± 0.01 0.01 0.135 ± 0.054 −0.26
φ 0.167 ± 0.007 0.1278 0.0977 ± 0.0058 7.16
f2 0.17 ± 0.01 0.169 0.188 ± 0.020 −0.74
fL1 0.081 ± 0.005 0.072 0.165 ± 0.051 −1.63
f ′2 0.019 ± 0.002 0.012 0.0120 ± 0.0058 1.19
K+ 1.11 ± 0.02 1.05 1.127 ± 0.026 −0.31
K0 1.07 ± 0.11 0.942 1.0376 ± 0.0096 0.30
K∗+ 0.34 ± 0.04 0.273 0.357 ± 0.022 −0.37
K∗0 0.33 ± 0.02 0.274 0.370 ± 0.013 −1.92
K∗0

2 0.031 ± 0.004 0.0361 0.036 ± 0.012 −0.38
p 0.45 ± 0.02 0.762 0.519 ± 0.018 −2.79

∆++ 0.069 ± 0.003 0.148 0.044 ± 0.017 1.47
Λ 0.128 ± 0.004 0.322 0.1943 ± 0.0038 −11.43
Σ+ 0.0253 ± 0.0009 0.0667 0.0535 ± 0.0052 −5.35
Σ− 0.0233 ± 0.0007 0.0548 0.0410 ± 0.0037 −4.68
Σ0 0.034 ± 0.001 0.0450 0.0389 ± 0.0041 −1.23
Σ∗+ 0.0176 ± 0.0006 0.0551 0.0118 ± 0.0011 4.62
Σ∗− 0.0156 ± 0.0005 0.0519 0.0240 ± 0.0024 −3.43
Ξ− 0.0040 ± 0.0001 0.0391 0.01319 ± 0.00050 −17.7
Ξ∗0 (2.12 ± 0.07)× 10−3 1.84× 10−2 (2.89 ± 0.50)× 10−3 −1.53
Ω (1.09 ± 0.04)× 10−4 4.94× 10−3 (6.2 ± 1.0)× 10−4 −5.11
n 0.51 ± 0.01 0.683 0.991 ± 0.054 −8.49

Table 4.4: Mean value of charged particles, photon and hadron multiplic-
ity: comparison among MCSTHAR++, HERWIG6.510 and LEP data [35][54] at
91.2 GeV center of mass energy. The last column contains the discrepancy,
measured in standard deviations, for MCSTHAR++ with respect to experimental
data.
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4. Numerical results

MCSTHAR++ HERWIG6.510 LEP data ∆MCSTHAR++

D+ 0.22 ± 0.01 0.287 0.238 ± 0.024 0.53
D0 0.54 ± 0.04 0.577 0.559 ± 0.022 0.33
Ds 0.110 ± 0.009 0.112 0.116 ± 0.036 0.18
D∗+ 0.19 ± 0.01 0.207 0.2377 ± 0.0098 −2.40
D∗0 0.23 ± 0.01 0.210 0.218 ± 0.071 0.11
D0

1 0.015 ± 0.001 0.022 0.0173 ± 0.0039 −0.46
D∗0

2 0.033 ± 0.003 0.030 0.0484 ± 0.008 −1.85
D∗

s 0.072 ± 0.005 0.036 0.069 ± 0.026 0.12
Ds1 0.0053 ± 0.0004 0.0044 0.0106 ± 0.0025 −2.11
D∗

s2 0.0039 ± 0.0003 0.0059 0.0140 ± 0.0062 −1.65
Λc 0.13 ± 0.01 0.036 0.079 ± 0.022 2.19

Table 4.5: Mean values of charmed hadron multiplicities: comparison among
MCSTHAR++, HERWIG6.510 and LEP data [54] at 91.2 GeV center of mass energy.
The last column contains the discrepancy, measured in standard deviations for
MCSTHAR++ with respect to experimental data.

MCSTHAR++ HERWIG6.510 LEP data ∆MCSTHAR++

(B0 + B+)/2 0.411 ± 0.005 0.4474 ± 0.0005 0.399 ± 0.011 1.03
Bs 0.105 ± 0.001 0.107 ± 0.001 0.098 ± 0.012 0.61

B∗/Buds 0.69 ± 0.01 0.426 ± 0.002 0.749 ± 0.040 −1.50
B∗∗ 0.183 ± 0.002 0.144 ± 0.001 0.180 ± 0.025 0.11

(B∗
2 + B1) 0.121 ± 0.001 0.094 ± 0.001 0.09 ± 0.018 1.73
B∗

s2 0.00776 ± 0.00009 0 0.0093 ± 0.0024 −0.64
b-baryon 0.110 ± 0.001 0 0.103 ± 0.018 0.37

Table 4.6: Mean values of bottomed hadron multiplicities: comparison among
MCSTHAR++, HERWIG6.510 and LEP data [54] at 91.2 GeV center of mass energy.
The last column contains the discrepancy, measured in standard deviations for
MCSTHAR++ with respect to experimental data.
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Conclusions and outlook

The present thesis is an extended report of the research project focused on
the development of the Monte Carlo code MCSTHAR++ and on the study of the
Microcanonical Statistical Model ability to reproduce the experimental data
when used in a numerical simulation describing the full dynamics of a high
energy collision. In fact the two topics are strongly related to each other since,
to perform a complete and exhaustive analysis of the theoretical predictions of
the hadronization model in the above extended framework, a microcanonical
hadronization module which could be interfaced to the existing general pur-
pose Monte Carlo event generators is needed and, at the same time, a detailed
comparison of the theoretical predictions with the experimental data is a fun-
damental step towards the fine tuning and preparation of the first release of
MCSTHAR++.

The general framework of the present project has been set in the first chap-
ter, with the description of the hadronization problem and with a discussion
on the available phenomenological models used to describe the hadronization
process itself. The Statistical Hadronization Model, in its microcanonical for-
mulation, has been introduced in the second chapter, where a complete deriva-
tion of the transition probabilities which characterize the model itself and
which represent the fundamental quantities needed to simulate the hadronza-
tion process has been presented. Moreover, the most important features of the
considered model have been discussed, in particular the possibility to include
in the theoretical predictions the effects coming from the quantum statistics,
due to the presence of identical particles, and from the interactions among the
produced hadrons. Another fundamental feature of the microcanonical model
implemented in MCSTHAR++ is the number of free parameters needed by the
model itself, represented by the strangeness suppression parameter γS and by
the energy density of the clusters ρ. The number of parameters needed by
a phenomenological model is obviously related to the predictivity level of the
model itself: considering as benchmark the number of adjustable parameters
characterizing the hadronization models presented in the first chapter, which
is 7 for the cluster model used by HERWIG6.510, the minimum number for the
considered cases, the small number of parameters needed by the microcanonical
model, together with its ”advanced” features and its independent approach to
the hadronization process, is the fundamental motivation for the introduction
of this hadronization model in the Monte Carlo event generators and therefore
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for the development of MCSTHAR++.
The implementation of the microcanonical model in MCSTHAR++ has been

discussed in the third chapter, with a detailed explanation of the algorithms
used in the various steps of the simulation: particular attention has been given
to the description of the procedure adopted for the calculation of the micro-
canonical partition function, needed to correctly normalize the event weight, as
discussed in the previous chapters, but also very demanding to be computed.

One of the major drawbacks in dealing with a phenomenological model is
the need for a tuning of the model itself, which consists in looking for the
configuration of the free parameters which gives the better agreement between
theoretical predictions and the considered experimental data. In general, and
this is the case of the Monte Carlo event generators, this operation is quite
expensive from a computational point of view and for this reasons it is yet
to be performed on MCSTHAR++. Nevertheless, a preliminary and approxi-
mated tuning has been obtained, as described in Chapter 4, with a comparison
among MCSTHAR++ theoretical predictions, HERWIG6.510 results and LEP data
at 91.2 GeV center of mass energy for a quite large set of observables, showing
the good performances of the new hadronization code. The quantum statistics
and interaction contributions previously cited have not been included in this
first run of the hadronization code, since they give a relevant reduction of the
speed of the event generation and, more important, they make hard to produce
the set of partition functions needed by the code.

The inclusion of these important features, together with a final and rigorous
tuning of the new hadronization module, will be the next steps of the present
project, with the final objective to build a complete and public release of
MCSTHAR++.
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Appendices
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Event shape observable
definitions

In the present appendix the definitions of the event shape observales consid-
ered in Sec. (4.1) for the analysis of the theoretical predictions obtained with
MCSTHAR++ will be given [55].

Thrust related oservables

• The thrust T value is defined as

T = max
$n

N∑

i=1

| 1pi · 1n |

N∑

i=1

| 1pi |
,

where 1n is a unit vector along the thrust axis and N the number of
particles.

• Thust major M and minor m are similarly defined, replacing 1n with 1nM

perpendicular to 1n and with 1nm = 1nM × 1n respectively.

• The rapidity with respect to thrust axis yT is defined as

yT =
1

2
· log

E + pT

E − pT
,

where pT is the particle momentum parallel to the trust axis.

• Oblateness O is given by O = M −m.

• The in and out components of the transverse momentum with respect to
thrust axis, P T

t and pT
t , are defined as P T

t = p · 1nM and pT
t = p · 1nm.

Sphericity related oservables

• Considering the quadratic momentum tensor

Mαβ =
N∑

i=1

pα
i pβ

i (α, β = 1, 2, 3) ,
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after the ordering and normalization of the corresponding eigenvalues λi

in order to have

λ1 ≥ λ2 ≥ λ3 and λ1 + λ2 + λ3 = 1,

the sphericity S, aplanarity A and planarity P are defined as

S =
3

2
(λ2 + λ3) , A =

3

2
λ3 and P =

2

3
(S − 2A)

respectively.

• The rapidity with respect to sphericity axis yS is defined as

yS =
1

2
· log

E + pS

E − pS
,

where pS is the particle momentum parallel to the sphericity axis.

• The in and out components of the transverse momentum with respect
to sphericity axis, P S

t and pS
t , are defined similarly to the P T

t and pT
t

transverse momentum, using the eigenvectors of the quadratic momen-
tum tensor instead of the 1nM and 1nm versors.

C and D parameters

• Considering the linear momentum tensor

Θαβ =
1

N∑

i=1

| 1pi |

N∑

i=1

pα
i pβ

i

| 1pi |
,

the C and D parameters are defined starting from its eigenvalues λi in
the following way:

C = 3 (λ1λ2 + λ2λ3 + λ3λ1) and D = 27λ1λ2λ3.

Hemisphere masses

• To calculate the hemisphere masses, the particles are separated in the
two hemispheres identified by the plane perpendicular to the thrust axis.
After this particle identification the heavy hemisphere mass Mh is defined
as

Mh = max








∑

$pi·$n>0

1pi




2

,




∑

$pi·$n<0

1pi




2

 ,

where 1n is a unit vector along the thrust axis. The light hemisphere mass
Ml is defined as in the previous equation with the maximum replaced
by the minimum. The difference of hemisphere masses is defined as
Md = Mh −Ml.
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Hemisphere broadenings

• Considering the event hemispheres, defined in the previous item, the par-
ticle momenta transverse to the thrust axis are summed and normalized
as follow to define the quantities B+ and B−:

B± =

∑

±$pi·$n>0

| 1pi × 1n |

2
∑

i

| 1pi |
.

The hemisphere broadening observables are then defined as Bmax = max (B+, B−),
Bmin = min (B+, B−), Bsum = B+ + B− and Bd =| B+ −B− |.
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friends Giovanni Balossini, Luca Barzè, Giacomo Bormetti, Valentina Cazzola
and Danilo Delpini. A special thank you goes to my friend and officemate
Giacomo Livan.

I also wish to thank all the italians I met in Karlsruhe, who made my
german experience more relaxing and funny.

A huge hug and an even bigger thank you goes to Sara, for always sup-
porting me in my projects and for having shown me a magic way of looking at
life.

A big thanks goes to my family, for having supported me during these
years, giving me the possibility to follow my interests, and for always helping
me to do my best.

Christopher Bignamini

99




