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CHAPTER 1 
 

Introduction 
 

1.1 Low-Dimensional Molecular Magnets 
 

The interest in magnetism and in low-dimensional systems has 
been always strong although, in the course of the years, the focus 
of the interest has changed many times. In fact, at the beginning, 
these kinds of systems were studied both from a theoretical and 
an experimental point of view, because they afforded a model 
system of many body problems which could be treated and 
understood in a relatively simple way. Later, researchers realized 
that low-dimensional systems possessed peculiar properties not 
present in higher dimensionality systems such as, for instance, 
magnetic soliton excitations, quantum critical point and the 
slowing down of the magnetization for 1D chains predicted by 
Glauber [1] for Ising spin chains, the last being one of the 
subjects of the present thesis. 
This great theoretical ferment was not immediately followed by 
an experimental development; in fact many theoretical 
predictions formulated could not be immediately verified 
experimentally due to lack of real systems approximating the 
low-dimensional case. These predictions served as a stimulus to 
chemists in researching new methods for synthesizing 
compounds with the new desired characteristics. Nowadays 
many techniques have been improved and, starting from 70s, a 
lot of 1D, quasi-1D and 2D systems are available. Chemists even 
have been able to confine magnetic interactions in zero-

dimensional structures.  
Among the most investigated low-dimensional magnetic 
structures there are the molecular clusters (see for instance [2-
7]):   they   consist   of   crystals   constituted   by   large   organic  
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molecules containing several transitions metal ions with strong 
exchange interaction among them. In these systems each 
molecule is not affected by the magnetic interaction with the 
surrounding ones so that a molecule behaves as a single molecule 

magnet (SMM) i.e. a model system of zero-dimensionality. Of 
particular interest are SMM which have a large total spin ground 
state and a high single axis anisotropy. As a result the two 
degenerate ground states corresponding to opposite projections of 
the magnetic moment along the anisotropy direction are 
separated by a large energy barrier. At low temperatures, when 
thermal energy is not sufficient for overcoming this barrier, the 
system behaves as a superparamagnet. The magnetic freezing 
suggested the possibility of using SMM as memory storage bits: 
however, up to now no system with sufficiently high anisotropy 
for room temperature applications has been discovered. Even 
without applications, SMM have offered a model system for 
study of many fascinating new phenomena involving both 
classical and quantum effects such as slowing down of the 
magnetization, molecular magnetic hysteresis [8], Berry phase 
[9] and quantum tunnelling of the magnetization [10-11]. The 
efforts generated in chemical synthesis made available a large 
number of quasi-one-dimensional systems, where the interactions 
between spins are restricted mostly in one dimension, so that they 
undergo a 3D transition only at very low temperatures when the 
very weak interchain interactions are no longer negligible. One 
of the most important and studied systems synthesized is the so-
called TMMC [12-16], acronym for the [(CH3)4N]MnCl3 
compound, which consists in an antiferromagnetic chain with 
spin S=5/2 which develops along c crystallographic axis. This 
system is made up of Mn2+ ions and (CH3)4N

+ centres: the former 
are responsible for the magnetic behaviour of the compound 
while  the  latter  serve  for   separating   neighbour  chains.   This  
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sample is a quasi-ideal 1D system thanks to the fact that the 
distance between two Manganese ions along the chain is of about 
3.25Å, while the interchain distance is 9.15Å: the result is that 
the ratio between interchain and intrachain interactions is of the 
order of 10-4 and, as a consequence, the 3D transition occurs at 
very low temperature (TN≅0.8K).  
A fundamental step was taken in the last twenty years with the 
discovery of new techniques and materials for the synthesis of 
new samples which are quasi-1D: ligands particularly important 
for this purpose have been and still are nitronyl-nitroxide stable 
organic radicals which, despite their lability, have made possible 
a new synthesis approach: in fact the new 1D and quasi-1D 
systems are characterized by the alternation of transition-metal or 
lanthanide ions and the radical building blocks. The results have 
been amazing: in fact with the substitution of the radical in these 
centres, the properties of these systems change completely. One 
of the most important example is provided by the so-called 
Dysprosium chains: this compound is constituted by the 
alternation of Dysprosium ions and of the mentioned nitronyl-
nitroxide radical centres. It has been demonstrated that working 
on the radical inserted in these building blocks it is possible, for 
instance, to obtain from a quasi one-dimensional system like   
[Dy(hfac)3{NIT(Et)}] [17-20], where the shortest interchain 
distance is of about 10.76Å and with a 3D transition temperature 
TN≅4.3K, a compound like [Dy(hfac)3{NIT(C6H4OPh)}] [21]. 
The latter can be considered a single chain magnets (SCM) 
where theoretically TN=0, since the position of the ligands 
permits a larger separation between neighbour chains of the 
sample. This opens up new perspectives in the search of ideal 
one-dimensional systems: the starting point are quasi-one 
dimensional magnets which  can  be simply manipulated  in  their 
radical centres for the creation  of  new  single  chain  magnets.    
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Thanks  to  the  deep   knowledge   of   the   properties   of   these   
radicals  and  of  their interactions with the magnetic centers, 
chemists in Firenze could also to create a family of rare-earth-
based single chain magnets whose general formula is 
[M(hfac)3NITPhOPh)] [22] where M=Eu, Gd, Tb, Dy, Ho, Er, 
Yb. With the substitution of the magnetic centre they have been 
able to control the anisotropy of each system and to point out the 
different magnetic properties for compounds which are similar 
from a topological point of view. 
Also in this thesis we will discuss two systems which display a 
different magnetic behaviour although the systems are similar 
from a chemical point of view. The first sample studied is 
[Co(hfac)2NITPhOMe] [23] which has been synthesized at the 
end of the 80s by the Dante Gatteschi’s group in Firenze. It 
presents the characteristics already observed for single molecule 
magnets [24], i.e. the molecular clusters discussed before: in fact 
this compound is characterized by the slowing down of the 
magnetization and it has been the first system displaying the 
Kinetic Ising Model of Glauber [1] predicted theoretically almost 
thirty years before for 1D Ising systems. An issue of considerable 
interest is the study of the Glauber dynamics in chains broken 
into finite segments by doping with diamagnetic impurities. With 
this aim in mind we have investigated, by means of DC 
susceptibility and NMR measurements, Zinc-doped (Zn=1.9%, 
5.4%) powder samples in the temperature range 1.5K<T<300K 
in two different static applied magnetic fields (H=0.35T;1.65T).   
The second kind of samples investigated consists in a family of 
quasi-one dimensional helical frustrated systems, whose 
chemical formula is [Gd(hfac)3NITR] where R=Me, Ph, iPr, Et.  
They have been studied in collaboration with the University of 
Firenze and the University of Modena. In this work we have 
focussed our attention on Gd-Ph, Gd-iPr and Gd-Et derivatives.  
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In particular  we have  performed, in the temperature range where 
the phase transitions were supposed to occur (20mK<T<100K), 
susceptibility measurements in a vanishing field and, for the first 
time on this kind of samples, µSR measurements in Zero and in 
500Oe longitudinal fields.  
These compounds have been synthesized thanks to development 
of innovatory synthesis techniques which allowed a great control 
on interchain and intrachain distances and the possibility to 
introduce different kinds of anisotropies, depending on the 
magnetic centre inserted in the compounds, with the creation of 
systems characterized by several competing interactions. Also in 
this case, even if many scientists have studied in the past these 
systems from a theoretical point of view, no real sample was 
available before these complex compounds were synthesized. 
The most important theorists who studied these materials, have 
been, in the last thirty years, I. Harada [25-27] and J. Villain [28-
29]. They examined quasi-one dimensional systems where the 
order of magnitude of the intrachain interactions is the same. 
They had to take into account the competitions between nearest-
neighbour and next-nearest-neighbour exchange interactions 
evaluating the degree of frustration of each system and found out 
in these materials many new features such as excitations of 

domain walls separating regions with opposite chirality (Harada 
[25-27]) and the presence of a chiral phase between the 
paramagnetic one and the 3D helical long range phase (Villain 
[28-29]). The family of quasi one-dimensional systems cited 
above and studied in this thesis, is one of the best example of 
frustrated helimagnetic systems. In fact these compounds are 
characterized by nearest-neighbour interactions and two different  
next-nearest-neighbour interactions: depending on the strength of 
the magnetic interactions, together with the influence of the 
intrachain dipolar interactions, these compounds  can  be  divided  
 



~ 10 ~ 

 

1.   Introduction 

 

into “weakly frustrated” systems(Gd-Ph and Gd-Me derivatives), 
which are characterized simply by a 3D transition of 
ferromagnetic nature and into “fully frustrated” systems, which 
fulfil Villain’s complex phase diagram [28-29]. 
 

1.2 Thesis Outline 
 

Following the introductory chapter, the work is organized in four 
additional chapters and two appendices. 
In Chapter 2 we will describe the NMR and µSR experimental 
techniques, which have been the main tool of investigation we 
have adopted for the study of the samples treated in this thesis. 
In Chapter 3 we will treat the most important theoretical methods 
and models for one-dimensional and quasi one-dimensional 
systems used for the interpretation of the experimental results. 
Among them we will describe Transfer Matrix Method applied to 
Ising Model and Planar Model in Frustrated Systems and Glauber 
Model for Ising spin chains. 
In Chapter 4 the CoPhOMe single chain magnet will be 
investigated: after a summary of the physical characteristics and 
the experimental results obtained previously on pure sample, we 
will emphasize Zinc-doped samples which have been studied 
here for the first time also from a microscopic point of view for 
the purpose of comparing their magnetic properties with the ones 
of the pure compound. 
In Chapter 5 we will discuss the complex features of the 
Gadolinium-Radical chains with a comparison among the four 
derivatives of this family with the corresponding classification  in 
“weakly frustrated”  and   “fully frustrated”  systems   and   some  
conclusions will be drawn regarding the results obtained in this 
work. 
Finally  in  Appendix A  the  most used  sequences in NMR pulse  
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technique  both  for  T1 and T2  measurements will  be  explained,  
while in Appendix B NMR and µSR experimental equipment 
used in laboratories of University of Pavia and of Paul Scherrer 
Institute in Villigen (CH), respectively, will be described.      
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CHAPTER 2 
 

Fundamental Aspects of NMR and 

µµµµSR Techniques 

 
In this Chapter the fundamental aspects regarding NMR and µSR 
techniques, used for low-dimensional systems investigation, will 
be given. 

 
2.1 NMR 
  

2.1.1 Introduction  
 

Nuclear Magnetic Resonance technique can be described from 
two main different points of view: through a semi-classical 
theory and through a quantum theory. For an introduction to the 
subject, vectorial semi-classical description will be used. 
Most of the nuclei in their ground state present a nuclear spin 
angular momentum h

r
I  different from zero and a corresponding 

dipole magnetic moment I
r

h
r

γµ =  where γ  is the gyromagnetic 

ratio of the nucleus. Let us consider an isolated free spin subject 
to a static and uniform magnetic field zHH ˆ0=

r
 applied along z 

direction of a fixed reference frame called laboratory reference 

frame (ΣLAB). 
The purpose of this section is to investigate the time evolution of 
the magnetic moment under the influence of the uniform static 
magnetic field 0H

r
: the equation to be solved is [30] 

 

                                        0/ Hdtd
rrr

∧= µγµ                               (2.1) 
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which describes the reaction of the magnetic moment to the 
moment of the forces acting on it. 
Projecting the equation along the Cartesian axes, the result is 

 
                                       yx Hdtd µγµ 0/ = (2.2a) 

 

                                      xy Hdtd µγµ 0/ −=                           (2.2b) 

 

                                           .0/ =dtd zµ                                 (2.2c) 

 
These equations clearly show that magnetic moment precesses 
around z direction, where magnetic field is applied, with a 
frequency 0HL γω =  called Larmor frequency. 

Now let’s take into account the effect of a Radio Frequency (RF) 
Field 1H

r
 rotating with frequency ω in the x-y plane of ΣLAB, i.e. 

perpendicular to the static magnetic field direction. 

The RF field 1H
r

can be generated by a coil (oriented for instance 

along x direction in ΣLAB) in which an alternate electrical current 
at radio frequency flows, creating an oscillating field. This field 
can be considered as the sum of two rotating fields clockwise and 
counterclockwise respectively. When the so-called resonance 

conditions are reached, the component rotating with frequency 
equal to -ωL can be neglected, because it is so far from the 
resonance frequency that its effect on the precession of the 
magnetic moment is really weak.  
We assume in the following that the RF field must have intensity 
much smaller than the static magnetic field i.e.: 

 
                                             01 HH

rr
<<                                   (2.3) 
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For a better  understanding of  the  system under  discussion  it  is 

useful to introduce a new frame of reference, named ΣROT,  x’, y’,  
z’ with z’=z,  and rotating with the same frequency ω as the RF 

field 1H
r

. Working in ΣROT the time evolution equation becomes 
 

                             ( ).// 10 HωHdtd
rrrrr

++∧= γµγµ                  (2.4) 
 

The use of a non-inertial reference frame causes the introduction 
of an effective field: eq.(2.4) has the same form as eq.(2.1) if we 
assume as effective field  

 

                                     10 / HωHHeff

rrrr
++= γ                          (2.5) 

 

so that eq.(2.4) becomes 

 

                                       effHdtd
rrr

∧= µγµ /                            (2.6) 
 

When the rotational frequency is 0HL

rrr
γωω −== , the resonance 

conditions are reached and the only field felt by nuclear moments 
in the rotating frame is 1H

r
, with a subsequent precession around 

1H
r

 of the nuclear magnetization. Working on 1H
r

the relative 

position between µ
r and z=z’ axis can be varied.  

This procedure describes the main principle of NMR technique: 
thanks to an oscillating field at radio frequency, caused by a RF 

current, a free spin in a uniform magnetic field 0H
r

 can be driven 

in different positions in the space. 
Let’s consider now an ensemble (for instance of the order of the 
Avogadro number), of non-interacting nuclei of the same 
species, interacting with the lattice and subject to a uniform static 
magnetic field 0H

r
along z axis. 
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From  a  quantum point of view as a consequence of the presence 

of 0H
r

 the levels degeneracy will be split and the spins will 

arrange themselves on the Zeeman levels whose energy is 

0HmE ImI
hγ−=  where IIIImI −+−−= ,1,......1, . Once the  

thermal  equilibrium is reached,  spin arrangement will obey 
Maxwell-Boltzmann statistics, and a nuclear magnetization 
results. This is related to the fact that most of the magnetic 
moments of nuclei will arrange themselves along field direction: 

magnetization value is ( ) ><= zVNM µ/ , with 

>< zµ representing the thermal mean value of the component of 

the magnetic moment along field direction and N the number of 
the spins considered. 
After easy calculations [30] the expression of the magnetization 
for a paramagnetic system is           

 

                                 







=

Tk

IHg
IBg

V

N
M

B

N
IB

0µ
µ                   (2.7) 

                                
wher ( ) ( ) ( )[ ] ( ) ( )[ ]IxctnhIIxIctnhIIBI 2/2/12/122/12 −++= ,

with ( )TkIHgx BN /µ= , is the Brillouin Function, g the nuclear 

Landé factor, Nµ = 5.0508⋅10-24 erg/gauss the nuclear magneton 

and kB=1.380662⋅10-16 erg/K is the Boltzmann constant. 
If γħΗ0 << κΒΤ , a condition verified in most cases, and I=1/2, the 
magnetization can be written 

 

                                       0

2

3
H

TkV

N
M

B

µ
=                                (2.8) 

 

which is the classical result, with ( )1222 += IIg Nµµ .  

Let us now study the time evolution of the nuclear magnetization 
in  ΣLAB when the Zeeman levels populations are perturbed by the  
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application of the RF field. The result consists in the so-called 
Bloch Equations [30] 

 

                  ( ) 21 /sin/ TMtMMdtdM xzyLx −+= ωωω           (2.9a) 

 

                    ( ) 21 /cos/ TMtMMdtdM yzxLy −+−= ωωω          (2.9b) 

 
         ( ) ( ) 211 /cossin/ TMtMtMdtdM yyxz −+−= ωωωω       (2.9c) 
 

with 0HL γω =  and 11 Hγω = .  

In the equations above, where it has been supposed that Mz 

reaches this value with a rate proportional to the distance from it, 

000 HM χ=  is the equilibrium value of the magnetization. In the 

phenomenological Bloch Equations T1 and T2 quantities have 
been introduced: they are named respectively spin-lattice 

relaxation time and spin-spin relaxation time. These two 
quantities represent the times it takes to reach the equilibrium 
conditions. In particular T1  measures how fast the longitudinal 
(z) component of the nuclear magnetization reaches its 
equilibrium value 0M , instead T2 represents the rate the 

transverse components takes (x,y) to decay to zero. These are the 
physical properties mainly investigated in NMR technique, 
because they give many information on the system studied as 
will be shown later in the text.  
 

2.1.2 NMR Pulsed Technique  
 

After the application of the uniform steady magnetic field 0H
r

, 

Im  degeneracy of Zeeman nuclear levels is removed and the 

sample is characterized by a measurable magnetization along the 
field direction. NMR pulsed technique is based on the application  



~ 18 ~ 

 

2.   Fundamental Aspects of NMR and µµµµSR Techniques 

 
of one or more RF pulses close to the resonance frequency ωL 
and on the subsequent detection of the response of the nuclear 
magnetization .  The spin  system is  driven out of equilibrium by 
applying the RF pulse for a time τ  of the order of microseconds. 
The pulse length sets the position of  the magnetization  in space: 
for instance the pulse is named 2/π  if after ( )( )1/12/ Hγπτ =  the  

magnetization is rotated by an angle 2/π  from its initial position 
along  z axis (i.e. in the x-y plane). Another common angle used 
is π  and the magnetization is subsequently reversed in the 
negative direction of z axis. 

After the RF pulse, the same coil used for the generation of 1H
r

,                             

 

FIG.2.1 Trajectories of nuclear magnetization after ππππ/2 and ππππ RF 

pulses. 

 
 

 

placed perpendicularly to the static magnetic field direction, 
detects the signal created by the transverse components of the 
magnetization. The  signal  consists in an electromotive force 
induced in the coil caused by a variation of the flux linkage to the  
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coil itself. This signal, called Free Induction Decay (FID), is then 
filtered, amplified and displayed by the spectrometer. 
As can be inferred by the third Bloch Equation (2.9c) [30] the 

restoration of the equilibrium value of zM is expressed by 

 

                                 ( ) ( )[ ]10 /exp1 TtMtM z −−= .                  (2.10) 

 
The recovery of  the nuclear magnetization can also be obtained 
from a quantum mechanical treatment of the problem in terms of 
transition probabilities among Zeeman nuclear levels and a 
master equation approach to describe the dynamics [31]. For I 
=1/2 one finds an exponential recovery as in eq.(2.10). If I>1/2 
eq.(2.10) is replaced by a weighted linear combination of 
exponential functions which must be obtained through the 
solution of the so-called Master Equations [31] of the form:  

 

                               nmnmnm
n NWNW

dt

dN
→→ −=                   (2.11) 

 
for each couple of levels mn. The Master Equations represent the 
population variation on the nuclear hyperfine levels caused by 
the irradiation due to the electromagnetic RF field. 
In the equation above, W  is the probability transition between 
levels considered, while N represents the levels populations.    
The reason of the more complex behaviour is due to the fact that 
Zeeman levels are not equally spaced, because of the 
perturbation of the electric quadrupolar interaction, which 
characterizes nuclei with I >1/2. Under this condition there are 
many cases to be taken into account depending on many factors. 
A discriminant parameter consists, for instance, in the selection 
rules  driving the magnetic interactions in the  system studied;  in  
fact a  system undergoing interactions characterized  by magnetic 
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interactions with selection rules ∆m=±1 must be treated 
differently   with   respect  to  the  case  when  both   ∆m=±1  and 
∆m=±2 are present,  since in  this  case  the  recovery  of  the  
nuclear magnetization is even much more complicated [31].  
As regards the transverse component of the nuclear 
magnetization,  spins are driven to their equilibrium value  by the  
characteristic time T2 which is shorter or of the same order as T1: 
again from Bloch Equations [30] results 

 

                                  ( ) ( )2/exp TtMtM −= ⊥⊥           (2.12) 
 

which describes the decay to zero of the transverse 
magnetization, where M ⊥  is the initial value of magnetization in 

the x-y plane.  
 

2.1.3 Hamiltonian of Interaction  

 

In this section the connection between the relaxation parameters 
described above and the microscopic properties of the system 
will be shown. 
The time evolution of  nuclear magnetization is driven by various 
kinds of hyperfine interactions which act over the ensemble of 
the nuclei. In general the contributions in the Hamiltonian of the 
system are four and can be summed up by the total Hamiltonian 

 

                               QnennZ HHHHH +++=          (2.13) 
 

where 
 

                                      ∑ ⋅−=
j

jZ HIH 0

rr
hγ                      (2.14) 

 

is the Zeeman Hamiltonian where jI
r

 is the j-th nuclear spin, nnH
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represents the dipolar interactions between nuclear magnetic 
moments while 

 

                              ∑∑∑ ==
j i

ijij

j

j

nene SAIHH
rrrr

                 (2.15) 

 

describes the interaction between nuclear and electronic spins 

surrounding each nucleus where 
j

neH
 is the Hamiltonian related 

to nucleus at the j-th site. 

In this case the Hyperfine tensor ijA

rr
is supposed to be the sum of 

a dipolar contribution and a contact scalar term ijA'  

with [ ] 0,' =zij HA . The total expression of the Hyperfine tensor is  
 

                        ji
ji

jijiji

enji A
r

rrIr
A '

3
5

2
2 −













 ⋅−
−=

rr
rr

h

rr
γγ ,              (2.16) 

                          
where I

r
 is the identity tensor. 

The first contribution in eq.(2.16) has a classical origin and it can 
be thought as the classical interaction between two magnetic 

dipoles localized at a relative distance r
r

. The second term 
instead, called also Fermi term, has a quantum origin: it 
represents the interaction between  I and the component s of the 
electronic wavefunction, which has a probability of presence 

( ) 2|0| sψ  different from zero also at the nucleus position. This 

interaction is proper of a system with delocalized electrons but 
also for localized electrons in the case when external s levels of 
the ion which I belongs to, are polarized.     
Let us introduce now the hyperfine field defined as  
 

                                    ∑ ⋅







=

i

iji

n

j SAh
rrr

h

r

γ
1

                           (2.17) 
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which represents the field created by electrons and felt at nuclear 
sites. The interactions between nuclei and electrons can be 
rewritten 

 

                                jjn

j

ne hIH
rr

h ⋅−= γ                        (2.18)                                     

 

in a form that reminds an effective Zeeman interaction. 
Dipolar interaction among nuclei is much weaker than nucleus-
electrons interaction ( 310/ −≅en γγ ) and can be written 

 

                                         ∑
<

=
ji

ijijnn IDIH
rrrr

                            (2.19) 

                                         

with  
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


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

 ⋅−
=

ji

jijiji

nnji
r

rrIr
D

5

2
2

'

3
rr

rr

h

rr
γγ .                  (2.20)  

                                    

nnH  is the responsible for a broadening of the absorption line 

called homogeneous. 
The contribution just described is the so-called direct dipolar 

interaction between two nuclei characterized by a different spin 
I: this term is relevant especially when the protons of a system 
are studied, as in our case (see Chapter 4), since they have a high 
gyromagnetic ratio γ . It is possible also another kind of nucleus-
nucleus interaction, called indirect dipolar interaction: it consists 
in an effective interaction which uses as intermediaries the 
electrons. In practice a nucleus  I  polarizes the  electronic system  
through hyperfine coupling, a spin in the n-th site interacts 
through  exchange  interaction  J  with  another electronic  spin at 
m-th site, which, in its turn, polarizes another nucleus still 
through hyperfine interactions.  
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In practice two nuclei can interact in two different ways: if (i) the 
hyperfine coupling among them is strong enough and if (ii) two 
nearest-neighbour electronic spins are strongly coupled.    
The fourth term in the general Hamiltonian of Interaction is 
related to systems whose nuclei have I>1/2 and thus possess an 
electric quadrupole moment.  
The interaction between electric quadrupole moment and electric 

gradient field tensor V

rr
, related to charge distribution around 

each nucleus, is described by [32] 

 

                   
( ) ( )




 ++
+

−= −+
222

63
1

2
II

II
I

h
H z

Qj

Q

ην
          (2.21) 

 
where 

 

                                       Qν =
hII

QVe zz

)12(2

3 2

−
                             (2.22)     

                        

is the quadrupolar frequency, yx iIII +=+  and 

yx iIII −=− , βααβ
xxVV ∂∂∂= /2  are the components of the 

V

rr
 tensor in a reference frame where xxyyzz VVV ≥≥ ; 

( )
zzyyxx VVV /−=η  is named asymmetry parameter.  

 

2.1.4 Spin-Lattice Relaxation Time (T1) 

  

In this paragraph and in the following one relaxation times 
measured in NMR experiments will be discussed from a 
theoretical point of view making use of quantum theory. 
As already mentioned, the spin ensemble after the RF pulse is not  
In  an  equilibrium  condition.  In  the  case of  nuclei with  I=1/2, 
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calling W the transition probabilities between >+==>+ 2/1|| Im  

e  >−==>− 2/1|| Im , spin-lattice relaxation time T1 is defined, 

from Master Equations [31] as [33]  
 

                                              W
T

2
1

1

≡ .                                 (2.23)    

 

The most important effect on spin-lattice relaxation rate is due to 
the hyperfine interaction between nuclei and electronic spins and 
referred as neH  in the Hamiltonian of interaction previously 

described. Taking into account the fluctuations of the hyperfine 
field at the nucleus due to these interactions and treating them 
theoretically with time-dependent perturbation theory, 1/T1 
expression can be written [34-35] in the form  

 

                     ( ) ( ){ }><== −+

+∞

∞−
∫ 0,

2
2

1
0

2

1

hthedtW
T

tiωγ
         (2.24) 

 

In the equation above, 00 Hγω =  is the resonance  frequency, h(t)  

represents  the fluctuating part of the hyperfine magnetic field, 

yx ihhh +=± , { } ( ) 2/, BAABBA +=  is the anticommutator of A 

and B operators and 〈 〉 is the statistical average. 
In particular: 

 

             ( ) ( ) { } ( )eeee HitHitHH
eTrheheeTrhth

ββ −
−

−
+

−
−+ >=< /0, // hh

  (2.25) 
 

where He is the Hamiltonian of the electronic system. Making the 
anticommutator explicit, results 

 

       ( ) ( ) ( ) ( )( )><+><== ∫
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2
1
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2
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This equation shows that just the transverse component of the 
fluctuating field at nuclei is responsible for spin-lattice 
relaxation: this behaviour derives from the magnetic dipole 
selection rules.  
Writing 

 

                                            ( ) ( )tSAth
rrrr

=                               (2.27) 
 

and expressing the time evolution of the spin ( )tS
r

 in terms of 

collective components ( )tSq
r

r
  

 

                                    ( ) ( )∑ ⋅=
q

q

rqi tSe
N

tS r

rr rr 1
                     (2.28) 

 

where the number of spins is indicated with N and q
r

 is a vector 

of the first Brillouin zone, the fluctuating hyperfine field 
becomes 

 

                                   ( ) ( )tSeA
N

th q

rqi

q

r

rr rrrr
⋅∑=

1
                     (2.29) 

 

and 1/T1 can be written  
   

( ) ( )( ) ( ) ( )( ){ }∑∫ ><+><= −−
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∞− q

q
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q
y

q
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xti
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02

2
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ωγ
.   (2.30) 

 

Defining the components of the dynamical structure factor as 

 

                      ( ) ( ) ( ) ><= −

+∞

∞−
∫ tSSedtqS qq

ti rr
r ααωαα ω ,0, ,           (2.31) 

 

where α = x, y, z, results  
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                          ( ) ( )[ ]∑ +=
q

yyxx qSqSA
T r

rr
00

2
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1

,,
2

1
ωω

γ
.              (2.32)    

 

The quantity ( )ω,qS xx r
 is proportional to the component xx of the 

imaginary part of the susceptibility ( )ωχ ,'' qxx

r
; under the 

condition  ħω0<< TkB
, which represents the high temperature 

limit, the equation for ( )0,'' ωqS xx

r
 is 

 

                                  ( ) ( )0
0

0 ,'', ωχ
ω

ω q
Tk

qS B r

h

r
=                        (2.33) 

 

The final expression for spin-lattice relaxation time is thus: 
 

                        2
2

1 2
2

1
AW

T

γ
==

0ωh
TkB ( )∑ ⊥

q

q 0,'' ωχ
r

            (2.34) 

 

where the symbol ⊥ means that just the transverse (x,y) 
components are considered. 
 

2.1.5 Spin-Spin Relaxation Time (T2)  
 

Spin-spin relaxation time T2  measures the irreversible decay of 
the transverse magnetization. The measure of T2 can be done only 
after the use of specific spin echo sequences which are able to 
eliminate the reversible contribution to the decay of the 
transverse magnetization which arises from inhomogeneous 
broadening effects. (See Appendix A) 
Considering  again  relaxation  processes  due  to  hyperfine  field  
fluctuations  at the  nuclear sites  one has  (see for instance [36]): 

   

                                    ( ) ( )
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zz                         (2.35) 
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where Jzz (0) is the spectral density at zero frequency and it is 
defined: 

 

                               ( ) ( ) ( ) .0,0 dththJ zzzz ><= ∫
+∞

∞−

                    (2.36) 

 

Making explicit the expression of the spectral density as follows 
 

                             ( ) ( ) ( ) dtehthJ
ti 00,0

ωω ><= −

+∞

∞−

+± ∫                (2.37) 

 

results also: 
 

                                     ( ) ( )10
2 2/14/ TJ =± ωγ                         (2.38) 

 
It must be remarked that this treatment of spin-spin relaxation 
rate as a function of spectral density J(ω ), is valid only in the so-  
called fast motions regime, i.e. when the hyperfine coupling or 
the nuclear dipolar coupling fluctuates faster with respect to the 
energy scale of the interaction itself (in frequency units). In the 
slow motions regime case, i.e.  when  the  “lattice”  is  rigid,  T2  

cannot  be defined from Bloch Equations [30], predicted mainly 
for fluids, but Redfield theory [37] must be used. In the case of a 
rigid lattice one can still define a spin-spin relaxation time T2 
through the second moments of the resonance line. In this case 
one speaks of a nuclear dipolar contribution  (1/T2)dip.  
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2.2µµµµSR 

 

2.2.1 Introduction 

 

In this work µSR spectroscopy has been used as a tool to obtain 
information on local spin dynamics (muons are local probe 
contrarily to what happens in the measurements of quantities like 
χ or C/R), complementary to the ones obtained by means of 
NMR spectroscopy.  
µSR (Muon Spin Rotation or Relaxation) was developed after the 
discovery of parity violation in muon decay (1957) by Garwin, 
Ledermann and Weinrich. It makes use of µ+ as local probe to 
investigate the microscopic properties of the system, in fact this 
particles, of the family of Leptons, are sensitive to very low 
magnetic fields (till ∼10-5T), both static and fluctuating and thus 
they are useful to understand structural, dynamic and magnetic 
properties of the physical systems. The main characteristics of 
the muons are: 

 
1) S=1/2 

 
2) q=±e 

 
3) γµ/2π=13.5kHz ⋅ G-1 

 
4) mµ=207me

- 

 
µSR experiments can be performed in longitudinal or transverse 

geometrical configuration with magnetic fields applied parallel 
or    perpendicular    to  the   direction    of    muon    polarization 
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( ∑=
i

imP
rr

µ  with im
r

 the muon magnetic moments). The muon 

sources for µSR experiments can be either pulsed or continuous, 
depending on the way muon bunches are produced. 
The aim of this technique is the implantation in the sample 
investigated of a great number of polarized muons and the study 
of the time evolution of their magnetic moments (µµ=4.84⋅10-

3µB). ( )tPµ

r
 is governed by the interactions of the muons with the 

local fields due to electronic and nuclear magnetic moments. 
After the average lifetime τµ=2.21µs, the muons decay emitting 
positrons with inhomogeneous asymmetric probability peaked 
along the beam direction (the muon spin is opposite to the 
velocity): monitoring the time evolution of the number of the 
positron emitted in a portion of solid angle around the sample, 

where a number of detectors are placed, ( )tPµ

r
 can be revealed.   

 

2.2.2 Production and Decay of Muons 
 

The production of polarized muons derives from a mechanism 
characterized by many decays. First, a beam of protons is 
accelerated through a linear accelerator and reaches energies of 
the order of 500-800MeV; the subsequent collision on a target 
made up of Beryllium or Carbon leads to the production of 
positive pions as the result of the reactions: 

 

                            nppp ++→+ +π                  (2.39) 

 

                            nnnp ++→+ +π                  (2.40)   
 

whose threshold energy is around 180MeV. After a very short 
lifetime τπ= 26ns, pions decay through the process 
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                               µνµπ +→ ++

.                               (2.41) 
 

                                

      

FIG.2.2 Sketch of the collision of the high energy proton beam with a 

Carbon or Beryllium target.  

 
Positive muons can derive from both motionless pions and pions 
in motion. The first condition is preferable, because in that case 
the so-called “stopping rate” of the muons inside the sample is 
optimized.  
The muons produced by pions in motion are not polarized but 
they can be polarized with a percentage varying from 60% to 
80%, using focusing magnets. 
The muons created from the decay of motionless pions, instead, 
are 100% polarized (the velocity direction is opposite to the spin 
one) and possess an energy of about 4.1MeV; their moment is 
about 29MeV/c. 
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FIG.2.3 Pictorial description of ππππ+
 and µµµµ+ 

decay process. 

 
The experimental  results in this work have been collected in two 
different laboratories: at ISIS Facility of Rutherford Appleton 
Laboratory, Oxford (England), and at Paul Scherrer Institute 
(PSI) Laboratory, Villigen (Switzerland). 
At ISIS the pulsed source produces muons bunches containing 
104-105 unities  for a  total 80ns  duration and  a  50Hz  frequency  
rate. The periodic trigger of the pulses is used as clock and 
consequently the time limit of an acquisition is related to the 

length of the muon pulses. The relaxation of  ( )tPµ

r
  is recorded in 

the time interval between two adjacent muon bunches.  
At PSI, instead, muons are produced by a continuous source and 
so they can be considered as continuously implanting in the 
sample: this technique is suitable to obtain a very good short 
times resolution, limited just by the electronics of the detector 
which can be as fast as 1ns: as a consequence also very fast 
relaxation rates can be detected. The limiting condition in the 
continuous   technique  is related to the  distinction  between  two 
different positron decays. 
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Once the muon enters the experimental region, it is detected and 
a clock starts; only after the revelation of the positron by one of 
the scintillators the clock is stopped. The problem is that if a 
muon arrives in the experimental area before the previous one 
has decayed, it’s impossible to understand if the positron 
revealed by the detector comes from the first or the second muon 
present in the area. Such an event, therefore, must be 
disregarded. This situation sets the time limit to about 7µs for the 
observation of a relaxation process.    
Once the muons µ+, possessing a positive charge, enter the 
sample, they tend to stop in electric potential wells i.e. negatively 
charged regions. Some of them also diffuse into the sample after 
the implantation but they remain far from regions where muon 
beam collision takes place and some lattice defects are created. 
After stopping, muons thermalize in few picoseconds, due to 
their interaction with electrons. The high speed of this process 
does not affect the muon polarization.  
The final reaction which leads to positron relaxation detection 
consists  in the  decay of the muons through  weak interaction,  in  
three particles: a positron, an electronic neutrino and a muonic 

anti-neutrino: 
 

                            µννµ ++→ ++
ee                   (2.42) 

 

In this kind of process the parity is violated and the cross section 
is not homogeneous as a function of the angle of emission. If 

max/ EE=ε  with  MeVcmE 66.1052
max =≅ µ  and E the energy of 

the positron, the probability of emission of e+ is expressed by the 
equation [38]:  
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where θ  is the angle between the muon spin direction and the 
direction of emission of the positron detected and G is an 
interaction constant whose dimension is [m-2]. 

The probability distribution as a function of θ can be written as 
[39]: 

 
                                   ( ) ( ) θεεθ cos1, AW +∝                      (2.44) 

 
where the so-called asymmetry factor A(ε) is 

 

                                         ( ) ( )
( )ε

ε
ε

23
12

−
−

=A                              (2.45)                                     

       

FIG.2.4 Energetic spectrum and asymmetry factor as a function of the 

emitted positron energy after muon decay. 
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The total probability of decay can be obtained integrating (2.43) 
with respect to θ and ε: 

 

                                         3

52

192

1

πτ
µ

µ

mG
W ==                           (2.46) 

 

Instead, positron energy spectrum is obtained integrating (2.43) 
only with respect to cos(θ), giving [40] 

 

                            ( ) ( ) ( )
ε

τ
εε

εεε
µ

ddWdW
2232 −

==              (2.47) 

 

Since A+(1)=1, the most part of the positrons is emitted parallel 
to µ+ spin. By integrating over all the energies one obtains an 
average value for A(ε) equal to 1/3. 

 

                     

FIG.2.5 Angular distribution of the emission of positrons from muon 

decay with maximum energy (blue line) and after the integration over 

all the energies (red line).  



~ 35 ~ 

 

2.   Fundamental Aspects of NMR and µµµµSR Techniques 

 

2.2.3 Experiments in Longitudinal and Transverse Fields  
 

Measurements performed in this thesis make use of the so-called 
longitudinal configuration. 
Let’s consider at t=0 a large number N0 of polarized muons 
stopped in the sample after the collision of the beam with the 

sample itself. Being ( ) 00 =>=< tP µµ σ
rr

 the initial polarized vector 

of the incident beam, where µσ
r is defined as h

r
/2 µS , the quantity 

of interest is the number dN of positrons emitted at an angle θ  
within the solid angle dσ=sinθdϕ, in the time interval dt and in 
the energy range between ε and ε+dε  [39]. From equation (2.43) 
we can write  

 

                               ( ) ( ) σεεθ dddttNWdN ,=                  (2.48) 
 
where  N(t)  indicates  the  number  of  muons  not  yet  decayed  
after a time t. Considering an exponential decay rate for muons, 
proper of a radioactive law, 

 

                                    ( ) ( )µτ/exp0 tNtN −=                       (2.49) 

 
and making use of eq.s (2.43), (2.48), (2.49), the number of 
positrons detected by the scintillator is 

 
                         ( ) ( ) ( )( )θτ µµ cos01/exp APtKtN +−=            (2.50) 

 
where 0.2<A<0.3 is the value of the asymmetry parameter 
averaged on the emitted energy with respect to the spectral 
sensitivity of the detectors. 
The  experiments  of  the present  thesis  have been performed  in  
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FIG.2.6 Experimental set up for µµµµSR measurements in longitudinal 

configuration. 

 

zero field or in a static magnetic field 0H
r

 applied along the same 

direction of the beam polarization. In this situation one obtains: 

 
                  ( ) ( ) ( ) ( )( )θτ µ cos01/exp || tGAPtKtN z+−=     (2.51) 

 

The crucial quantity to be studied is G||(t), called longitudinal 

polarization function which corresponds to nuclear relaxation                

function in NMR. It allows to determine the time evolution, the 
distribution and the amplitude of the local magnetic fields at the 
muons sites [41]. 
The  calibration   experiments  were   performed   with  the  static  



~ 37 ~ 

 

2.   Fundamental Aspects of NMR and µµµµSR Techniques 
 

 
FIG.2.7 Signal detected by a scintillator as a function of time described 

in equation (2.50). 

 

magnetic field applied in the direction perpendicular to the one of 
the muon beam polarization. As a result the spins precess around 
the field direction (analogously to what happens for NMR 
technique). In this case the expression of the number of positrons 
detected is 

 
       ( ) ( ) ( ) ( ) ( )( )φωτ µµ ++−= ⊥ ttGAPtKtN x cos01/exp (2.52) 

 

In this configuration also the phase φ  of the muons polarization, 
when the muons themselves enter in the magnetic field area, 
must be taken into account. In eq.(2.52), ωµ=2πγµB is the 
precession frequency. In this case all the information about the 
system is included in the transverse depolarization function 

G⊥(t). 
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2.2.4 Depolarization Functions  

 

The detection system in a µSR experiment consists in a series of 
Backward-Forward scintillators which cover all the solid angle 
around the sample area. The Backward scintillators are placed 
behind the sample, while the forward scintillators stand in the 
front space. This configuration allows us to find out the 
longitudinal depolarization function and the transverse 

depolarization function, which can be obtained in the so called 
transverse configuration, rotating by 90o the system of detectors. 
The result is 
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.
01

01
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0,

||

||
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z

−

+
= α                   (2.53) 

 
In eq.(2.53) N(t,0) is the number of positrons detected by forward 
detectors, N(t,180) is the same quantity revealed by backward 
detectors and α is a parameter which takes into account the 
different sensitivity of the scintillators. As a consequence of this 
equation, the expression of the muon asymmetry can be written 

 

                   ( ) ( ) ( ) ( ) ( )
( ) ( )180,0,

180,0,
0 ||

TNtN

TNtN
tGAPtA z α

α
+
−

=≡ .        (2.54)           

 
In the case of total muons polarization (100%), the signal is the 
asymmetry factor A,  since longitudinal depolarization function is 
equal to one. In the following a  more detailed study of  G||(t) will 
be done.  
The behaviour of the longitudinal depolarization function can be 
analyzed  in  two  main  cases  related to the relationship between 
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FIG.2.8 Experimental set up for µµµµSR measurements in transverse 

configuration. 
 

      
the intensity of the external applied field and of the internal local 
fields. The limit cases are: 
 
 

1. the external field is weaker than the local (i.e. at the muon 
site) fields 

 

2. the external field is stronger than the local fields 
distribution 

 
The  first case includes two options: the external field is zero (the 
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so-called Zero-Field experiment),  the  longitudinal external field  
is much weaker than the local fields distribution inside the 
sample. 

If just local fields can be taken into account, calling µB
r

 the 

internal field, the longitudinal depolarization function can be 
written [42]:  

 

                               ( ) ttG µωθθ cossincos 22
|| +=                (2.55) 

 

where µB
r

 is supposed to have a random orientation and forms an 

angle θ  with the direction of the initial orientation  of the  muons  
 

polarization and the local fields distribution is described by e.g. a 
Gaussian centred in zero. 
Averaging over the angle θ  

 

                                 ( ) ttG µωcos
3
2

3
1

|| +=                    (2.56) 

 

and considering the Gaussian distribution of local fields, the 
function can be expressed as 

 

         ( ) ( ) .
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1
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3
2

3
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|| 






 ∆−∆−+= tBtBtG µµ γγ (2.57) 

 
Equation (2.57) is the Kubo-Toyabe function [43]: it quickly 
decays to zero with a Gaussian behaviour but after long time it 
recovers the constant value 1/3, approached asymptotically. 
This behaviour is obtained, since 1/3 of the internal fields are 
supposed to be collinear with initial muons polarization, so that 
they don’t cause neither muon spin precession nor depolarization. 
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The  above discussion has been done without taking into  account 
the  fluctuations of local fields, which modify the depolarization 

function. In presence of fluctuations of µB
r

 the new 

depolarization function is referred as dynamic Kubo-Toyabe and 
it has an analytical expression in two regimes: (i) the slow motion 

regime, i.e. τcγµ
2

B∆ >>1, where τc is the time related to 

fluctuations. In this case the relaxation behaviour remains 
Gaussian for short times while it becomes exponential for long 
times and its expression is [44] 
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−∝
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2
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3
1

||                 (2.58) 

 

 
FIG.2.9 Behaviour of the Kubo-Toyabe function in zero field with the 

superposition of four different function of the form of eq.(2.57) 

calculated for various depolarization fields.  
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(ii) the  fast  motion regime (τcγµ
2

B∆ <<1): the most important 

feature is that the constant value for long times disappears, while 
the exponential behaviour  (exp(-λt)), characteristic of Lorentzian 
form, is still valid. 
Analogies between muon spin relaxation and nuclear spin 
relaxation spectroscopy are relevant if the longitudinal applied 
field is much stronger than the internal fields.  
As for NMR, the Zeeman effect can be expressed by:  

 

                                00 HSHHZ

rr
h

rr
⋅−=⋅−= µµµ γµ                             (2.59) 

 

and the effect of 0H
r

on muon levels can be treated as in NMR 

theory. 

Once the 100% polarized muons implant in the sample, 
depending on the direction of the static magnetic field applied, 
just one of the muons levels is totally occupied. This is not an 
equilibrium condition: in fact the muons ensemble has a different 
temperature with respect to the lattice one and one or more 
relaxation mechanisms act on this configuration to equalize the 
temperature of the system. Analogously to NMR spin-lattice 

relaxation time, the inverse of the relaxation time for µP
r

 can be 

defined as [45] 
 

                            ( ) ( ) dtetBB
ti µωµγ

λ −∞

∞− −+∫= 0
2

2

                  (2.60) 

 
which is mainly due to the hyperfine interactions between the 
muons and the surrounding (the lattice). 
In  this  case  the   longitudinal   depolarization   function  can  be  
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deduced  from Kubo-Toyabe  function,  mixing Zero  Field result 
with the exponential decay due to the spin-lattice relaxation just 
described, leading to 

 

                                              ( ) ( ) .,,, 0
2

||
t

eTHBtPtG
λ

µ
−∆=                  (2.61) 

 

 

FIG.2.10 Dynamic Kubo-Toyabe behaviour in presence of local field 

fluctuations. Here it is reported for various νννν/∆∆∆∆ values (νννν=frequency of 

fluctuations, ∆∆∆∆=width of the distribution of local fields). 

 
 

The  muon spin  feels a  total magnetic  field which is  the sum of 
the external field and of the internal field and precesses around it.  
If the field is applied in the same direction of the initial muon 
polarization, the spins don’t precess but remain aligned along 
their initial direction.  
For  long   times,   the   constant   value   of   Kubo-Toyabe   rises  
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progressively  from 1/3 to 1 with increasing  static magnetic field 
intensity.   
For transverse fields just a brief description will be given. 
The most important distinction to understand the behaviour of 
transverse depolarization function is related to the characteristics 
of the local field fluctuations felt at muon sites. The behaviour of 
G⊥(t)  can be divided  in three main  cases whose  discriminant  is 

 

      
FIG.2.11 Kubo-Toyabe function behaviour in presence of growing 

longitudinal magnetic fields. 

 
the relative intensity of the characteristic fluctuation time (τc) and 
the distribution  of the  Larmor frequencies  of the  muons around   
the field given by the sum of the external field and the local 
fields inside the sample. 
In  the  slow  motion  regime  (τc>>(∆ωµ)-1 ≡(2π〈∆B2〉1/2γµ)-1),  the 
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depolarization function has a Gaussian form:  
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where 〈∆B2〉 is the second moment of the frequency distribution. 
In an intermediate condition, an approximate expression is 
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In the fast motion limit (τc<<(∆ωµ)-1 ≡(2π 〈∆B2〉1/2 γµ)-1) it 
becomes  

 

                   ( ) ( ) ( )ttBtG Lc στγ µ −≡∆−=⊥ expexp 22         (2.64) 

 
The motional narrowing phenomenon is present also in µSR: it 
consists in the reduction of the resonance line width, because 
static distribution of fields is averaged (fast motion regime of the 
local fields). When fluctuations become faster, the shape of the 
line also changes from Gaussian to Lorentzian.  
 

2.2.5 µµµµSR Study of Magnetic Powder Systems 

 

µSR spectroscopy is applied to many kinds of physical systems, 
but it is mainly used for the study of magnetic systems. 
In this compounds, the muons implanted in the sample feel 
different  internal interactions, such as  transferred hyperfine  and 



~ 46 ~ 

 

2.   Fundamental Aspects of NMR and µµµµSR Techniques 

 
dipolar ones; the corresponding Hamiltonian can be written as 
[46]: 

 

         ( )( ) SrDASH
i

ii

rrr
h ⋅+⋅= ∑µ                  (2.65) 

 
where Ai and ( )

irD
r  are the transferred hyperfine and the dipolar 

tensors of the i-th spin respectively. 
In most part of real systems many approximations can be 
assumed starting from this Hamiltonian of interaction: for 
example the transferred hyperfine tensor often becomes a simple 
constant scalar term and in the Hamiltonian just nearest-
neighbours are taken into account. In some systems transferred 
hyperfine term is neglected because of the weakness of the wave 
function at muon sites; instead in metallic systems it becomes 
important, because the wave function is strong where a negative 
density charge is present, i.e. where muons tend to stop.  
As already remarked, the magnetic moments of muons, once 

stopped in the sample, precess around the local internal field µB
r

 

with Larmor frequency ωµ=γµBµ. When measurements are 
performed on powder samples, the angle between the muons 

initial polarization and µB
r

  varies from grain to grain, so that 2/3 

of the signal of the total symmetry precess, while 1/3 does not. In  
this case the expression for the muon polarization in terms of 
depolarization functions can be written 

 
                         ( ) ( ) ( ) .
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CHAPTER 3  
 

One-Dimensional Magnetic 

Systems and Models 

 

3.1 Introduction  
 

In this chapter we will discuss from a theoretical point of view 
formalisms that will be used in Chapter 4 and in Chapter 5. We 
will introduce the fundamental concepts for the comprehension 
of the magnetic systems and in particular the 1D systems treated 
in this thesis. In the first part of the chapter the 1D magnetic 
systems will be considered, explaining their properties and the 
main approximations used for real 1D compounds. In the second 
section the theoretical methods applied to the study of the 
systems considered in this work will be described: in particular 
the Glauber Model used for the interpretation  of the behaviour of 
CoPhOMe in Chapter 4 and the Transfer Matrix Method and its 
application to Ising Model and to Planar Model in Zero Field 
employed in the following chapters. In the last section, instead, 
we will focus on the frustrated spin systems and, in particular, on 
the quasi 1D frustrated spin systems examined in Chapter 5.         
 

3.2 1D Magnetic Systems 
 

3.2.1 The Spin Hamiltonian Formalism   

 

In this work we will deal with magnetic systems that will be 
treated in the so-called Spin Hamiltonian formalism.  
The properties of a magnetic system are, in general, related to the 
electronic   and   nuclear  structure   of  the  system  itself.  In  the 
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formalism that we will adopt here we will take into account just 
the electronic configuration of the orbitals, since the nuclear 
contribution is negligible: in fact the ratio between these two 
contributions is of the order of the fine-structure constant. 
The electronic orbitals can be divided into two main types: the 
fully occupied orbitals and the orbitals with unpaired electrons. 
In the first case the contribution to the magnetic properties is 
diamagnetic: in fact in this kind of orbitals a variation of the 
applied external magnetic field changes the motion of the 
electrons in the orbitals with the generation of currents which 
causes an internal magnetic field opposed to the external one. As 
can be seen from susceptibility measurements, this temperature 
independent contribution is order of magnitude smaller than the 
one related to the contribution due to the orbitals constituted by 
unpaired electrons, which are called magnetic orbitals. 
In principle one should take into account all the electronic 
coordinates and all the interactions present in the system to have 
a complete description of the magnetic properties of the system. 
In practice the solution of the complete Hamiltonian is not 
possible analytically. The Spin Hamiltonian, instead, is a model 
Hamiltonian which incorporates all the main interactions and 
coordinates in terms of a low number of parameters such as spin 

S

rr
, Landé g

rr
 factors, J

rr
 constant which couples one spin to 

another, anisotropy terms A

rr
 and external magnetic fields applied 

to the sample. 

In particular A

rr
, S

rr
and g

rr
 are, in general, 3x3 matrices, i.e. 

tensors, because they could be, in general, anisotropic quantities.   
These matrices can be reduced to a diagonal form by choosing a 
proper orthonormal base, and the axes corresponding to this base 
are  called  the principal axes  of  the system.  In the  orthonormal 
base, thus,   just three  components of  the tensors  which  will  be 
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referred, for Landé factors for instance, as gxx=gx, gyy=gy, gzz=gz, 
survive. In most of the cases for all of these quantities the 
principal axes are coincident, because they are all related to the 
symmetry of the system .    

As regards the J

rr
 constant, its matrix form is related to the 

coupling between the three components of each of the two spins 
involved in the exchange: often the off-diagonal (Dzyaloshinsky-
Moriya terms) components are negligible and the diagonal ones 
are the only ones to be taken into account. In the following we 
will use this formalism for theoretical and real spin chains 
models.                                                 
The general expression for spin system consisting in N spins will 
be given in eq.(3.1).   
 

3.2.2 Spin Chains: general properties 
 

In this work two different types of the so-called magnetic spin 

chains will be analyzed and discussed. 
A linear spin chain is a magnetic system where a large number of 
N magnetic moments are arranged in a one-dimensional lattice. 
Each magnetic moment is described by its corresponding spin 

jS
r

where the subscript indicates the lattice site. Depending on the 

approach, spins can be considered either as vectors if they are 
described by a classical model or as quantum operators if they 
are treated in a quantum mechanical framework. The general 
form of the Hamiltonian with the most important interactions 
which spins can undergo, can be written in this case as: 

 

                ∑ ∑ ∑⋅−+⋅−= +
α

αα µ
j j

jBAnisjj SHgHSSJH
rrrr

. .        (3.1) 

 

The  first  term  of   the   Hamiltonian   represents   the   effective 
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Magnetic Exchange Interaction which describes the combined 
effect of electrostatic repulsion and Pauli exclusion principle. 
The exchange can be Direct if it is related to the Coulomb 
interaction of neighbouring unpaired electrons with an 
overlapping wave function. The exchange interaction can also be 
indirect i.e. super-exchange, when the magnetic unpaired 
electrons don’t interact directly but via the electrons of non-
magnetic ions involved in a covalent or metallic bond. Jα  is the 
phenomenological exchange constant which can assume different 
values depending on the system studied: if Jα>0, the minimum of 
the spin system energy is reached when all the spins arrange 
themselves parallel (ferromagnetic coupling); if Jα<0 the 
configuration which minimizes the system energy is the one 
where each spin is anti-parallel with respect to its neighbours and 
the system is antiferromagnetic.    
The sum over α takes into account the exchange interactions 
between spins belonging to different sites inside the chain, 
setting the range of the interactions themselves. In most of the 
real cases just nearest-neighbour (n.n.) interactions are taken into 
account and so the sum over α is omitted. Whenever next-nearest 
neighbour (n.n.n.) interactions are important, then α=1,2.   
The second term of the total Hamiltonian is the Anisotropy Term 
which is often responsible for the spins arrangement which 
determines the system symmetry. The presence of this 
contribution can be verified experimentally through 
magnetization measurements: in fact, in presence of anisotropy, 
the magnetization and the susceptibility depend on the direction 
of the applied magnetic field with respect to the crystal axes. 
Anisotropy effects are observable at a temperature comparable to 
the  anisotropy interaction. Anisotropy can have different  origin:   
one  of the most important is the so called  single  ion anisotropy 

due  to the indirect  interaction  between  the crystal field and  the 
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electrons spins. Another source of anisotropy is due to the 
exchange interaction itself which can be different for the 
different spin components. 
The last term of the Hamiltonian is the so-called Zeeman 

Hamiltonian which accounts for the application of an external 
field on the system studied and in particular on each magnetic 
moment related to each spin. It can be expressed as 
 

 

                                           jBj Sg
rr

µµ =                                   (3.2)      
 

where jS
r

is the spin at the j-th site, 
cm

e

e

B 2

h
=µ  and the Landè 

factor g can be calculated, for the real systems, from 
experimental measurements. 
The simplest models for molecular chains take into account just 
the exchange interaction between nearest-neighbour so that the 
total Hamiltonian becomes simply: 

 

                                      ∑ +⋅−=
j

jj SSJH 12
rr

                           (3.3) 

 

In this case three different models for chains can be described 

depending on the dimensionality of  spin jS
r

 called d:                                                             
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The model related to eq.(3.4a) is called Isotropic Heisenberg 

Model with d=3 and does not vary with rotation of the system in 
3D space. 
Eq.(3.4b) represents the so-called Isotropic Planar Model where 
Sj

z=0, d=2 and it does not vary with rotation on a plane; finally in 
eq.(3.4c) Ising Model is described with Sj

z=±1, d=1 and it is 
invariant for Sj

z→-Sj
z. These models are independent from 

system dimensionality, in fact they are suitable also for 3D and 
2D systems. 
 

3.2.3 Spin Chains: real systems 
 

At the beginning of the 70s the first one-dimensional systems 
have been synthesized stimulating the experimental activity and 
improving the theoretical investigation.  
The ideal model systems described in the previous section for 
magnetic chains have to be modified in the case of real systems. 
In fact, even if recently chemistry has improved its knowledge 
and chemists are able to synthesize 1D chains samples with a 
good control on the exchange couplings, especially as regards the 
interchain distance, the chains cannot be considered completely 
insulated from the interaction of the neighbour chains: thus a 
small but non negligible interchain interaction has to be taken 
into account. 
The main parameter for the evaluation of the dimensionality of 
the system is |J|/|J’| which represents the ratio between intrachain 
and interchain coupling constants. When the condition 
|J’|<kBT<|J|, is verified, the system can be thought approximately 
as 1D. The condition to be verified for considering the sample as 
a 1D chain is, at least, |J|/|J’|<10-4. Thus the temperature range, in 
which the  system can  be considered  as  1D,  depends  on  |J|/|J’|  
ratio.  This  ratio  is  related  to  another  ratio, TN/θ  between two 
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characteristics temperatures: TN is the transition temperature 
towards three-dimensional phase, while θ represents the  
paramagnetic temperature  which  appears in Curie-Weiss Law  
of the susceptibility (χ∝1/(T-θ)). In any real system a 
temperature of transition towards 3D order exists, because  J’ 
has, in any case, a finite value. The weaker is the interchain 
coupling, the larger is the temperature range where the system 
can be considered one-dimensional. 
From susceptibility measurements, the  J  coupling constant can 
be evaluated and an approximate value for θ  can be found. Many  
 

 

 
Table 3.1 Summary of the characteristics of the models for spin 

systems. 
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measurements can be performed for evaluating TN, for instance 
specific heat measurements, susceptibility, NMR, EPR, etc. 
From a theoretical point of view, the most important models for 
one-dimensional compounds have been discussed in the previous 
paragraph; now the related general cases will be presented. 
In fact for a complete description of the real systems also the 
anisotropy term must be taken into account and the Hamiltonian 
becomes [47]: 
 

 

                            ( )∑ ∑+⋅−= +
j i

z

jjj SASSJH
2

12
rrr

.                (3.5) 

 
 

Also in this case three different models can be summed up 
depending on anisotropy constant: 

 

 
FIG.3.1 Schematic representation of the situations close to the three 

main limiting cases for the single ion anisotropy. The ellipsoids 

represent the fact that in real systems no g and A element is exactly 

zero, and perfect anisotropy is never reached.  
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a) A=0   →   Isotropic Heisenberg Model as in eq.(3.4a) 

 

                    

b) A>0   →  Heisenberg Model with easy-plane anisotropy; if 
A→+∞ the case of eq.(3.4b) can be obtained 

  
c) A<0   →  Heisenberg Model with easy-axis  anisotropy;  if      

A→-∞ the case of eq.(3.4c) can be obtained 
 
 

This sketch is just a schematic point of view of real systems; in 
fact many factors can modify the condition and characteristics of 
each system:  

 
1) the exchange coupling could be not isotropic, i.e. each 

component of the exchange coupling constant could be 
different from the other ones (Jx≠ Jy≠ Jz): this situation lead 
to the so-called XYZ Model which is the generalization of 
the Isotropic Heisenberg Model. 

 
2) anisotropy term can assume different forms in comparison 

to the one codified in the previous models 

 
3) the application of a magnetic field to the sample can 

change the spin configuration and its dynamics, depending 
on the field intensity; in a compound where the anisotropy 
term is relevant, also the direction of the field can increase 
the effects of the anisotropy itself or works against it if it is 
applied along a direction different from the one of the easy 
anisotropy axis. 
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3.2.4 Spin Dynamics in 1D Magnetic Systems 
 

 

The most important aspect studied in this thesis is the spin 
dynamics of one-dimensional and quasi one-dimensional spins 
systems. For this purpose we have to introduce here some 
definitions related to the physical quantities which will be 
theoretically derived and experimentally measured. One of the 
main parameter which is measured in NMR is the nuclear spin-
lattice relaxation rate T-1

1. This parameter is related directly to 
the Fourier Transform of the spin-spin correlation function, 
which is defined in general as [14][31][48-49] 

 

                                   ( ) ( ) ( ) ><= tSStG jiij

γααγ 0                     (3.6) 

 
 

where α, γ=x, y, z and i, j=1,…., N represent the number of the 
spin system considered, while <   > is the average value over the 
electronic spins ensemble. The correlation function represents the  
probability of having a particular value of the component γ of the 
spin at j-th site at a particular time t, once it is known the value at 
t=0 of the component α of the spin at i-th site.    
In particular for a system whose Hamiltonian is invariant for a 
rotation around an axis, such in the case when the Hamiltonian 
consists in a quadratic expression of the spin operators, the 
correlation function has the expression 

 

                                   ( ) ( ) ( ) >=< tSStG jiij

ααα 0                     (3.7) 

 

where α=z, +, - being y

i

x

ii iSSS ±=± . 

If the Hamiltonian of the system is invariant for rotations with 
respect to the x and y axes, the equation  
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                         ( ) ( ) ( ) ( ) ><=>< +−−+ 00 jiji StSStS                  (3.8) 

      
is valid. 
For t=0 the correlation function reduces to the static correlation 

function 
 

                                       ( ) ( ) >< 00 αα
ji SS                               (3.9) 

 
 

which gives information about the degree of static order of the 
spins system.  
In the particular case of spin chains for finite temperature (T≠0), 
the behaviour of the static correlation function is  

 

                         ( ) ( ) 







−≈>< +∞→

s

miim

ma
SS

ξ
αα exp00lim             (3.10) 

 

where sξ  is the so-called correlation length and a is the lattice 

step. sξ is a fundamental parameter for the comprehension of the 

order of the system: in fact in a system with correlated spins 
there are two different types of order called short range order 
(SRO) and long range order (LRO) respectively. In the first case 

sξ  has a finite value which represents the finite distance over 

which the spins are correlated: for a paramagnetic system at high 
temperature the correlation length is zero. If the correlation 
length diverges then one has LRO with spontaneous 
magnetization. For the ideal 1D systems, the long range order 
occurs only at T=0: this is a very general result which follows 
from simple considerations about stability of 1D systems with 
respect to the finite temperature fluctuations and can be derived 
by  considering   the  competition   between entropy  and  internal  
energy terms in  the free  energy  expression  of  the spin  system; 
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differently, in real 1D systems the spins develop a SRO on 
lowering the temperature until eventually they order in a 3D 
LRO phase. 
Often the correlation function is used in the normalized form: 

 

                                  ( ) ( ) ( )
( ) ( ) ><

><
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00

00

ii

ji
ij

SS

SS
tg

αα
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αβ

                    (3.11) 

 

where it is normalized to its value in the case when t=0, i=j and 
α=γ. 
The Fourier Transform of the correlation function which is 
related to the NMR relaxation rate T-1

1 is [14][31][48-49] 

 

                               ( ) ( )∫ −= dtetgJ ti

ijij

ωαβαβ ω                    (3.12) 

 
and is called spectral density, which accounts for the spectrum of 
spin fluctuations.    
Another quantity is useful from an experimental point of view 
and can be defined  

 
                       ( ) ., ∫ ∑ ⋅−=

i

rqi

ij

ti

i

ijegedtqf
rrv αβωαβ ω              (3.13) 

 
It is called dynamic structure factor. 
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3.3 1D Magnetic Models 
 

3.3.1 Glauber Kinetic Ising Model 
 

The theoretical calculation of the spin-spin correlation function 
(CF) can be done, in principle, from the knowledge of the spin 
Hamiltonian; in practice the calculation can be done analytically 
only for simple cases such as, for example, 1D chains. The static 
CF was calculated exactly by Fisher [50] for the classical 
Heisenberg model. The dynamic CF in 1D Heisenberg models 
can be obtained in the long time approximation leading to the 
well-known result of the diffusive t-1/2 dependence of the CF 
[12,16]. The Ising Model [51] does not have any dynamics, since 
there is no transverse term in the Hamiltonian. Glauber [1] back 
in 1963 proposed a dynamic model where the dynamics is 
introduced ad hoc by considering the probability of a spin to 
exchange energy with a thermal bath.        
The  innovation introduced by Glauber  was related to  the fact 
that he treated the stochastic spin dynamics from a statistical 
point of view, taking into account many external factors which 
could change the spins behaviour. This theory predicts a slow 
dynamics of the magnetization at low temperature with a 
thermally activated regime driven by an Arrhenius law. This 
theory has been improved for various specific cases in the 
following years, for instance by taking into account one-
dimensional systems affected by finite-size effects [52]. The 
interesting result following the Glauber theory and regarding the 
slowing down of the magnetization was utilized in the 
interpretation of the phase transitions [48]. However the direct 
verification of Glauber theory [1] in 1D spin system was not   
possible  until  the  beginning  of  the  90s  when  samples 
synthesized in Firenze [23], allowed the fulfilment  of the special  



~ 60 ~ 

 

3.   One-Dimensional Magnetic Systems and Models 

 
conditions necessary to verify Glauber model [1] in single chain 
magnets (SCM). 
This theory will be explained in the following taking into account 
different cases examining different conditions underwent by the 
spin system. 
Starting from the Ising Model [51], Glauber assigned for each 
spin a stochastic function sj(t) that can assume just two values 
sj(t)=±1. 
First let us consider a non-interacting spin system where each 
individual spin can just interact thermally with the surrounding 
environment. In this situation, the transition probability is the 
same for each spin which can change its own state randomly. 
Calling w(sj)=α/2 the transition probability from one state to 
another and p(s,t) the probability to find the j-th spin with the 
spin value s at time t, the time evolution of the transition 
probability can be written 

 

                        ( ) ( ) ( )tsptsptsp
dt

d
,

2
,

2
, −+−=

αα
              (3.14) 

 

where for p(s,t) stands the normalization condition  
 

                              ( ) ( ) .1,, =−+ tsptsp       (3.15) 
 

Naming as q(t) the expectation value of spin s at time t 
 

                       ( ) ( ) ( ) ( ),,, tspstspststq −−>=≡<        (3.16) 
 
using equation (3.14) and deriving equation (3.16), the time 
evolution for spin expectation value can be rewritten 

 

                                      ( ) ( )tqtq
dt

d
α−=                         (3.17) 
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and the solution is  

 

                                           ( ) ( ) teqtq α−= 0                     (3.18) 

 
where q(0) is the initial expectation value and α is the probability 
per unit time for a spin transition. 
Let us consider now spins interacting through the Ising 
Hamiltonian in the form of an exchange coupling 

 

                                       ∑ +−=
j

jj ssJH 1 .                         (3.19) 

 

In this case the transition probability must be written down 
taking into account the behaviour of the nearest-neighbours of 
the spin considered. 
The expression for the transition probability can be written                                                 

 

                            ( ) ( )




 +−= +− 112
1

2 jjjj ssssw
γα

              (3.20) 
 

   
In general there are three different values that can be assumed by 
the transition probability: 

 

                                      ( ) ( )γ−= 1
2
1

0asw j                          (3.21a) 

 

                                          ( ) 02
1

asw j =                               (3.21b) 

 

                                     ( ) ( )γ+= 1
2
1

0asw j                       (3.21c)         
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whose corresponding spins configurations are 

 

 

                                                j-1               j                j+1 

                ↑    ↑    ↑                 (3.22a) 

 
  
           j-1               j                j+1                                j-1               j               j+1 
 

      ↑    ↑    ↓         or         ↓    ↑    ↑      (3.22b) 

 

 

                                                j-1               j                j+1                           

                                ↓    ↑    ↓                 (3.22c) 

 

Consequently: 

 

for J>0 →→→→ γγγγ>0 (FERROMAGNETIC CASE) 

 
(3.22a) Highest Energy State (less probable) 

 

(3.22c) Lowest Energy State (more probable) 

 

 

for J<0→→→→γγγγ<0 (ANTI-FERROMAGNETIC CASE)  
 

(3.22a) Lowest Energy State (more probable) 

 
(3.22c) Highest Energy State (less probable) 

 
 

with the second configuration corresponding, for both the  cases, 
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to the insulated spin case. 
Before going on with the explanation of Glauber model, let’s 
establish the relationship between the exchange coupling 
constant J and the γ parameter. 
For the interacting spin system one can define, analogously to the 
previous case, the probability p({s},t) for the system to assume a 
particular spin configuration {s}=(s1, s2, ….sj…sN) at time t, 
where N is the number of the spins in the system considered. 
The time evolution equation for the probability cited above is                  
               

{ }( ) ( ) ( ) ( ) ( ) .,.....,....,.....,...., 11 







−+








−= ∑∑

j

Njj

j

Njj tssspswtssspswtsp
dt

d
                                                                      

                                                                                               (3.23) 
 

When the system reaches the equilibrium configuration, the 
Maxwell-Boltzmann statistics is valid and the probability for a 
spin to assume the value si or -si is proportional to the Boltzmann 

factor 
Tk

H

Be
−

and results 
 

 

                         
( )

( )

( )

( )
.

exp

exp

11

11









−−









−

=
−

+−

+−

jjj

B

jjj

B

j

j

sss
Tk

J

sss
Tk

J

sp

sp
           (3.24) 

 

Considering eq.(3.23) at the equilibrium ( { }( ) 0, =tsp
dt

d
) one 

can write: 
 

                     
( )

( )
( )
( )

( )

( )11

11

2
1

1

2
1

1

+−

+−

+−

++
=

−
=

−
jjj

jjj

j

j

j

j

sss

sss

sw

sw

sp

sp

γ

γ
             (3.25) 
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Comparing now eq.(3.24) and eq.(3.25), one has                 

 

                                         







=

Tk

J

B

2
tanhγ                              (3.26) 

 

In his theory Glauber [1] defines the same quantity as in the 
isolated spin case such as the expectation value for each spin 
named qk(t): for a finite ring the total magnetization of the system 
becomes 

 

                               ( ) ( )∑ 






−∝=
j

k

t
tqtM

τ
exp                    (3.27) 

                                                    

where  
 

                                           ( )
.

1
1

γα
τ

−
=                       (3.28) 

 

In low temperature limit equation (3.28) becomes 

                                                                                                                                             

                               ( )JTk
Tk

J
B

B

<<







=

4
exp0ττ            (3.29) 

 

with 
α

τ
2
1

0 = . 

Analyzing eq.(3.29) one can see that, for a ferromagnetic 
coupling, the relaxation time diverges, while for an anti-
ferromagnetic coupling there is no divergence. 
In presence of an external magnetic field the Hamiltonian can be 
written 

 

                              ∑ ∑ +−−=
j j

jjjB ssJsHgH .1µ              (3.30) 
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Under these conditions the transition probability changes again 
its expression, since one must take into account the fact that spins 
tend to align along the field direction.  
Glauber assumed 

 

                     ( ) ( ) ( )jjjjj sssssw β
γα

−




 +−= +− 1
2

1
2 11        (3.31) 

 
where 
 

  

                                      







=

Tk

Hg

B

Bµ
β tanh                    (3.32) 

 
Proceeding as in the previous cases, the average value for 
magnetization is 

 

      ( ) ( ) ( )( )[ ] ( )∫
∞−

−−−
+
−

=
t

B

B dttHtt
Tk

Ng
tM '''1exp

1
1

2

22

αγα
η
ηµ

  (3.33) 

 
where  

 

                                        .tanh 







=

Tk

J

B

η                      (3.34) 

 

Up to now we have treated the general case of the Glauber model 
[1] for a ferromagnetic or an anti-ferromagnetic coupling. Now 
let’s briefly describe the application of the model  to our  specific  
case. We will have to deal with a ferrimagnet constituted by two 
sublattices where the Landé factors have different values (see 
Chapter 4). It can be demonstrated that [23][53], following the 
same  procedure  of  Glauber, and considering  the  two  different 
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sublattices we still have an exponential thermally activated 
relaxation time. In this case, however, there is a further condition 
to be fulfilled: in fact the relaxation rate expression depends on 
the initial condition as follows: 
 

1) 
( )γα

τ
−

=
1
1   system starts evolving in the configuration      

                  with parallel spins 
 

2) 
( )γα

τ
+

=
1
1   system starts evolving in the configuration               

                  with anti-parallel spins 
 
This means that the relaxation time can diverge in the case of a 
ferrimagnet [23][53][54], differently from the case of an anti-
ferromagnet. In particular in our system we have a particular 
arrangement of the spins, since CoPhOMe is constituted by a 
helical system with each primitive cell constituted by three 
Cobalt ions and three radical centres, i.e. six different sites. For 
finding the solutions of the problem in our case we can just focus 
on one cell imposing boundary periodic conditions with the result 
of having six different equations of the form [23][53]: 

 

                                           kA
rr&r += σσ                                (3.35) 

 
where σ1 , σ2 , σ3 , σ4, σ5, σ6 are the spins of the micro-system 
investigated, whose directions are the ones of the local 

anisotropy axes and k
r

=(k1,k2,k3,k4,k5,k6) are the inhomogeneous 
terms. We can obtain six non-coupled equations thanks to the 
diagonalization of matrix A and introducing collective 
coordinates ξ=(σ1 ,σ2,σ3,σ4,σ5,σ6). The solutions of the equations 
obtained are [53]: 
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                                  ( ) ( )∫
∞−

−−=
t

tt

ii dtekt i '' αξ α
                      (3.36) 

 

while the six eigenvalues of matrix A are 

 
                                          ( )αγα += 11                              (3.37a) 

 

                                          ( )αγα −= 12                              (3.37b) 

 

                                         α
γ

α 






 −=
2

13                             (3.37c) 

 

                                         α
γ

α 






 +=
2

14                             (3.37d) 

 

                                         α
γ

α 






 +=
2

15                             (3.37e) 

 

                                         α
γ

α 






 +=
2

16                             (3.37f) 

 
with α3, α4, α5, α6 which are always different from zero being 
|γ|<1, while, analyzing the first two eigenvalues, results  

 

                                    







−=

Tk

J

B

4
exp

2
1

1 α
τ                         (3.38a) 

 

                                    







=

Tk

J

B

4
exp

2
1

2 α
τ                          (3.38b) 
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being 
i

i α
τ

1
=  if ∞→

Tk

J

B

(very low temperatures). From the 

form of the two relaxation rates we can say that both for J<0 and 
for J>0 we have always a slow relaxation for modes ξ1 and ξ2 

respectively. 
If a magnetic field is applied along the plane perpendicular to the 
axis of the helix results for ξ1 and ξ2  

 

                                         021 == ⊥⊥ kk                              (3.39) 

 

with ⊥k
r

 the component of k
r

along the field direction, while in 

the case when the field is applied along the chain axis we have  

 

                       ( )RCo

B

B gg
Tk

Hs
k −

+
−

= θ
η
ηµ

cos
1
1

6

3
2

2
0

1||          (3.40a) 

 

                      ( )RCo

B

B gg
Tk

Hs
k +

+
−

= θ
η
ηµ

cos
1
1

6

3
2

2
0

2||         (3.40b) 

 

with ||k
r

 the component of k
r

 along the new direction of the 

magnetic field.  
In the first case no slow relaxation can be activated by the 
application of a magnetic field perpendicular to the chain axis, 
while applying the magnetic field along the chain axis we obtain 
a slow relaxation related to the ξ2 mode, being the coupling 
constant J<0 in the case of CoPhOMe [53]. 
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3.3.2 Transfer Matrix Method  
 

In this paragraph we will briefly describe one of the most used 
theoretical method [56] for the calculation of analytical and 
numerical solutions from the model Hamiltonians mentioned in 
paragraphs 3.2.2-3.2.3 and used for the theoretical interpretation 
of the systems studied in this work. 
For using such method various assumptions must be made both 
on the spin system and on the Hamiltonian describing the system 
itself. 
The spin system must obey the following conditions: 

 
1) 1D system consisting of N spins 

 

2) spins iS
r

 are classical unit vectors 

 

3) spins periodic boundary conditions are iNi SS
rr

=+  

 
The Hamiltonian must be: 

 
1) invariant for translations 

 
2) containing sums of nearest neighbours interactions 

( ( )∑
=

+−=
N

i

ii SSVH
1

1,
rr

) 

 
3) symmetric with respect to the exchange of two spins 

 

( ( ) ( )
iiii SSHSSH
rrrr

,, 11 ++ = ) 
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This method starts from the so-called transfer integral equation 

 

                        
( ) ( ) ( )innin

SSV

i SSeSd ii

rrr rr

ψλψβ =+
−

+∫ +
1

,
1

1            (3.41) 
 

            

where TkB/1=β . 

The aim of this technique consists in the determination of the 

eigenfunctions ( )in
S
r

ψ  and of the eigenvalues λn of eq.(3.41). 

Transfer integral equation (3.41) can be simplified since: 

 
                                   ( ) ( ) ij* δψψ =∑

n

jnin
SS
rr

                     (3.42a) 

 

                                  ( ) ( ) '' nninini SSdS δψψ =∫
rr

                    (3.42b) 

 
being the eigenfunctions a complete (eq.(3.42a)) orthonormal 
(eq.(3.42b)) set: thus it results  

 

                          
( ) ( ) ( )∑ +

− =+

n

ininn

SSV
SSe ii

1
, *1

srrr

ψψλβ
.               (3.43) 

 
Also, being the classical partition function  

 

                            
( )

∫ ∫ ∏
+−

=
i

NN

iSiSV

eSdSdZ
1,

......1

rrrr β

           (3.44) 

 

we obtain 
 

                                        ∑
∞

=

=
0n

N

nNZ λ                               (3.45) 
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with a spectrum consisting in an infinite number of real 
eigenvalues with an upper limit.  
In the thermodynamic limit, i.e. for N→∞,  the partition  function 
is dominated  by the  maximum  eigenvalue  of  the spectrum that 
will be referred as λ0. Thus one has 

 

                                             
N

NZ 0λ= .                                (3.46) 

 
With this approximation, thermodynamic quantities such as 
susceptibility and magnetization can be calculated with the 
equations  

 

                                        2

2
2

H
TkN B ∂

∂
−=

λ
χ                            (3.47a) 

 

                                       
H

TkNM B ∂
∂

−=
λ2

                            (3.47b) 

 

where H is the magnetic field, and analogously the spin pair 
static correlation function can be obtained through                                                 
    

( ) ( ) ( )∞→







≈>< ∑ ∫

∞

=

+ NSSSSdSS
n

n

m

n
mii

0

2

0
*

0

rrr
ψψ

λ
λ ααα

(3.48) 

 

From the fluctuation-dissipation theorem, one can deduce the 
susceptibility without knowing the field dependence of λ0: 

 

                             ∑ ><= +

m

mii

B

B SS
Tk

Ng ααµ
χ

22

.                (3.49) 

 

In the two following paragraphs we will discuss the two classical 
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models, Ising Model and Planar Model, used in this thesis for the 
interpretation of the real systems studied in Chapter 4 and in 
Chapter 5 and the most important thermodynamic quantities will 
be derived with the Transfer Matrix Method.  

  

3.3.2.1 Application to the Ising Model 
 
 

The Hamiltonian describing a spin chain in the Ising Model [51] 
is  

 

                         ∑∑ −−= +
i

z

iB

z

i

i

z

i SHgSSJH µ12             (3.50) 

 

where J is the exchange coupling constant, SS
z

r
±=  with 

periodic boundary conditions iNi SS
rr

=+  and N the number of spins 

of the chain considered. In the case when the spin can assume 
just discrete values, the transfer integral operator is reduced to a 
simple matrix. In the present case the integral transfer equation 
is represented by the simple matrix equation 

 

                  

( )

( ) 









=



















−

+

+
−

+
+

+−

−+

in

in

n

jn

jn

BAA

ABA

ee

ee

,

,

1,

1,

ψ

ψ
λ

ψ

ψ
ββ

ββ

       (3.51) 

 
where 22JSA = , SHgB Bµ= and TkB/1=β . 

The eigenvalues are  

 

                      ( ) ( ) AAA eBeBe 222 sinhcosh −
± +±=λ        (3.52) 

 
In the thermodynamic limit results                   
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( ) ( )[ ]{ }N
JS

B

JS

B

JS

NNN

eSHgeSHge

Z

2/1222 222

sinhcosh

lim

βββ µβµβ

λ

−

+
∞→

++=

==

                                                                                    

                                                                                              (3.53) 
 
and for H=0 

 
                                     ( )[ ]N

N JZ βcosh2=                         (3.54) 

 
which is the result obtained by Ising [51]. 
Starting from Transfer Matrix Method [55] we can get the free 

energy 

 

                              















−=

Tk

JS
TkF

B

B

22
cosh2ln                  (3.55) 

 
the spin-pair correlation function in Zero Field 
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SS

SSASS
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z

i
z

N

N

ri
z

i
z

z
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2exp
1

lim

22

1

λ
λ

β
   (3.56)        

 
and consequently the reciprocal of the correlation length is 
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                                  















−=

Tk

J

B

tanhln
1
ξ                        (3.57) 

 

which exponentially vanishes at low temperatures.  
Finally with this method also susceptibility and specific heat for 
H=0 can be respectively derived through the equations 
 

  ( )
Tk

J

B

B

B

B

i
z

p

pi
z
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T Be
Tk

Tk

J
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J

Tk
SS

TSkSgN
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22
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tanh1
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
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µ
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                                                                                           (3.58) 
 

                           

2

cosh

1





























=

Tk

JTk

J
NkC

B

B

B                   (3.59) 

 
In eq.(3.59) it is easy to notice that specific heat vanishes for 
T→0+. 
 

3.3.2.2 Application to the Planar Model in Zero Field 
 

The Hamiltonian representing a planar system in Zero Field is 
[56] 

 

                         ( )∑ ++ +−=
i

y

i

y

i

x

i

x

i SSSSJH 112              (3.60) 

 

where the spins, whose periodic co€nditions are still iNi SS
rr

=+ , 

are forced  to  lie  in a plane and thus just two of  its  components  
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survive. Introducing polar coordinates, iS
r

= S(cosθi, sinθi) the 

partition function becomes 
 

 

           ( )∫ ∑∫ 







−=

=
+

ππ
ϕϕβϕϕ

2

0
1

1
22

0 1 cos2exp
N

i

iiNN JSddZ K   (3.61) 
 

                                                                                                                                                                                                            
Decoupling the integrals of the partition function with the 
substitution 

 

                                       ( )iii ϕϕθ −= +1                             (3.62) 

 

the expression of the partition function itself becomes 
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2
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2
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and in the thermodynamic limit, it results to be 
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where I0 is the Bessel function with imaginary argument. 
Also in this case we can derive the free energy  
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the spin pair correlation function 
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where 
 

                                           2
*

2JS

Tk
T B=                                  (3.67) 

 

and the correlation length, whose expression for T→0+ is 

 

                                            
Tk
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B
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≅ξ                                 (3.68) 

 

Finally we obtain also susceptibility and specific heat as in the 
Ising Model case: their expression are respectively 
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In the limit of very low temperatures, the susceptibility remains 
finite for J<0 while for J>0 it diverges as T2. 
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The expression for specific heat has been obtained using the 

Bessel functions property ( ) ( ) ( )
x

xI
xIxI

dx

d 1
01 −= .  

 

3.4 Frustrated Spin Systems 

 

In this section we will talk about the so-called frustrated spin 
systems in one dimension. In the systems studied in Chapter 5 
the frustration arises from the competition between different 
interactions of comparable strength which tend to orient the spins 
in different directions. Frustration can also arise from simple 
geometrical arguments. The typical example is the equilateral 
triangular lattice with spins on the edge of each triangle coupled 
by a n.n. antiferromagnetic exchange interaction. In this case the 
system is frustrated and the ground state degenerate. Nearest-
neighbour interactions may be sufficient to remove the 
degeneracy and generate a stable non degenerate ground state.  In 
the case of 1D systems, that we will discussed about in this 
paragraph, the interactions taken into account will be extended 
even beyond the nearest-neighbours ones. The most important 
interactions in 1D magnetic chains are intrachain exchange 
couplings and these are the only ones considered in the model 
discussed below. The dipolar interactions and the interchain 
couplings are much weaker and will be taken into account to 
extend the validity of the model to very low temperatures. The 
model described in the following is the simplest one; it is 
discussed just to give the reader a general knowledge of its power 
also in the interpretation of quite complicated systems. 
The basic assumptions on the 1D system studied are: 

 
1) spin chain of N classical spins 
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2) ferromagnetic nearest-neighbours interactions (J1>0) 

 

3) antiferromagnetic next nearest-neighbours interaction 
(J2<0) 
 

4) the ratio between the two exchange interactions is defined 

as 
1

2

J

J
=δ  

 

5) the lattice step is assumed to be a=1 
 

6) planar nature of the system 

 
The Hamiltonian in this case is given by 

 

                           ∑ ∑ ++ ⋅−⋅−=
i i

iiii SSJSSJH 2211 22
rrrr

           (3.71) 

 

where the spins iS
r

=(cosθi; sinθi) are unit vectors in the plane 

perpendicular to the chain axis with the usual boundary 

conditions iNi SS
rr

=+ . 

Eq.(3.71) thus becomes 
 

 

                ( ) ( )∑ −−−−= ++
i

iiii JJH θθθθ 2211 cos2cos2     (3.72) 

 
The ground state can be determined minimizing the energy of the 
entire system: in our case the minima of the energy must be 
searched in the function 

 
                       ( ) ( )[ ]0010 2coscos2 qqNAJE δ−−=            (3.73) 
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where for brevity iiq θθ −= +10  assuming the angles for adjacent 

spins to be identical. 
The discriminant for the determination of the minima and of the 
phases of the system investigated is δ and results           

 
FIG.3.2 Pictorial sketch of the two spin configuration for a one-

dimensional frustrated system as studied by Harada. For δδδδ<1/4 the 

system assumes a ferromagnetic configuration (ABOVE), for δδδδ>1/4 the 

order is helical (BELOW).             
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 (3.74) 

 
The conditions in eqs.(3.74) mean that, depending on the relative 
strength of the two exchange interactions, two different orders 
dominate at low temperatures. The two configurations are 
depicted in FIG.3.2: in particular in the second case the helix is 
two-fold degenerate because of the invariance of the system with 
respect to the rotations; the helix pitch is 2π/q0 with two different 
possible values for q0: 
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                                       






±=
δ4
1

arccos0q                           (3.75) 

 

signalling another two-fold degeneration in the ground state 
related, in this case, to the clockwise or counterclockwise 

arrangement of the spins in the plane perpendicular to the chain 
axis. In fact these two states at T=0 are characterized by an 
opposite chirality  which can be classified through chirality order 

parameter defined for each pair of spins as [26][28]  

 

                                           
0

1

sinq

SxS
K ii

i
+=

rr
r

.                                (3.76) 

 
This parameter is a three dimensional vector [27] in the 
Heisenberg Model while in the Planar Model it is a scalar 
quantity and at T=0 the values assumed are ±1 [26] for clockwise 
and anticlockwise spins arrangement respectively.   
The phase diagram of these kinds of systems has been studied by 
many scientists, depending on the degree of frustration of various 
compounds and suggesting various models for the interpretation 
of the experimental results. Two of the most important 
researchers who studied helimagnets behaviour have been 
Harada [25-27] and Villain [28,29] (see also Chapter 1).  
The first one started from the system described by the 
Hamiltonian in eq.(3.71) [26] and suggested that the two-fold 
degeneration arising from the two helical arrangements of the 
spins in the ground state could cause excitations of the stable 
chiral domain walls separating two domain with different 
chirality [26]; these excitations can give a non-linear contribution 
to the thermodynamic properties. 
He studied the system with the transfer matrix method [55]. 
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Specific heat calculations for different values of δ are shown in 
FIG. 3.3. 
The results show a peak for δ>1/4 (that is to say in the helical 
phase) which smoothens when δ<1/4 (ferromagnetic phase). This 
 

         

FIG.3.3 Specific heat as a function of kBT/2J1 calculated with transfer 

matrix method with planar model for various values of the discriminant 

δδδδ (see text).  

 
anomaly has been related by Harada to the chiral excitations 
which are absent in the ferromagnetic phase.  
He studied the same problem also with the Heisenberg Model 
[27] assuming  
 

kBT/2J1 

C/kB 
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1) J1, J2<0  

 
2) j=J2/J1   

  
Also in this case the specific heat shows a peak for j>1/4 and no 
peaks for j<1/4 (see FIG. 3.4) 
This time the peak is broader than in the previous case, since, as 
already mentioned  before, in the former case Ki is scalar and  the  
 

                       

FIG.3.4  Specific heat as a function of kBT/2J1 calculated with transfer 

matrix method with Heisenberg model for various values of the 

discriminant j (see text).  

 
excitations are Ising-like while in the latter case the chirality 
order  parameter is  a vector and  the effects due  to domain walls  

C/kB 

kBT/2J1 
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are less important [27]. This study has been the guideline for the 
earlier interpretations regarding the behaviour of the helical 
frustrated systems discussed in Chapter 5.  
A revisiting of this kind of systems has been done by Villain 
[28][29]: he studied fully frustrated systems especially taking 
into account various intrachain exchange interactions for systems 
with  identical  spins.  This  study have been later developed  [57]  
for a system composed by two different kinds of spins. It was 
considered [57] the more complex Hamiltonian 

 

                                     erra HHH intint +=                           (3.77) 

 
with [57-58]  
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(3.78)   

 
and 

 

                       ( )[ ]∑∑
>< =

⊥ ⋅−=
ji

N

n

njnier XXJH
, 1

,,int

rr
             (3.79) 

 

where J1>0 is the nearest-neighbour exchange coupling constant, 
J2<0  and J’2<0 are next-nearest neighbour constants between 
spins of the type S and type s respectively; g and g’ are Landé 
factors of the spins S and s respectively, D>0 is the single-ion 
anisotropy constant term, J⊥  is the  interchain magnetic  coupling  
which becomes important at low temperature and 

., ,,, njnjnj sSX
rrr

=  
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The periodic boundary conditions are 11 SSN

rr
=+  and 22 ssN

rr
=+ .  

The ground state of the system represented by the Hamiltonian in 
eq.(3.78) for H=0 can be expressed as [59] 

 

              ( ) ( ) ( )[ ]QaQaSsJ
N

E 2cos'cos2
2 10 δδ +−−=     (3.80) 

 

where Q is one of the absolute maxima of 
 

              ( ) ( ) ( ) ( )[ ]qaqasSJqI 2cos'cos21 δδ +−=         (3.81) 

 
and  

 

                                             
SsJ

SJ

1

2
2=δ    (3.82a) 

 

                                            
SsJ

sJ

1

2
2''=δ                                (3.82b) 

 

Under the condition 2(δ+δ’)>1 the helical ground state is 
favoured for this samples and the pitch of the helix is 

 

                                 ( )







+
±=± −

'2
1

cos 1

δδ
Qa                     (3.83) 

 
where + and - are related to clockwise and counterclockwise 
rotation of the spins along the chain axis.   
Following a procedure similar to the one adopted by Harada, 
Villain and then Rettori [29] [57] found out that for quasi- 1D XY 

helimagnets the phase diagram is characterized by two phase 
transitions (see Chapter 5): 
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1) T>T0  ⇒ PARAMAGNETIC PHASE 

 
2) TN<T<T0 ⇒ CHIRAL PHASE 

 
3) T<TN ⇒ HELICAL PHASE 

 
The novelty is the presence of an intermediate chiral phase 
where there is a spontaneous breaking of the translation 
invariance, even if the overall invariance with respect to rotations 
and time reversal is not broken. 
Now we will evaluate the two transition temperatures T0 and TN.  
Using the Green’s-function approach and the spectral theorem 
[60][61] the transverse two-spin correlation function can be 
obtained for the two different kinds of spins of the chain 
considered [57][62]:      
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These results are valid for low temperatures where the continuum 
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approximation can be used. In the case studied the correlation 
length ξs is defined as: 

 

                                 
( )

'
1'4 2

1

δδ
δδξ
+

−+
=

Tk

sSJ

a B

s                         (3.85) 

 
The relationship between the susceptibility of an isolated spin 
chain χ1D(k||) (see for its expression also [57]) and a three 
dimensional susceptibility χ3D(k||,k⊥) is, in the mean-field 
approximation [63] 
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Finally the condition for an estimation of TN is [57] 

 
                                ( ) ∞→=±= ⊥ 0,||3 kQkDχ                     (3.87) 

 
resulting in the equation 
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For an estimation of  T0 [57], instead, one must take into account 
the fact that two regions of opposite chirality are separated by 
domain walls that can be of various types, depending on the 
system studied: here we will consider localized domain walls.  In 
this specific case the system consists in two different kinds of 
spins  and,  as a  consequence,  the domain walls can be  of  three 
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different kinds: 
 

1) domain walls localized on spin S 
 

2) domain walls localized on spin s 
 

3) domain walls localized between spin S and spin s 
 
and the correspondent excitations energies are 
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Using the mean-field approximation, the interaction energy 
between two finite regions of definite chirality, whose length is 
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 , is given by 
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where the interchain coupling interaction has been treated in first 
order perturbation theory.  
The four-spin correlation function can be written as 
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where the equation has been expressed in terms of effective Ising 
spins µi=±1 and the energy E⊥ can be thus written 

 

 

( ) ( ) ( )

( ) ( )








⋅+−≅

≅












⋅+−=

⊥

=

−

⊥⊥ ∑

a
Ss

a
J

eQnaSs
a

JE

sk

ji

a

n

an

k

ji

k

s

ξξ
βµµ

ξ
βµµ

ξ
ξ

8
1

2
1

1
2
1

2cos
2
1

1
2
1

22

/

0

4

222

  (3.92)                                                                                    

 
where ξs is the correlation length of the two-spin correlation 
functions at low temperatures in the continuum limit, being 
ξs<<ξk.  
The condition for the occurrence of the chiral transition is that 
the Ising interaction [64-68] is of the order of kBT; considering 
the expressions of the two correlation lengths mentioned before, 
one has 
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From eqs.(3.88) and (3.93) in the case J⊥<<J1, i.e. when 
interactions among neighbour chains are negligible, TN results to 
be much lower than T0 (see also Chapter 5).  
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CHAPTER4 
 

Pure and Zinc-Doped CoPhOMe 
 

4.1 General Features 
 

 

4.1.1 Introduction 

 

As mentioned in Chapter 3, many magnetic properties of low 
dimensional systems theoretically predicted decades ago have not 
been experimentally observed, due to the inability in synthesizing 
materials which fulfilled the characteristics of a one-dimensional 
compound. One of the first systems that approximated well a 
magnetic chain was the so called TMMC [12-16] (its chemical 
formula is [(CH3)4N]MnCl3), whose Jinter/Jintra is about 10-4. 
Nowadays many others compounds have been synthesized with a 
lower ratio between interchain and intrachain coupling. Among 
these systems one of the most relevant is constituted by 
Co(hfac)2NITPhOMe (N4C24F12O8H21) [23] (in the following 
called simply CoPhOMe) which will be analyzed in this chapter. 
In the first part of the chapter the most important features of 
CoPhOMe will be summed up, from previous Magnetization, 
Susceptibility, NMR and µSR measurements performed in 
collaboration with the University of Firenze. As regards to the 
second part of the chapter, CoPhOMe doped with Zn impurities 
will be investigated with the same techniques for a comparison 
with the pure system.       
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4.1.2 Structure 
 

In the framework of one-dimensional systems, CoPhOMe, 
synthesized for the first time at the beginning of the 90s by 
Caneschi and his co-workers in Firenze, is characterized by a 
very low ratio between interchain and intrachain exchange 
interaction (less than 10-5). CoPhOMe is a compound whose 
structure develops along one direction (z axis or c crystal 
direction) and it is characterized by the presence of divalent 
Cobalt ions (Co2+) connected through organic radical centres. 
The properties of radicals are crucial for the magnetic behaviour 
of the compound, because the radical moiety used determines the 
interchain distance and thus the interchain interaction. These 
stable centres are constituted by radicals of the nitronyl-nitroxide 
family (NITR) where the organic element R in FIG.4.1 is a para-
methoxy-phenyl which will be referred as PhOMe. 
 

                     

 

FIG.4.1 Sketch of NITPhOMe where R is the organic component of the 

radical centre. 
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Summing up, the chains are characterized by the alternation, 
along the chain direction, of ions belonging to the first series of 
transition metals, and of radical centres. The entire chain is 
nothing but a simple repetition of the fundamental unity metal-
radical. 
 

 

FIG.4.2 Sketch of the linear structure of Pure CoPhOMe.  

 
The structure of this material is much more complicated than in 
normal one-dimensional molecular magnets: in fact Cobalt ions 
arrange   themselves   in   trigonal  crystallographic  lattice   and,  
 

       

FIG.4.3 Pictorial representation of CoPhOMe single chain magnet 

crystallized in the trigonal system; on the right picture the position of 

the main components of the material are indicated.  
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because of supramolecular interactions, as in manganese 
analogues [69], the chain has an helical structure characterized by                       
a ternary screw axis. The elementary cell, consisting in three 
metallic ions and three radical centres, is the results of a 1200 

rotation combined with the translation of 1/3 of the length of the 
cell along the trigonal axis c.  

As verified by X-ray diffraction measurements, the closest 
distance  between two  neighbour chains  is 11.3Å,  while  metal-  

          

 

FIG.4.4 Representation of the exagonal packing of the helical chains 

and of the elementary cell.    

 
metal distance along trigonal axis of the chain is 6.9Å. 

Despite this little difference between intrachain and interchain 
distances, it was found out that the coupling interaction along the  
chain is orders of magnitude stronger than interchain  interaction, 
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so that the 1D nature of the compound is assured.  
 

4.1.3 Interactions and Electronic Configuration 

 

As shown in FIG.4.1, the strong intrachain interaction between 
Cobalt ions and radical centres is due to the peculiar properties of 
the radical inserted in the chain during synthesis: in fact it has an 
unpaired electron in the outer shell which is strongly delocalized 
with the same probability to be on the two N-O centres [70]: in 
this way there is a direct exchange between the paramagnetic 
metal  ion and  the  radical,  so  that the latter  is able  to  transmit  
 

 

          free ion                   octahedral field                 spin-orbit 

                                                                                             coupling 

                     
FIG.4.5 Sketch of the energy levels of bivalent Cobalt ions undergoing 

octahedral field and spin-orbit coupling. 
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with great efficiency the interaction along the chain and the 
electron delocalization permits the superposition of magnetic 
orbitals, due to unpaired electrons. 
For a better understanding of the origin of intrachain interactions, 
the attention must be focussed on the particular case under 
discussion. In fact when a nitronyl-nitroxide radical centre 
interacts with a metal ion, the nature of the interaction depends 
on the overlap of the orbitals between the two centres involved 
[71-73]. It is anti-ferromagnetic if the molecular orbitals of the 
two centres are superimposed, while, if there is no superposition, 
the interaction is ferromagnetic. In CoPhOMe Cobalt(II), whose 
configuration is [Ar]3d74s2, presents, at high temperature, three 
unpaired electrons in the outer shell with a high orbital 
contribution displayed by its quantum numbers (Lz=3, S=3/2); 
the ground state of this ion, thought as free, is 4F. As already 
described, Cobalt is used to form octahedral compounds: the 
strongest perturbation acting on it is the octahedral crystal field 
which splits the original ground state in three degenerate levels 
with lower energy and two other levels, still degenerate, with 
higher energy. The crystal field, in most of the cases, results to be 
distorted and the perfect octahedral field is not a real situation. In  
fact, taking into account the spin-orbit coupling as a perturbation, 
4T1g, which is the ground level in octahedral symmetry, is split 
into three levels with the one having lower energy still 
degenerate. This electronic configuration leads to very important 
properties for metal centres in the sample. Also the theoretical 
model for the interpretation of the dynamics of the chain at low 
temperature derives from this property. In fact for T<50K just the 
ground state is populated and the Cobalt ion can be considered as 
possessing an effective spin S=1/2. This is no longer valid at high 
temperature, where excited states start being populated. The 
strong   anisotropic  exchange  interaction  between  radicals  and  
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Cobalt ions makes this chain a very good model system for 
investigating Glauber dynamics. All the features of the system 
can be summarized in the Hamiltonian: 
 

                                                  

( ) ( )∑∑ −−+ +−⋅+⋅=
i

iradiCoB

i

iiii SgSgHSSSSJH
ξξξξξξξ µ 122122122

rrrrrr
(4.1) 

 
where the odd sites are the ones of the radical spins while the 
even sites represents the Cobalt ions spins and J  represent the 
exchange coupling constant between nearest neighbours. 

 

4.2 Macroscopic Measurements on Pure CoPhOMe 
 

CoPhOMe is the first compound which displays a 
superparamagnetic slowing down of the magnetization as 
predicted by Glauber [1] in 1963 for ferromagnetic 1D Ising 
systems. The difficulty in observing the slow Glauber spin 
dynamics in a real Ising chain is due to the fact that the interchain 
interaction has to be so weak that the spin system does not 
undergo a 3D phase transition before the intrachain interaction 
induces the superparamagnetic freezing of the spins in the chain. 
CoPhOMe fulfils the two main conditions: a very high magnetic 

anisotropy of Ising type and a very low ratio between inter- (J’) 
and intrachain (J) interactions i.e. J’/J<10-5. For example the 
CoPhOMe analogue, containing Mn2+ ions [71], does not show 
the phenomenon.  
In this section a review of the previous results [23][58][74-80] 
obtained on pure CoPhOMe from DC and AC Susceptibility, 
NMR and µSR measurements is shown. These results are the 
starting point  for the  interpretation  of  the  data for  Zinc-Doped  
compounds     studied     in     this     thesis.    The     macroscopic  
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measurements reported in the following have been performed by 
A. Caneschi and his co-workers of the University of Firenze and 
by E. Micotti of the University of Pavia.  
 

 

4.2.1 Measurements in the Monomeric Compound  
 

Preliminary information about CoPhOMe have been obtained 
from X-rays and DC Susceptibility measurements performed on 
the monomeric sample [75-76] constituted by a Cobalt(II) ion 
connected to two NITPhOMe radical centres. X-rays diffraction 
showed that this system has a structure resembling the one of the 
entire chain, so that it can be considered as a part of the chain 
with  similar features.  The most  important information  
collected from the study of monomeric compound 
(Co(hfac)2(NITPhOMe)2) are:  

 
1) the Ising anti-ferromagnetic nature of the nearest 

neighbour interactions along the chain between Cobalt ions 
and radicals. 
 

2) the orientation of the easy anisotropy axis of the 
magnetization of each magnetic centre deviates 
considerably from the axis of the chain, forming a 45o-55o 

angle with it.  

 
As mentioned before the magnetic properties of interest refer to 
the low temperature range (T<50K) where the chains can be 
considered a ferrimagnetic Ising system, with the Cobalt ions 
having an effective spin S=1/2 and an anisotropic g-factor 
(gCo⊥=0, gCo||=9), and radical centres having s=1/2 and an 
isotropic g-factor (grad=2).  
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4.2.2 Susceptibility Measurements 
 

DC Susceptibility 

 

In FIGS.4.6-4.8 DC susceptibility measurements [74][77], 
performed on one and more iso-oriented single crystals, are 
shown. 
The  ratio  between  magnetization  and  the  constant  (H=1kOe)  

 

 

FIG.4.6 Temperature dependence of the ratio between magnetization 

and magnetic field applied along trigonal axis (H=1kOe) multiplied by 

temperature on a microcrystalline sample of CoPhOMe. 

 
applied field multiplied by temperature increases with decreasing 
temperature: in particular the sudden increase below 100K 
clearly   indicates    strong   intrachain   interactions   as   already 
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observed for other 1D ferro- and ferrimagnetic systems. 
Susceptibility values at low temperature are much higher than for 
a system of non-interacting Cobalt(II) and radical centres. DC 
susceptibility measurements are well-fitted with an Ising model 
whose parameters are: J=220K, gCo=7.4 and gRad=2 [23]. 

As can be seen from FIG.4.7, the magnetization is strongly 

anisotropic below 50K with the easy axis anisotropy 
corresponding to the trigonal axis.  

                  

 
FIG.4.7 Magnetization as a function of temperature for various 

orientations of the external magnetic field H=1kOe performed on a 

single crystal of CoPhOMe. The direction of the field is indicated by the 

angle between field itself and trigonal axis of the crystal. The strong 

anisotropy of the magnetization is evident.       

 
The magnetization measurements performed in Pavia by Dr. E. 
Micotti  [77]  for  six  different  magnetic  fields show  a  shift  of   
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the maximum with increasing the field magnitude. This 
behaviour is caused by saturation effects of the magnetization 
related, in Ising systems, to a damping in the susceptibility 
divergence with decreasing the temperature. The higher the field 
the higher is the temperature where the saturation effects start 
being dominant.   
                              

 

FIG.4.8 χχχχT as a function of temperature for six different magnetic fields 

applied along trigonal axis. The graph shows the field dependence of 

the magnetization due to the saturation effects.  

 

 
 AC Susceptibility 

 

CoPhOMe has been also investigated with AC susceptibility 
[74], in the  frequency range 0.2Hz-500Hz,  in order to detect the 
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dynamics of the spin system. 

 

 
 

FIG.4.9 Real component of the AC susceptibility as a function of 

temperature measured for seven different frequencies. The T-

dependence of χχχχ’ maximum rules out the occurrence of a 3D phase 

transition.
 

 

 

The real component (χ’) of the AC susceptibility displays a peak 
for all of the seven frequencies of measurements. The important 
feature of these curves consists in the frequency dependence of 
the susceptibility below 12K with a peak which moves towards 
lower temperature for smaller frequencies.     
The imaginary part of the AC susceptibility is characterized for 
all of the frequencies by  a peak at temperatures  close to the ones 

where χ’ diminishes; also in this case the peak occurs at different 
temperatures for different measuring frequencies. This behaviour 
rules out the possibility of a phase transition, suggesting,  instead, 

     

χχχχ’       

T(K) 
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that the dynamics of the magnetization reaches the same time 
scale of the measurements (2ms-10s) in the temperature range 
between 6K and 11K. 

                         

 
 

FIG.4.10 Imaginary component of the AC susceptibility as a function of 

temperature measured for seven different frequencies. The T-

dependence of χχχχ’’ maximum suggests dynamic effects in the compound 

at low temperature.  

 
The entire sample has the same blocking temperature, which is 
the temperature at which the spin system results to be frozen, as 
can be inferred by the semicircle form of the Cole-Cole plot [74]. 
Thus a single relaxation time τ  can be extracted from the peaks 
in the susceptibility measurements. 
When the relaxation time is plotted in a semi-log plot vs 
temperature one obtains a straight line, as can be clearly observed 

T(K) 

     

χχχχ’’       
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FIG.4.11 Logarithm of the relaxation time of the magnetization as a 

function of the inverse of the temperature.  

 
in FIG.4.11, signalling an Arrhenius behaviour of τ whose 
equation is: 

 

  

                                         )exp(0
Tk

E

B

∆
= ττ .                            (4.2) 

 
The experimental values are fitted well assuming in eq.(4.2) 
τ0=3x10-11s and ∆E=156K [74]. The pre-exponential factor is 
comparable to the values for superparamagnetic systems. This 
characteristic is a further evidence of the fact that the 
magnetization  follows a  Glauber dynamics where the barrier  of 
energy   is  represented  by  the  exchange  coupling  constant   J, 
through a thermally activated law: 
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                                        )
4

exp(0
Tk

J

B

ττ =                              (4.3) 

 

  

4.2.3 Magnetization Decay Method 

 

The relaxation time at low temperature, i.e. well below the peak 
in the AC susceptibility, can be measured by monitoring the 
decay of the magnetization after a sudden variation of the 
magnetic field applied [74][77].  
 

 

                           

 

FIG.4.12 Magnetization decay along trigonal axis as a function of time 

in ZF, after saturating the sample with H=30kOe in the temperature 

range 4.8-5.7K. Solid lines represent stretched exponential function 

fitting the data. 

 
When a 30kOe magnetic field is applied along the trigonal axis 
and  then  switched  off,  the  system  is far from  the  equilibrium 

        M 

(emu/mol)       

      

time (s)       
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FIG.4.13 Decay of magnetization as a function of time in zero field 

applied after equilibrating magnetization by applying a 10Oe field 

along the trigonal axis of the system. Solid lines are the best fitting 

functions for each decay.  
 

  
 

condition in zero field. In the range between 4.8K and 5.7K  the 
deviation  from  the  mono-exponential  decay  of  magnetization,  

M 

(10-3emu) 

M 

(10-3emu) 

t (s) 

t (s) 
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proper of a system characterized by a single relaxation time, is 
evident. Just in the measurements at 4.86K and at 5K a stretched 
exponential fitting function  

 

                   ( ) ( ) ( )[ ] ( )∞+
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β

τ
exp0          (4.4) 

 

can be used, suggesting a distribution of relaxation times.  
By applying instead a lower magnetic field (10Oe), the initial 
condition is closer to the equilibrium condition and the single 
exponential behaviour is recovered.  
Comparing the relaxation times obtained with this method with 
the ones expected from the extrapolation at low temperature of 
the AC susceptibility results, one finds a very good agreement: in 
fact from magnetization decay method the energy barrier varies 
between 156K and 159K, while from AC susceptibility it is 
found to be 156K. 
 

4.2.4 Isothermal Magnetization 
 

Preliminary results showed that the magnetization curves cannot 
be superimposed for T<6K [74]; that’s why a series of isothermal 

magnetization measurements [23][74] have been performed at 
four different temperatures below the blocking temperature: as 
expected an hysteresis loop progressively opens up with 
decreasing temperature (see FIG.4.14 lower part), while no 
hysteresis has been detected when the magnetic field is oriented 
in the trigonal plane (see FIG.4.14 upper part). This behaviour is 
consistent with hard-plane like nature of the trigonal plane.  
The saturation values in the hysteresis loop in FIG.4.14 (upper 
part) suggest a quite small anisotropy, since M||=10390emu/mol 
and M⊥=9680emu/mol. This small difference,  which could be an                     
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FIG.4.14 Isothermal magnetization at T=2K with steady magnetic field 

applied both along and perpendicular to the trigonal axis (ABOVE).  

Isothermal Magnetization performed for four different temperatures 

with the field applied along trigonal axis: at T=2K a second step 

appears (BELOW). 

 

      

         Trigonal Plane             

         Trigonal Axis             

         T=2K       
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evidence against the use of Ising model for this system, is 
probably related to the helical arrangement of the chain that 
allows us to see just an average macroscopic anisotropy of the 
crystal, instead of the anisotropy of each magnetic centre. This 
kind of anisotropy is smaller if the local anisotropy directions, 
with respect to the trigonal axis are close to the magic angle 
54.740 and this is the case of CoPhOMe as mentioned previously. 
Another unexpected feature characterizes isothermal 
magnetization around some thousands of Oe: it consists in the 
presence of plateaus whose number varies depending on the 
temperature [74]. For T>3K there is just one plateau around 
4000Oe while for lower temperature another step has been found 
around 10000Oe (see FIG.4.14 lower part). 

 

 

FIG.4.15 Isothermal magnetization at T=8K measured along three 

different directions of the sample. The directions are indicated by the 

angle between the field orientation and the trigonal axis. 
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The origin of these steps has been tested from the performance of 
hysteresis  loops with  various sweeping  rates (from 0.7kOe/s  to               
0.09kOe/s) [74] and no dynamical effects have been detected in 
correspondence of the plateaus previously recorded. 
These steps could be due to the helical arrangement of the chain 
together with the anisotropic nature of the Cobalt ions and the 
reason of these plateaus can be related to the fact that for high 
magnetic fields the spins are driven by the strength of the field 
itself, while for low magnetic fields the anisotropy can be the 
driving force for the orientation of the magnetic moments, with 
the formation of metastable states suggested by the steps. The 
static origin of plateaus is proved by their presence in the plot 
also for temperatures above the blocking temperature, where the 
hysteresis loop is absent. All of these features disappear for 
temperature above 10K. 
 

4.3 NMR Measurements 
 

4.3.1 Introduction  

 

In this section the results of NMR measurements done in Pavia by 
Dr. E. Micotti [77][79][80] will be summerized. Measurements 
include 1

H absorption spectra, spin-spin and spin-lattice 
relaxation rates measurements as a function of temperature in the 
temperature range between ∼300K and 1.5K for two different 
applied fields of H=0.35; 1.7Tesla. 
 

4.3.2 1H NMR Spectra 
 

From the observation of the spectra collected [58][77][79] for 
different  applied  magnetic  fields  and  shown  in  FIG.4.16,  the  
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most evident feature is the progressive broadening of the 
absorption line with decreasing the temperature. 
The NMR line width in a paramagnet has two main 
contributions: a field independent term arising from the nuclear 

dipole-dipole interaction discussed in Chapter 2. In the proton 
NMR in molecular magnets this term is dominated by the proton-
proton dipolar interaction within the organic molecular group. 
Thus it is of the same order of magnitude for all molecular 
magnets (about 25-30 KHz). If the molecular groups reorient fast 
enough this term can be substantially reduced. This, however, 
occurs most likely above room temperature. The other term is 
related to the proton electrons dipolar interaction. In this case 
the electron , polarized by the external field generates a local 
hyperfine field at the proton site which is proportional to the 
local paramagnetic moment i.e. χB. Thus the resulting line width 
is given by:    

 

                                    ( ) BAdip χδνδν +=                             (4.5) 

 

where  the  constant  A  is  an  average  hyperfine  coupling  
constant  between  the  nuclei  and  the magnetic moments. This 
result is the same for a single crystal and a powder sample. In 
fact the paramagnetic broadening is an inhomogeneous 
broadening due to the distribution of local fields at the different 
proton sites due to the presence of many non equivalent protons 
in the molecular magnet [56] with different dipolar fields 
resulting from the anisotropic character of the dipolar interaction. 
The increase in NMR line width on lowering the temperature 
reflects the increase of the  susceptibility of the system. The field 
dependence of the FWHM vs B shown in Fig.4.17 follows from 
eq.(4.5) and the extrapolated value at B=0 yields the dipolar 
contribution to the line width, which can be estimated to be about 
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FIG.4.16 

1
H NMR absorption spectra for H=0.35T (ABOVE) and for 

H=1.7T (BELOW) for four different temperatures. The progressive line 

broadening with decreasing temperature is evident. 

 
27kHz. This room temperature value could be slightly smaller 
than the rigid lattice value as the result of molecular 
reorientations.                        
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If the proton is coupled to the magnetic moment by an isotropic 

contact term one can observe a shift since the local field is the 
same at all proton sites having the same coupling to the magnetic 
moment. This shift can be described by the equation:        
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FIG.4.17 FWHM at Room Temperature for pure CoPhOMe at two 

frequencies of measure; the extrapolated FWHM at H=0 gives us a 

rough estimation of the dipolar contribution to the line width. 
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where νL is the Larmor frequency, A’ represents the isotropic 

hyperfine coupling and s
r

  is the expectation value of  the spins 
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oriented along the field direction. Since for protons A’ is 
normally very small one expects a very small paramagnetic shift. 
This is shown in the experimental results of FIG.4.19.                                       
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FIG.4.18 FWHM as a function of temperature for H=0.35T and 

H=1.7T. Its rapid increase with decreasing temperature is shown. 

INSET: 
1
H NMR absorption spectrum at T=1.65K and H=0.35T [58].  

                                                                                                            
This small shift cannot be detected in low field measurements 
while for H=1.7T, the peak of the line shifts 40kHz below the 
Larmor frequency at low temperature.  
At very low temperature , when the spin system freezes one 
expects a proton line width which is no longer proportional to the  
magnetic susceptibility and no longer proportional to the external 
field B.  This is  due to the  fact that,  in the frozen spin state,  the  
local field is large and spontaneous namely largely independent 
of  the applied field B. This effect has been seen clearly in  single  
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FIG.4.19 Line Shift as a function of temperature for H=0.35T and 

H=1.7T with respect to the Larmor frequency. No shift has been 

detected for lower field, while for higher field the line shifts till 40kHz 

below Larmor frequency when the temperature is decreased.  

 
molecule magnets like Mn12 and Fe8 [81][82]. The onset of a 
spontaneous local field should also be observable in CoPhOMe at 
low temperature from the NMR line width measurements.             
However, the present data do not reach enough  low temperatures  
to allow an analysis of the superparamagnetic slowing down on 
the NMR line width and shift. 

 

4.3.3 Spin-Spin Relaxation Time T2  

 

A first investigation regarding the dynamics of the system can be 
done through the analysis of the relaxation time of nuclear 
transversal magnetization (T2) [77].           
As  already mentioned in Chapter 2, spin-spin  relaxation time  is               

 

      

  Shift  with  respect  to  ννννL    H=0.35T  
 

  Shift  with  respect  to  ννννL    H=1.7T       
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proportional to the spectral density at frequency equal to zero 
(T2∝[J(0)]-1 [31]). The relaxation curves  showed  an  exponential  
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FIG.4.20 Spin-Spin relaxation rate as a function of temperature for 

H=0.35T and H=1.7T for NMR measurements on 
1
H. In the figure are 

reported also the results of the best-fits performed and indicated by the 

lines on the graph. 

 

behaviour as can be seen by plotting them in a semi-logarithmic 
graph, resulting in a straight line.     

Depending on the magnetic field applied, the response of the 
system is different: for the highest field its behaviour is constant 
within the error bar, which suggests that the spectrum of 
fluctuations at frequencies close to zero is the same in all the 
temperature range investigated. Instead for H=0.35Tesla, T2(T) 
shows a large maximum around 50K (see FIG.4.20). 
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T-1

2 relaxation rate, can be written  
 

                     ( ) τBAJBA
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22

              (4.7) 

 

where A refers to the static contribution while 1/T’2  is related to 
the dynamic contribution deriving from electronic spins. 
The best-fit of these data has been done through two different 
procedures: for both of them a constant static contribution 
A∼16kHz has been supposed, while for the dynamic term in the 
first case the fitting function was characterized by the Arrhenius 
law 
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T

∆
=ττ                                 (4.8) 

 

as predicted in Glauber model; in the second case the dynamic 
term has been written as  
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taking into account two different Arrhenius-like relaxation times. 
The static contribution is the contribution given to T2 by the 
interactions between nuclear dipoles: the value used for the fit is 
in consistent with the one obtained from the line width of the 
spectra at room temperature though the procedure explained in 
the previous paragraph and in FIG.4.17. The results of the fit are 
summarized in FIG.4.20. There is a good agreement between 
eq.(4.9) and the data above 50K, while the maximum at lower 
temperature suggests that there is a different mechanism driving 
spin dynamics with respect to the one driving spin-lattice 
relaxation rate, as will be explain later.  
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4.3.4 Spin-Lattice Relaxation Time T1 

 

The recovery of the nuclear magnetization towards the 
equilibrium value after a saturation pulse is non-exponential but, 
rather, it follows a stretched exponential law like in the case of 
the recovery of the magnetization discussed in section 4.2.3. The 
origin of the stretched exponential is different in the two cases. In 
the case of the magnetization recovery it indicates a distribution 
of relaxation times of the magnetization itself, while in the NMR 
case it indicates a distribution of spin-lattice relaxation times. 
This second case can be explained simply by considering the 
distribution of proton sites with different couplings to the 
magnetic ions and thus different T1. If the different protons do 
not have time to reach a common spin temperature the recovery 
of the nuclear magnetization is given by the sum of exponentials 
i.e. a stretched exponential exp( -(t/τ)β). It should be noted that 
there is also the possibility that the distribution of NMR T1 is 
related to the distribution of relaxation rates of the magnetization 
but it is impossible to discern the two cases. 
In  the case of  stretched recovery of the nuclear magnetization  it 
is customary to measure the slope of the tangent at the origin 
[58][79-80]. The relaxation rate obtained from the initial decay 
of the nuclear magnetization is a weighted average over all fast-
relaxing protons.  
The Nuclear Spin Lattice Relaxation Rate (NSLR), plotted in 
FIG.4.21 as a function of temperature, shows two main 
anomalies for T<50K, where the compound can be considered as 
a one-dimensional ferrimagnetic Ising chain: at higher 
temperature both curves display a peak respectively at T∼30K 
(H=0.35T) and at T∼24K (H=1.7T) and for lower temperature 
(T<15K) they show a pronounced shoulder. 
The   interpretation   for   the   peak   at  T>15K   has  been   done 
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identifying the correlation time τ , which enters in the theoretical 
expression of T1 consisting in the so-called BPP law (BPP stands 
for Bloembergen Purcell and Pound [33]), which will be derived 
in Par.4.6.7, and whose expression is 
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with the macroscopic relaxation time of the magnetization M(t) 
given by 
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It is noted that this assumption implies that the local spin-spin 
correlation function decays in time in the same way as the 
macroscopic magnetization correlation function.  
The best fitting parameters are A1=3.0(±0.1)x1011 rad s-2, 
τ0,1=3(±1)x10-11s and ∆1=152(±2)K with a slight dependence of 
τ0 on the applied field (τ0,1(0.35T)=3xτ0,1(1.7T)) and on the 

thermomagnetic history of the sample, but in good agreement 
with susceptibility results. The local character of the NMR 
spectroscopy has allowed the detection of a relaxation 
mechanism which was undetected in the first magnetization 
relaxation measurements. In fact the shoulder in the plot of 
NSLR vs T suggests the presence of a different mechanism with 
a different correlation time which reaches the radiofrequency 
range only below 10K. 
To fit the shoulder of the NSLR data we assume the usual 

Arrhenius  law 






 ∆
=

T

2
2,02 expττ  but with a distribution  of energy  

Barriers ∆2, of width δ2. The data for T<50K are quite  well-fitted 
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by the total equation: 
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where  b2=exp(δ2/T).  In this  expression  the  hyperfine  coupling  
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FIG.4.21 Spin-Lattice relaxation rate as a function of temperature for 

H=0.35T and H=1.7T for NMR measurements on 
1
H. The solid and 

dashed lines on the graph represent the behaviour of the best-fits 

described in the text [79][80]. 

 

constant A1 and A2 are assumed to be temperature independent 
and  ∆1  and ∆2  field independent.  The results of the fit regarding  
the     second     relaxation      mechanism     are:     τ2,0=9(±0.5)K, 
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δ2=20(±0.5)K, A2=1.8(±0.2)x1011rad sec with τ2 following 
thesame field dependence as τ1 discussed above. The scarce 
agreement between fits and data for T>50K is due to the fact that 
the model used for low temperature, taking into account for the 
Cobalt spins a value equal to 1/2, cannot be anymore used, since 
for higher temperatures the excited levels of the Cobalt ions start 
to be populated, the distance between the ground state and the 
first excited level being about 150K. 
It must be remarked that the choice of a distribution of energy 
barriers in eq.(4.12) could be justified, since it can correspond, 
phenomenologically, to the excitations at different wave vectors 
in the generalized susceptibility which can be detected by the 
local probe constituted by protons in NMR spectroscopy.         
 

4.4 µµµµSR Measurements 

 

Measurements discussed in this paragraph have been done by Dr. 
E. Micotti [58][80] in the temperature range 4K ≤ T ≤ 300K in  
the so-called longitudinal configuration, i.e. with different 
magnetic fields (H=2000, 3500Gauss) applied in the same 
direction of the muons initial polarization. Depolarization curves 
behaviour has been analyzed as a function of temperature.    
From the measurements presented in previous paragraphs, it’s 
evident that the behaviour of CoPhOMe can be divided into two 
main temperature ranges: 

 
1) T>50K: the system is paramagnetic 

 
2) T<50K: progressive electronic spin freezing takes place  

 
 Following  the  µSR  experimental  results  the  behaviour of  the                       
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muon polarization P(t) in the two different temperature regions, 
in ref. [80] was described by the following equations: 
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tT

KT

t KT 50' 1
1

<+⋅+=
−−−λ (4.12b) 

 

                                     

   

FIG.4.22 Depolarization curves of the muon in a longitudinal field of 

H=3500 Gauss at different temperatures on CoPhOMe. 

 
where A is a constant parameter and B is the background due to 
the sample holder contribution, assumed to be nearly constant 
with respect to temperature and applied magnetic field. By the 
observation of crystal structure of CoPhOMe, one can evince a-
priori that more than one equivalent muon site is present. From 
Eq.(4.12a), we deduced that in the paramagnetic region the 
behavior  of  P(t) is monoexponential, i.e.  the muons in different  



~ 121 ~ 

 

4.   Pure and Zinc-Doped CoPhOMe 

 
sites have common spin temperature. On the other hand in the 
spin freezing region the muons implant in at least two different 
sites, as witnessed by the two components in P(t). In eq.(4.13b) λ 
represents a relaxation rate associated to an exponential decay of 

P(t). The second term in Eq.(4.13b), , ( ) tT

KT
KTeAtG 1

1

'
−−⋅  

represents a Kubo-Toyabe static function GKT(t) multiplied by an 
exponential decay term exp(-T

-1
1KT t). The function GKT depends 

on t and ∆ where ∆ is the FWHM of the Gaussian or Lorentzian 
local static field distribution. This function gives an indication of 
the local field distribution evidenced in particular by a minimum 
occurring at short times. Despite to the absence of the minimum 
in the RAL experimental data of ref. [80] (explained by the 
impossibility of collecting data at short times  t<80 ns, with a 
pulsed muon source), the use of  KT function in the fitting of P(t) 
was justified by the progressive decrease of the muon total 
asymmetry and the increase of the background with field 
increasing, when the temperature is decreased below 50K. λ and 
T-1

1KT , the inverse of the relaxation times of two different muon 
groups, can be treated both like the nuclear spin-lattice  
relaxation rate T-1

1 in NMR measurements. They give 
information on the electronic spin dynamics such as NSLR, even 
if muons stop in different position inside the sample with respect 
to protons. In fact, because of their positive charge they 
thermalize in an environment negatively charged where they can 
minimize the potential energy. 
The temperature behaviours of  λ and T-1

1KT at the applied fields 
are qualitatively the same. In Fig. 4.23 the behaviour of T-1

1KT(T) 
is reported (λ(T) not reported). As can be easily seen, two 
anomalies for T<50K can be pointed out: for T>15K a maximum 
and for T<15K a broad shoulder. These results are similar to the 
ones collected with NMR proton spin-lattice relaxation rate 
measurements.  The  solid  lines   in  Fig.4.23  correspond  to  the  
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fitting performed using the same relaxation times used for NMR 
data, i.e. Arrhenius-like τ1 and τ2 (see previous paragraph) with 
the proper renormalization of the hyperfine constants.  
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FIG.4.23 Muon relaxation rate multiplying the Kubo-Toyabe function, 

reported as a function of temperature for H=0.2T and H=0.35T. The 

solid lines are the best-fits as described in the text [80]. The behaviour 

of the second relaxation rate of Eq.(4.13b) is qualitatively the same. 

 

For the sake of completeness, we would like to remark that 
recent PSI data, still not analysed, showed that the muon 
asymmetry does not display any KT-like behaviour neither for 
times t<80 ns. However, by substituting Eq.(4.13b) with a bi-
exponential function C exp(-λ1t) + D exp(-λ2t),  preliminary fits 
allowed to verify that the temperature behaviour of the relaxation  
rates extracted from PSI data, λ1 and λ2 , is similar to the ones of 
λ  and T-1

1KT ,  thus  validating the  qualitative conclusions  of the  
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present paragraph (the slight increase of the background we 
talked about above, can be justified by the change of asymmetry 

predicted with field increasing). For a more detailed discussion 
about the physical meaning of the used fitting function of PSI 
data, more data elaboration is needed (in progress).  
 

4.5 Conclusions 
 

After this first run of measurements [23][58][74-80] for the 
characterization of the properties of pure CoPhOMe, a lot of 
information have been obtained regarding this molecular magnet, 
both from macroscopic measurements, consisting in 
Magnetization and DC and AC Susceptibility measurements and 
microscopic measurements such as NMR and µSR experiments.  
The most important characteristic pointed out has been the Ising 
1D behaviour of CoPhOMe in all the temperature range 
investigated (1.5-300K). 
It consists in the extreme slowing down of the magnetization, 
following a thermally activated law (τ=τ0exp(∆/T)), which 
occurs at low temperature before any 3D phase transition could 
take place: this is the first experimental verification of the 
slowing down in single chain magnet predicted by Glauber in 
1963 [1]. This feature has been pointed out by the relaxation time 
extracted from AC susceptibility measurements [23][74]. An 
important evidence for a spin freezing of the electronic spins in 
the time scale of the experiments performed has been displayed 
by AC susceptibility and isothermal magnetization measurements 
[23][74]: in the first case, it has been suggested by the frequency 
dependence of the peak in the out-of-phase component χ’’, and 
in the second case, by the hysteresis loop appearing at 
temperatures below 6K.  
The  possibility of a distribution of relaxation processes and,  as a 
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consequence, of different relaxation times, related to the non- 
exponential behaviour of the magnetization relaxation curves, 
has been first confirmed by NMR microscopic measurements 
[58][79-80]. In fact, plotting spin-lattice relaxation rate, below 
50K two different relaxation mechanisms have been  displayed in  
the form of a pronounced peak for T>15K and a broad shoulder 
at T<15K. The identification of these processes as related to the 
electronic spins dynamics has led to the assignment, for each 
mechanism, of a correlation time thermally activated behaviour 
as for the relaxation of the macroscopic magnetization. The 
insertion of the Arrhenius expression for the relaxation time in 
the BPP fitting function, suggested that there are two different 
regions in the sample where two different electronic dynamics 
are present.  
These two different correlation times detected by NMR NSLR 
can  be tentatively assigned to the electronic spin dynamics of the  
two sublattices composing the sample: in fact Co2+ ions sublattice 
and radical centres sublattice, even if they are both characterized 
by S=1/2, they have really different Landé factors. The high 
sensitivity of 1H NMR measurements can be related to the fact 
that two of the 21 non-equivalent protons in the sample [56], the 
ones of the hfac group, are close to Cobalt ions so that they feel 
their dynamics, while all of the other protons closer to radical 
centres reflects the radical dynamics. This spin dynamics picture 
has been further confirmed by µSR measurements [58][80] and 
in particular by the behaviour of the relaxation rates (T-1

1 and λ) 
of muons extracted from fitting functions used for the muon 
depolarization: for both the longitudinal fields used in the 
experiments (H=0.2T, 0.35T) for T>15K a peak is present while 
for T<15K a broad shoulder is evident. This result implies that 
the  muons  implant  in  two different  site,  which  still  could  be  
related to the two sublattices of the system.  
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This last conclusion is still debate, since there are some open 
questions on the real behaviour of the electronic dynamics: in 
fact, as regards NMR, the field dependence of the relaxation time 
is not clear. In fact fits are not so good in NMR especially for 
H=1.7T.  

 

4.6 Zinc-Doped CoPhOMe   
 

 

4.6.1 Introduction 
 

After the intense research dedicated to Pure CoPhOMe where the 
slowing down of the magnetization predicted by Glauber [1] has 
been evidenced experimentally, the attention has been focussed 
on the same 1D magnetic chain compound doped with Zn 
diamagnetic impurities in order to investigate the finite-size 
(length of the chain) effects on the spin dynamics.  The static and  
dynamic properties will be analyzed with both DC and AC 
Susceptibility measurements and with local NMR spectroscopy, 
the interpretation of the data being still in progress. 

 

4.6.2 General Features 
 

Various concentrations of Zinc diamagnetic ions have been 
inserted in the pure sample: this procedure has been done by 
adding to the solutions used for the pure sample various 
quantities of Zn(hfac)2 ⋅ 2H2O vs Co(hfac)2 ⋅ 2H2O[83-84]. It has 
been found from measurements with PIXE [85] (particle induced 
X-ray emission technique) that the concentration of Zinc in the 
sample was always lower than in the starting solutions. With 
PIXE also the  distribution  of  the dopant in  longitudinal  and  in 
transverse  direction  for  single crystals  has  been  controlled:  it 
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FIG.4.24 Spatial distribution of Zn/Co ratio in CoPhOMe doped 

samples in the transverse and in longitudinal direction [83][84]. 

 
resulted that the distribution in the longitudinal direction is in 
practice uniform while in the transverse direction it increases 
from the centre to the edges. The problem with this kind of 
compounds is also related to reproducibility of the concentration 
in different crystals deriving from different batches, wereby it is 
reproducible in the same batch with an uncertainty of 5%.                     
The importance of the doping in such compounds is crucial, 
because all their morphological characteristics are varied. 
Starting from the pure compound which can be thought as 
formed by chains of more than 3000 spins i.e. infinite chains, one 
can reduce the length of the chains by doping. For Zn=0.3% and 
Zn=5.4% the chains have of about 200 and 15 spins respectively. 
The concentrations studied experimentally here are Zn=0.3, 1.9, 
4.7, 5.4%.  In  this chapter  we  are  interested in  particular in the 
dynamics  of  these  new  systems and  in  the  way  the dynamics 
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changes  in comparison  with the one  of the pure compounds and  
with increasing the doping concentration. The most important 
assumption to be done in the analysis of the doped samples, is 
considering the sample as made up of non interacting segments, 
that is to say, not taking into account 3D interactions. 
 
 

4.6.3 DC Susceptibility Measurements 

 

For a first characterization of the doped CoPhOMe compounds   
we have performed DC susceptibility measurements in the 
temperature range between 2K and 300K with three different 
magnetic fields of 500, 3500, 16500G applied on powders 
samples with a percentage of Zinc of 1.9% and 5.4%. 
In FIG.4.25 the behaviour  of the  molar susceptibility  multiplied 
by temperature as a function of temperature itself is shown.  
The magnetic fields of the measurements have been chosen for a 
comparison with NMR measurements that have been performed 
with the same applied fields. 
As can be clearly seen from the graph, the results on powder 
sample used for these measurements resemble to the ones 
obtained in the pure compound. In particular, for low applied 
fields, it can be noticed that below 100K the susceptibility starts 
increasing abruptly giving a clear indication of strong intrachain 

interaction as in the pure compound and characteristic of 1D 
ferro- and ferrimagnets. Also in the doped chains case the lack of 
a minimum in the susceptibility curve is against the hypothesis of 
the 1D ferrimagnetic system. This absence can be, anyway, 
justified by the high intrachain coupling constant which causes 
the minimum to be above the highest temperature limit (300K) of 
this experiment. Another interesting feature is related to the fact 
that, with increasing  field, the  peak shifts  at higher  temperature 
(from  T∼12K  for  500Gauss  to  T∼32K  for 16500Gauss) as the  
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FIG.4.25 Molar susceptibility multiplied by the temperature as a 

function of temperature of CoPhOMe powders doped with Zn=1.9% 

and Zn=5.4% for three different static magnetic fields. 
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result of saturation effects characteristic of strong short range 

order within the segments. This behaviour has been observed 
also in the compound doped with Zn=5.4%, but with a slight 
field dependence of unknown origin also at high temperature (see 
also Par.4.6.6). These features seem to suggest that doped 
compounds don’t show sizeable differences with respect to the 
pure  compound  as  regards  the  static  properties,  even  when  
the  chains are broken in very short segments.  
 

4.6.4 AC Susceptibility Measurements 

 

In this paragraph the spin dynamics of the sample is investigated 
through AC susceptibility [83-84] [86-87] with new runs of 
measurements also on Pure CoPhOMe done at University of 
Firenze. Measurements have been performed for more than one 
run on samples with various concentrations of Zinc: in particular 
AC susceptibility measurements have been performed in 
compounds with Zn=0.3, 1.9, 4.7%.  
The spin dynamics in Ising chains of finite length was also 
investigated theoretically by using the Glauber model [1]. From 
transition probabilities calculated by Glauber [1] the equation of 
motion for spins, under free boundary conditions [52][88], can be 
expressed by the matrix equation 

 

                                           SMS
dt

d rrrr
⋅−= '                               (4.14) 

 

where S
r

=(s1,…..,sN) is a vector with dimensionality N, while 

'M

rr
 is a real quasi-symmetric tridiagonal NxN matrix whose 

expression is 
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where γ=tanh(2J/kBT) β= tanh(J/kBT). 
The eigenvalues spectrum can be written, after some algebra,  

 
                               ( ) [ ]θγαθλ cos10 −= qL                    (4.16) 

 
where q represents the probability of reversal of a single spin of 
the chain in the unit time 1/α0 and θ  is one of the L roots of the 
transcendental equation 

 

                            ( ) ( )
( ) θξ

θξ
θ

212

1

tancoth1

tancoth2
tan

−

−

−

−
=L                (4.17) 

 
 

used by Luscombe [89] where ξ  is the correlation length.  
The relaxation time τL(T) of a segment of length L is related to 

the smaller eigenvalue of the matrix 'M

rr
: when L>>1 the 

expansion of this eigenvalue leads to different expressions for 
relaxation time [88-89]:   

 
 

        ( ) ( ) ( )TkJTLT BLL /4exp2 ∝→<<≈ τξξτ    (4.18a) 

                                                

       ( ) ( ) ( )TkJTLLT BLL /2exp∝→>>≈ τξξτ   (4.18b) 
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being ξ∼ exp(2J/kBT), with J  representing the nearest neighbour 
exchange coupling constant. 
This theoretical discussion shows that there are two distinct 
regions depending on the L/ξ ratio. In fact the relaxation time of 
equation (4.18a) is the one expected for the infinite system, i.e. 
for infinite  chains as  in the pure CoPhOMe, where the  length of  
the chain is longer than the correlation length along the chain, 
while for doped sample the correlation length becomes longer 
than the length of the segments. In practice, even if Glauber 
dynamics is still valid, in the second regime the energy barrier is 
halved  [83-84][86] as can be  seen from FIG.4.26.  In  this figure 
the  solid  lines  have  been  obtained  by the position of the  peak  
 

                               

FIG.4.26 Logarithm of the relaxation time ττττ as a function of J/kBT. 

These results have been extracted from eq.(4.19) with αααα0=3.6 x 10
13

s
-1

, 

J/kB=80K and q=0.73 [83].  
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from the frequency-dependent susceptibility function  
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where c is the impurities concentration, χL(ω,T) is the 
susceptibility from the Ising model for a chain of length L 
calculated by Wortis [52] and  

 

                                      ( )∑
∞

=

−=
1

2 1
L

L

c ccZ                           (4.20) 

 

is the normalization factor. 
Experimental measurements have been performed on pure 
compound and on doped samples with three different impurities 
concentration (Zn=0.3; 1.9; 4.7%) [83-84][86] and for seven 
different frequencies in the range between 10Hz and 10kHz. The 
behaviour of both components of the susceptibility has been 
studied. The imaginary part χ’’ as a function of temperature 
shows a maximum for each frequency ω of the AC field applied 
for low concentrations while for highest concentration the curves 
are distorted and presents also a little shoulder at low 
temperature; from these plots the relaxation time of the 
magnetization can be extracted from the condition τ-1(Tmax)=ω. 
The results are displayed in FIG. 4.27. From the fit of the data to 
the equation τ=τ0exp(∆E/T), both the energy barrier ∆E and the 
pre-exponential factor τ0 can be estimated.         
All the data in FIG.4.27 lie on a straight line indicating that the 
thermally activated mechanism is valid for both the pure and the 
doped samples.  All the lines for all the samples studied have the 
same slope; from this slope the energy barrier can be extracted 
and since all the straight lines are parallel the energy barrier does  
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not vary, and it is ∆E=160(±8)K [83-84], in good agreement with 
the value found in previous measurements. The shift of the lines 
along y axis is due to the fact that the pre-exponential factor 

varies with increasing the doping concentration going from 
3.5x10-11s for pure CoPhOMe to 1.0x10-12s for the highest doping 
concentration [83-84].  
         

 

Fig.4.27 Temperature dependence of the relaxation time ττττ extracted 

from the imaginary part of the AC susceptibility for pure CoPhOMe 

and for three different concentrations of Zn-doped samples [83]. 

 
An important remark to be made is related to the slope of the 
curves: from a theoretical point of view the slope should be 
halved for doped samples, when ξ  becomes larger than segments 
length  L,  while  here  the  slope  remains  unaltered.  We  can 
conclude that  also for pure compound the presence of  unwanted  
intrinsic  defects  reduces  the  average   chain  length  below  the 
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correlation length value.  
 

        

    
FIG.4.28 ABOVE: Longitudinal magnetic AC susceptibility as a 

function of temperature for different Zinc-doped CoPhOMe samples 

and for pure compound for a static magnetic field of 2kOe and for an 

AC field of 10Oe of frequency 2.4kHz; in the shaded region AC 

susceptibility is frequency dependent. BELOW: susceptibility 

calculated through transfer matrix calculations for pure and various 

doped CoPhOMe samples [83][84].    
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As regards the real component χ’ of the AC susceptibility, this 
new run of measurements has shown important new features. For 
the first time the curves present two peaks, while previously just 
one peak had always been detected, resembling the behaviour 
detected by spin-lattice relaxation rate in NMR measurements on 
pure sample.         
As can be seen from FIG. 4.28 (upper part) also for pure 
compound the curve shows a structure with a pronounced peak at 
T∼33K and a shoulder for T∼14K. Both these temperatures are 
above the blocking temperature where also in this case χ’’ 
becomes frequency dependent also for doped samples: this can be 
still ascribed to dynamic effects. Let’s quickly analyse the 
behaviour of the peaks with respect to the diamagnetic 
concentration. The peak at higher temperature is the one expected 
for the infinite chain: this is suggested also by its decreasing with 
increasing the doping concentration. It also shifts to lower 
temperature while it decreases. Instead the peak at lower 
temperature seems to be related to finite-size effects: in fact it 
increases with increasing the impurity concentration and for 
Zn=4.7% the left shoulder becomes the only surviving peak. One 
of the most striking feature in the real part of AC susceptibility is 
the presence of the broad shoulder at low temperature also for the 
pure compound: this confirms that also in the pure compound the 
defects play a fundamental role and the chains behave just as 
long segments as previously predicted by the slope for pure 
CoPhOMe in FIG.4.27. From a theoretical point of view the 
structure detected in measurements is predicted by the sample 
Hamiltonian valid also for pure compound: 

 
 ( ) ( )∑∑ −−+ +−⋅+⋅=

i

iradiCoB

i

iiii SgSgHSSSSJH
ξξξξξξξ µ 122122122

rrrrrr

. (4.21) 
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Treating this Hamiltonian with transfer matrix method the 
conclusion is that for pure sample just the peak at T∼34K is 
predicted while for doped samples a second peak arises at 
T∼15K: this theoretical analysis is in good agreement with 
experimental results obtained. Calculations for various 
concentrations  are  shown in  FIG.4.28 (lower part):  the  further                                  
assumption for a closer correspondence between data and 
calculation consists in taking into account a parabolic spatial 
distribution for diamagnetic dopant as suggested by PIXE 
measurements [85] shown in FIG. 4.24.  
 

NMR MEASUREMENTS 
 

4.6.5 Introduction 

 

In the previous paragraphs the main magnetic properties of the 
compounds have been investigated with the tools of 
magnetization and susceptibility (DC and AC) measurements: in 
this way the magnetic properties have been displayed by means 
of macroscopic quantities with the detection of the homogeneous 
response (i.e. the generalized response functions at q=0) of the 
system to external perturbations. Nuclear Magnetic Resonance 
(NMR), instead, makes use of a local probe represented by 
nuclei for the investigation of the magnetic properties, mediated 
by the hyperfine interactions between nuclei and electrons. 
Nuclear Spin Lattice Relaxation Rate (NSLR) parameter is a 
suitable probe of local spin dynamics, since it is related to the 
integral along all the branches of low-energy excitations at 
different wave vectors. NMR measurements have been 
performed on CoPhOMe samples doped with two different 
concentrations  of   Zinc  diamagnetic  ions  (Zn=1.9%, 5.4%)  on  
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Hydrogen nucleus (1H, commonly called simply proton) for two 
different magnetic fields of 0.35Tesla and 1.65Tesla, 
corresponding to Larmor frequencies of about 14.9MHz and 
70.2MHz respectively, in the temperature range 1.5-300K. These 
measurements consist in the detection of absorption spectra and 
in the determination of the NSLR. 
 

4.6.6 1H NMR Spectra  
 

We have collected spectra performing the Fourier Transform of 
half of the echo signal thus obtaining the absorption NMR 
spectrum.         
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FIG.4.29 
1
H NMR absorption spectra of CoPhOMe doped with Zinc 

ions with a percentage of Zn=1.9% in an applied field of H=0.35T for 

three different temperatures (T=295K; 70K; 5K).   
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Results are displayed in FIGS.4.29-4.30. As can be clearly seen 
for all the samples investigated, the spectra become broader as 
the temperature is lowered. This line broadening is due mainly, 
as for the pure compound, to hyperfine interactions.  

These  interactions cause  the nuclear  spins to  feel various  local 

internal magnetic fields at nuclear sites with a total field which 
can be written in terms of the Larmor precession frequency for i-
th nucleus 
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FIG.4.30 

1
H NMR absorption spectra of Zinc-doped CoPhOMe 

(Zn=5.4%) in an applied field of H=1.65T for three different 

temperatures (T=295K; 70K; 2.82K).   
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FIG.4.31 Full Width at Half Maximum (FWHM) as a function of 

temperature for CoPhOMe doped with Zn=1.9% (ABOVE) and 

Zn=5.4% (BELOW) for H=0.35T, 1.65T. The line broadening with 

decreasing temperature is evident.   
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FIG.4.32 FWHM at Room Temperature for CoPhOMe doped with 

Zn=1.9% (ABOVE) and Zn=5.4% (BELOW) at the two magnetic fields 

used for measurements (the correspondent frequencies are reported on 

x-axis). The value extracted at H=0Tesla from the straight line 

connecting the data collected gives us a rough estimation of the nuclear 

dipolar contribution to the line-width.  
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In FIG.4.31 the Full Width at Half Maximum (FWHM) of the 
spectra is plotted as a function of temperature. 
The broadening observed in FIG.4.31 on lowering the 
temperature is inhomogeneous i.e. is due to a distribution of local  
fields due to the presence in the chain of many non equivalent 
proton sites [56].                             
Since  the  local  field  is  proportional  to  the  average  local  
moment of the magnetic ions, this contribution is proportional to 
the susceptibility and thus it increases on lowering the 
temperature. It is also proportional to the applied magnetic field 
as shown in FIG.4.32.                               
The zero field intercept represents the contribution to the line 
width arising from nuclear dipole-dipole interaction which is 
temperature and field independent. 
The dipolar contribution to the spectral width is estimated to be 
around 25kHz.                                

This value is of the same order of magnitude as the one obtained 
before for pure CoPhOMe and for all molecular nanomagnets [2-
7] as expected, since the nuclear dipolar line width depends on 
the proton distribution in the organic groups which are similar in 
all molecular magnets. 

The inhomogeneous part of the NMR line width is given 
approximately by the measured FWHM to which we subtract the 
nuclear dipolar contribution . This contribution to the width is 
proportional to the local magnetic moment which in turn is given 
by χloc B. Thus the inhomogeneous contribution to the NMR line-
width divided by the field B is a microscopic measurement of the 
local susceptibility χloc.  

In FIG.4.33 we have plotted for both the samples investigated in 
this section and for both the field applied in the measurements 
the  difference between  the FWHM  and the  FWHM due  to  the  
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FIG.4.33 (FWHM-FWHMdip)/ννννL as a function of temperature for 

CoPhOMe doped with Zn=1.9% (ABOVE) and Zn=5.4% (BELOW) for 

both the applied fields (H=0.35, 1.65T). From these data we can obtain 

the behaviour of χχχχloc for the samples investigated. 
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dipolar contribution estimated before at room temperature in 
Zero-Field applied divided by the Larmor frequency. This 

quantity is proportional to local susceptibility of the sample, as 
just said: as can be seen from FIG.4.33 (lower part) the 
experimental local susceptibility is coincident for the two fields 
applied only around the room temperature while for the sample 
with higher doping (FIG.4.33 upper part), within the 
experimental error, the two local susceptibilities are coincident 
only above 75K. It is noted that for a simple paramagnetic 
system the susceptibility (both local and macroscopic) should be 
field independent at temperatures where the slowing  down of the  

magnetization is not yet active. This is a very striking result and 
it indicates a departure from simple paramagnetic behaviour. The 
theoretical analysis of this result has not been yet completed. 

 
 

4.6.7 Spin-Lattice Relaxation Rate T1
-1 

 

Typical nuclear magnetization recovery curves for the Zinc- 
doped samples investigated are shown in FIG.4.34. The plots 
show the nuclear longitudinal magnetization recovery plotted in 

the form 
( ) ( )

( )∞
−∞

M

tMM
 where M(∞)=M(t→∞) is the value of the 

longitudinal magnetization when it has recovered completely its 
position along the z-axis. 
As for the case of pure CoPhOMe, the recovery curves are 
strongly non-exponential.  

For doped samples the relaxation time has been read at 1/e of the 
decay of the nuclear magnetization. The results for samples with 
Zn=1.9%, 5.4% for magnetic fields of H=0.35, 1.65Tesla are 
shown in FIGG. 4.35-4.36. 
Before  analysing  the  experimental  data,  we  recall  briefly  the 
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derivation of the theoretical formula for the NSLR used for the 
interpretation of the data.  
Let’s start from the general expression [90]: 
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FIG.4.34 Relaxation curves of nuclear longitudinal magnetization 

performed on 
1
H for three different temperature on Zinc-doped 

CoPhOMe with Zn=1.9% and H=1.65T. The deviation from the 

exponential behaviour is evident. 

 

where,  as already  discussed in Chapter 2, γ  is the  gyromagnetic             

ratio, ( )th ,0±  are the transverse hyperfine fields at the nuclear 

sites and ωL is the Larmor frequency. 
Rewriting the expression in the wave-vectors space and for 
different wave-vectors q

r  it results:  
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FIG.4.35 Temperature dependence of nuclear spin-lattice relaxation 

rate for CoPhOMe doped with Zn=1.9% for static magnetic fields 

applied of H=0.35, 1.65Tesla.  

 
 

with ( )
B

B

g

Tkh
TC

22

22

4 µπ
γ

= . In (4.11) χ+,z( q
r ) and qJ r

+,z (ωL,ωe) are 

the transverse and longitudinal components of ω-integrated 

generalized susceptibility and of the collective spectral density 

respectively with ωe the  electronic Larmor frequency. 

Approximating χ( q
r

,ω) with χ( q
r

,0), neglecting 

( ) ( )eqq Jq ωχα ++ r
(which has a low value) and assuming a 

correlation function decaying exponentially through the 
expression 
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FIG.4.36 Inverse of spin-lattice relaxation time as a function of 

temperature for Zinc-doped CoPhOMe with Zn=5.4% for H=0.35, 

1.65Tesla. 

 
one can obtain, through the application of the time Fourier 

Transform, the simplified equation  
 

 

                                     22
2

1 1

21

τω
τ

L

A
T +

=                           (4.26) 

 

where A2 is the mean square value of fluctuations of the 
hyperfine field at nuclear sites. 
The equation for the relaxation time τ  has the expression of the 
Arrhenius law,  as  predicted  by  Glauber  dynamics  [1]  for  1D 
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Ising systems. Also in this case nuclei have been assumed to be 
sensitive to electronic spin dynamics through the magnetization. 
As mentioned before, the previous results obtained from 
macroscopic measurements on doped samples suggested that the 
behaviour of the short segments is the same as in the pure 
compound, i.e. the thermally activated mechanism for the 
relaxation of the magnetization does not change the energy 
barrier and it is still Arrhenius-like 

 

                                         






 ∆
=

T
exp0ττ                              (4.27) 

 
with the pre-exponential factor becoming shorter by about one 
order of magnitude with respect to the one in the pure compound 
[83-84][86], as discussed before. 
Since both the NSLR results in pure CoPhOMe and in the Zn 
doped samples show the same qualitative behaviour as a function 
of temperature, we use the same fitting procedure used for pure 
CoPhOMe except for the introduction of a distribution of 
activation energies also for the fit of the high temperature peak 
which appears broader than in pure CoPhOMe (see FIGS. 4.37-
4.38) 
The fitting function can be thus written 

 

  ( ) ( ) ( ) ( )[ ]{ }∑
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/ln2/1
1

i

iiLiLiiLii barctgbarctgbA
T

τωτωωγ  (4.28) 

 
with bi=exp(δi/T), τi=τ0i exp(∆i/T) and (Aiγi) is the hyperfine 
coupling constant. 
Results of the fits are shown in FIGS. 4.37-4.38 for both samples. 
As can be clearly noticed the fits are acceptable only for the 
sample  doped with  lower concentration.  The fitting  parameters 
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FIG.4.37 Temperature dependence of spin-lattice relaxation rate for 

CoPhOMe doped with Zn=1.9% for H=0.35; 1.65T. The dashed and 

solid lines represent the function fitting separately the two anomalies 

detected as explained in the text. 

   
obtained are displayed in Table 4.1: in order to reduce the 
number of fitting parameters we used for the energy barriers the 
ones obtained in susceptibility measurements on pure sample. In 
order to get a reasonable fit we have to assume a magnetic field 
dependent pre-factor τ0. The physical meaning of this unexpected 
result is not yet presently understood.  
In the light of the comparison of the NSLR results in pure 
CoPhOMe and Zn doped samples we argue that the origin of the 
two  peaks may be different from what postulated above for  pure  
CoPhOMe,  namely  as  due to  different  relaxation  mechanisms 
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related to the two sublattices. In fact while the higher temperature 
peak could be due to “bulk” contribution with thermally 
activated mechanism as pointed out in AC susceptibility, the 
lower temperature shoulder could be related to finite-size effects 
which become more and more important as the concentration of 
dopant becomes higher.  
 

           

         

Table 4.1 Principal parameters as indicated in eq.(4.28) used in NMR 

fits for both the samples and both the applied fields in measurements.        
 

 

In very short segments and low temperature collective spin 

reversal of all the spin of a segments can also take place [84]: the 
Cole–Cole plot, which is no longer a semicircle [83], accounts 
for this mechanism.  
Let’s explain how this new channel for relaxation is detected also 
in dynamic susceptibility. 
For a segment of  N spins the relaxation  time can be written  [87]  
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FIG.4.38 Spin-lattice relaxation rate as a function of temperature for 

CoPhOMe with Zn=5.4% for H=0.35; 1.65Tesla, the dashed and solid 

lines are the best fit as explained in the text. 
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where q is the probability of a single spin reversal in the time 
interval ∆t, 1/N-1 is the probability for a domain wall to 
propagate from side to side of a segment without being 
destroyed. If collective reversal of the segments is not taken into 
account, the dynamic susceptibility should drop to zero below the 
blocking  temperature since the  spins  are not  able to follow  the 
oscillating  field,  i.e.  when  ωτN>1,  and  the  segments  that  can 
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follow this field are the ones shorter than N̂ , which can be 
extracted from the equation [87] 

 

                                             
Nqt
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=∆ω                               (4.30) 
 

The inclusion of the collective reversal of the magnetization 
leads to a frequency cut-off in the equation 
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similar to eq.(4.19) where, in this case, the length L of the 
segment has been substituted by the number N of spins of the 
segments.  
It was found that χ’T vs T plots have a polynomial behaviour 
below Tb as predicted for a q obeying the thermally activated law 
[87] 
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where ε is the energy barrier. The comparison between 
experimental and theoretically calculated data [87] suggests that 
for CoPhOMe ε/J results to be of the order of 0.05. 
The frequency cut-off is given by  

 

                                          ( )
ε

ω
Tk

tN B∆−= logˆ                          (4.33) 

 

 

in fact all the curves obtained at various frequencies can be 
superimposed if plotted as a function of –log(ω∆t)T (see FIG. 
4.39).  
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FIG.4.39 χχχχ’ data extracted from AC susceptibility and plotted as a χχχχ’T 

as a function of scaling variable –log(ωωωω∆∆∆∆t)T for CoPhOMe doped with 

Zn=4.7% with ∆∆∆∆t=5.1ps: all the curves overlap as expected for a 

thermally activated behaviour of q at low temperature for high doped 

samples taking into account collective reversal of all the spins of the 

segment [87].      
 

                   
In the light of the discovery of this new channel for relaxation at 
low temperature, also the NSLR data collected for T<15K for the 
samples investigated must be reinterpreted as due to collective 
spin reversal. In fact in the analysis done previously to justify the 
low-temperature shoulder in spin-lattice relaxation rates, we have  
used a distribution of energy barriers, possibly related to the 
excitation at different wave vectors in the generalized 
susceptibility,  but with  values of  ∆E of  few Kelvin ( see  Table 
4.1). These  energy  barriers values used for fits  in  NSLR are  in  
good agreement with the evaluation of the ratio ε/J just discussed  
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above and extracted from the susceptibility measurements and 
calculations [87]. This coincidence suggests that the thermally 
activated mechanism detected for T<15K in T1

-1 measurements 
should be attributed to the Arrhenius-like behaviour in the 
framework of the collective spin reversal instead of the slowing 
down of the magnetization within a modified BPP law. This 
hypothesis is still a debated issue; in fact we have to prove how 
finite-size effects and this new relaxation mechanism acts from a 
microscopic point of view and how they are related to the 
behaviour of spin-lattice relaxation rate.           
 

4.7 Conclusions 
 

In order to investigate the effect of finite-size on the spin 
dynamics of ferrimagnetic Zn-doped CoPhOMe samples, a 
comparison has been made among the behaviour of the pure and 
doped samples performing new measurements of magnetic 
properties also for pure compound. While DC measurements 
show for doped samples the same behaviour already discussed in 
the first part of this chapter for pure CoPhOMe, the real part of 
the AC susceptibility [83-84][86] measurements displays novel 
features also for pure CoPhOMe consisting in a structure in the 
temperature dependence of  χ’. The structures consist of a peak at 
T≈33K which shifts at higher temperature with increasing field, 
smoothens for higher doping and disappear for Zn=4.7%, and a 
broad  shoulder at  T≈14K which  remains the  only anomaly  for  
higher doped samples. The first anomaly is the one expected for 
infinite chains and diminishes when the segments become really 
short (∼20 spins of length for Zn=4.7%), while the low 
temperature shoulder can be related to finite-size effects, as 
confirmed by theoretical transfer matrix calculations starting 
from   eq.(4.21).  Also  the  relaxation   time  extracted  from   the 
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imaginary part χ’’ of the AC susceptibility, confirmed that finite-

size effects are present also in pure compound: all the compounds 
displayed the thermally activated relaxation time through the 
Arrhenius-like behaviour with different pre-exponential factors 
that diminish progressively for higher doping, but with the same 
energy barrier, differently from what expected from a theoretical 
point of view. In fact for an infinite system, as in the case of pure 
compound, the progressive reversal of the chain starts from a 
“bulk” spin inside the chain with an activation energy of ∆=4J 
and the other reversal occurs with no energy cost; instead, for 
segments of chain, the reversal starts from an edge spin and 
∆=2J. That’s why the energy barrier should be halved in doped 
samples. The conclusion is that also in the pure sample the 
occurrence of natural defects makes impossible the treatment of 
the system as infinite. 
Our microscopic measurements performed through the local 
probe of proton nuclei with NMR have given some new 
unexpected results which have not yet been fully understood. The 
study of 1

H NMR spectra showed that for the two doped samples 
investigated a line broadening occurs with decreasing 
temperature and this is associated with a distribution of local 
fields at the proton sites due to the local magnetic moments of 
the Cobalt ions and of radical centres. The local susceptibility 
extracted from the NMR line-width displays a field dependence 
over most of the temperature range. A field dependence of the 
local susceptibility  is expected  only in the range  of temperature  
where the spin freezing takes place and the local field becomes 
weakly field dependent. This discrepancy between the 
behaviours of the local NMR susceptibility and the macroscopic 
susceptibility could have implications on the description of the 
spin dynamics but it is not presently understood.  
The  behaviour  of  the  spin-lattice  relaxation  rate  for  the  two  
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doped samples is qualitatively similar to the one of the pure 
CoPhOMe with the only difference that the high temperature 
peak is broader in the doped samples. 
An attempt to fit the NSLR data in doped compounds by using 
the same formulas used for the pure CoPhOMe  showed a poor 
agreement with the experimental data, even when a distribution 
of activation energies was introduced for the high temperature 
peak.  
The interpretation of the shoulder in the real part of the AC 
susceptibility as due to finite size-effects, led us to reformulate 
the interpretation of the NMR data of pure CoPhOMe. In fact we 
should assume that the peak at higher temperature is due mainly 
to bulk contribution characterized by Arrhenius thermally 
activated behaviour, while the shoulder in NSLR could signal the 
presence of finite-size effects at low temperature.              
In particular for high percentage of dopant (Zn>4%) at low 
temperature, below the blocking temperature Tb≈12K, the most 
important finite-size effect is related to the collective reversal of 
all the spins of the segment [84] with a probability which has 
been found to be thermally activated too.  
In conclusion the open questions related to the NMR 
measurements consist in the interpretation of the mechanisms 
causing the anomalous line broadening in 1H absorption spectra 
especially for T>60K and of the two anomalies detected in 
NSLR, which don’t seem to be necessarily related to the 
relaxation times of the two different sublattices of the 
compounds, but eventually also to finite-size effects.  
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CHAPTER 5 
 

Gd(hfac)3NITR Chains 
 

 

 

5.1 Gd(hfac)3NITR 

 

5.1.1 Introduction 

 

In this chapter the 1D molecular magnetic chain Gd(hfac)3NITR  
composed by a mixing of organic and inorganic components will 
be described. The change of physical properties, when different 
organic radicals moieties are inserted in these systems, have 
made possible the creation of systems with novel and unexpected 
features, which are still subject of theoretical debate. The 
properties of these compounds will be discussed and a theoretical 
explanation for the interpretation of the experimental data will be 
proposed. In the framework of the current thesis, where one-
dimensional and quasi-one-dimensional real systems composed 
by similar building blocks are investigated, this family of 
compounds can be put in the class of helimagnetic frustrated 

systems due to competing interactions occurring along the chain 
direction. 
The discussion of general features will be based mainly on 
results obtained by experimentalists and theorists of the 
University of Firenze (Dept. of Physics, Dept. of Chemistry), of 
CNR and of the University of Modena (Dept. of Physics). 
 

5.1.2 Structural and Magnetic Properties 
 

The structural properties of the compounds presented  in this 
chapter, have been studied  by  X-ray diffractometry performed 
on single crystals.   
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As anticipated, the chemical formula of the investigated 
molecular-based magnets is Gd(hfac)3NITR (where hfac is 
hexafluoro-acetylacetonate and NITR is 2-R-4,4,5,5-tetramethyl-
4,5-dihydro-1H-imidazolyl-l-oxyl 3-oxyde, with R= Isopropyl 
(iPr), Ethyl (Et), Phenyl (Ph), Methyl (Me)). The chain develops 
along b crystallographic axis and it is constituted by Gd3+(hfac)3 
moieties, alternated to nitronyl-nitroxide organic radicals R. Gd3+ 
possesses a spin S=7/2, while for radical centres s=1/2 [17][91-
92]. At variance with CoPhOMe chains, here the radical groups 
are alternated to a rare-earth instead of a metal ion.     
      
 

      
 

                               

FIG.5.1 ABOVE: General sketch of the structure of Gd-R chains. 

BELOW: Structure of the Radical Group NITR.                     

 

As  in the  case of  pure and  doped CoPhOMe  the bulky  ligands 
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play a crucial role as they assure the adjacent chains to be well-
separated, saving the 1D behaviour of the system till very low 
temperatures.  In fact, as the shortest interchain distance  between  
Gadolinium ions is of about 10.5Å, just very weak dipolar 
interactions are present between chains. As suggested from 
measurements performed on Mn analogues, the Jinter/Jintra ratio is 
lower than 10-5 [91]. 
A clear evidence of the 1D character of these compounds comes 
from single-crystal EPR measurements [17]: the angular 
dependence of the line width of EPR spectra at room temperature 
shows  a maximum  along b axis and a minimum at 500 from  that  
direction, close to the value of the so-called magic angle (54.70), 
as predicted for a 1D magnetic systems in the high-temperature 
limit. 
 
                                    

           
      

FIG.5.2 Angular dependence of the line-width of the X-band EPR 

spectrum at room temperature on Gd(hfac)3NITEt [17]. 

 

The main problem to be faced for the interpretation of the 
physical properties  of these  compounds has  been  related  to the  
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understanding of inter- and intrachain interactions acting in the 
system.  

First magnetic measurements showed that the molar 

susceptibility multiplied for temperature in Gd-Et and Gd-iPr 
decreased with  decreasing  temperature,  suggesting  an  overall  
antiferromagnetic behaviour. 

In fact this feature corresponds neither to a system of uncoupled 
spins, where χMT would be constant with temperature, nor to a 
chain with ferromagnetic or antiferromagnetic interactions, since 
in both the cases χMT would diverge at low temperature.  

A  second run of  χ measurements [93] (applied field of 1kG)  for 
all the compounds described in this work confirmed the early 
results (see FIG. 5.3).  
 

                                  

     

FIG.5.3 Plot of molar susceptibility multiplied by temperature as a 

function of temperature for the four Gd-R compounds [93]. 
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As can be clearly seen, the four compounds behave in two 
different ways; in fact while for Methyl and Phenyl derivatives 
χMT increases and diverges with decreasing temperature, while 
for Gd-Et and Gd-iPr decreases at low temperature.  
The experimental evidences led to the conclusion that no model, 
taking into account just nearest-neighbour interactions, could 
explain the behaviour displayed by these systems. This 
anomalous  behaviour  can be  justified only taking  into  account  
also  next nearest-neighbour   interactions.  The model  suggested  

             

 

FIG.5.4 Pictorial view of the Gd-R chains where various exchange 

coupling constants are indicated as described in the text [94]. 

 
 

(next section) [95] introduces a competition between nearest-
neighbour and next-nearest-neighbour interactions. In particular 
in the case of Isopropyl and Ethyl compounds the overall 
antiferromagnetic     behaviour     is    due    to     dominant     nnn  
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antiferromagnetic exchange interactions in competition with nn 

ferromagnetic ones, leading to a strong frustration in the system; 
for the samples with R=Me, Ph the frustration is much weaker as 
suggested by the increase of χMT with decreasing temperature.   
 

                    

5.1.3 Hamiltonian and Model of Interpretation 

 
The qualitative explanation given above can be expressed in the 
Hamiltonian of interaction which results to be, as already 
discussed in Chapter3,   
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where J1>0 is the nearest-neighbour exchange coupling constant, 
J2<0  and J’2<0 are next-nearest-neighbour constants between 
metals and between radicals respectively and J⊥ represents the 
interchain exchange interaction, g and g’ are Landé factors  of the  
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spins S and s respectively, D>0 is a single-ion anisotropy 

constant term and njnjnj sSX ,,, ,
rrr

=  (see also par.3.4). 

To obtain the thermodynamic properties, transfer matrix 
calculations [56] have been performed starting from this 
Hamiltonian,    approximating   the  spins   with  classical   planar 
rotators in the x-y plane. 
Harada [25][26][27] predicted that the competing interactions 
can favour a helical ground state two-fold degenerate (because of 
clockwise or counterclockwise turns of the spin along the chain 
axis) giving rise to excitations of the chiral domain walls 
separating two domains characterized by opposite chirality. In 
this thesis we will shortly present just the zero field case, since 
when a magnetic field is applied, the spin arrangement becomes 
very complicated [96].  
From the previous theoretical discussion in Chapter 3 results that 
for T=0 and H=0, the system shows two different behaviours, 
depending on the relative strength of the nn and nnn interactions: 
in fact for 2(δ+δ’)<1 the system orders as a ferromagnet, while 
for 2(δ+δ’)>1 it undergoes a helical order. 
The above parameters δ and δ’ are defined as (see also Chapter 3 
Par.3.4) 
 

 

                     
SsJ

sJ

SsJ

SJ

1

2
2

1

2
2 '

'== δδ ,           (5.4) 

 
 

where the ratio between intrachain interactions are taken into 
account. The conditions written above suggest that if next-
nearest- neighbour exchange interactions are strong enough, the 
helical ground state is favoured. 
A discriminant parameter is the helix pitch Q defined as: 
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where a is the lattice step and the sign + or – are respectively 
related  to the clockwise or anticlockwise turn of the spins of  the 
chain. In this framework, a chirality order parameter can be 
defined, related to a nn spin pair, whose expression is 
[26][29][68]: 

 

                                      ( )[ ]Qa

Ss
K nn

n sin
122

2
+×

=                              (5.6)  

 

Depending on the model used for the interpretation of the data, 
this parameter has different features: for the Heisenberg model it 
is a three dimensional vector [27], while for the planar model 
(used in this case) it becomes a parameter with just one 
component whose value is ±1 for clockwise or anticlockwise 
direction of the spins respectively, at T=0 [26]. The use of the 
planar model has been suggested by the fact that at low 
temperatures, the dipolar intrachain interactions are active (and 
no more negligible) causing the spins to lie in the x-y plane, as 
taken  into account in  the Hamiltonian  in  eq.(5.2)   by  the  term 

  

 
FIG.5.5 Representation of the phase diagram of fully frustrated quasi-

1D planar helimagnets as predicted by Villain in 1978. 
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containing the single ion anisotropy. As a consequence, these 
systems could experimentally verify the Villain’s conjecture [29] 
predicted in 1978 for the so-called quasi-1D xy helimagnets. He 
stated  that in addition  to the usual  3D helical long range  phase                     
(present at temperature T<TN), when the interchain interactions 
(J⊥) are no more negligible, and to the high temperature 
paramagnetic (disordered) phase, at intermediate temperatures a 
stable chiral phase, characterized by the breaking of the 
translational invariance but with no violation of the invariance 
regarding spin rotations and time reversal, is established (see 
FIG.5.5). 
In the chiral phase the spins can be depicted as a collection of 
corkscrews turning all clockwise or counterclockwise in the x-y 
plane but with phases randomly distributed. 
 

 

 

FIG.5.6 Pictorial view of the spins arrangements in the Chiral and in 

the Helical Phase [94]. 

 
 

 

5.1.4 DC Susceptibility Measurements 

 
Low temperature measurements of molar susceptibility [93], 
more refined with respect to the early ones, were carried out.  
As can be pointed out from TABLE 5.1, the calculation of the 
coupling  constants for  the four samples  shows  the  competition  

Ordered Chiral Phase    T0    TN 

      3D Long-Range  

        Helical Phase 

   Helical  

    Order 

    Ising   

    Spin 

k<0 
 

(k>0) 

   T 

Paramagnetic 

 Phase 
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between nn and the nnn exchange interactions: from the values 
indicated,  a full frustration  in the iPr and  Et  sample is  evident,  
leading to a helical order with Q=±0.399π and Q= ±0.397π 
respectively, very close to the value ±π/2 expected in the limit  
for δ, δ’→∞. For systems with R=Me, Ph the frustration is  much  
weaker and the helical range order would be characterized by Q= 
±0.206π and Q= ±0.175π respectively. This behaviour is 
confirmed also by the exponents of the fitting function χM ∼CT-α. 
They were found to be [97]:  
 
 

      

TABLE 5.1 Exchange coupling constants calculated from transfer 

matrix method for Gd(hfac)3NITR compounds, as extracted from 

molar susceptibility. 

 

 
α=1.33                       for R=Ph 

 
α=1.17                       for R=Me 

                                                                                                 (5.7) 
                           α=0                            for R=Et 

 
α=0.44                       for R=iPr. 
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In no cases the magnetic behaviour is proper of a ferro- or 
antiferromagnetic chain: the dominant overall behaviour is 
antiferromagnetic for Isopropyl and Ethyl compounds while it is 
ferromagnetic-like for chains containing Methyl and Phenyl. 
 

5.1.5 Specific Heat Measurements 

 

Further information have been obtained from specific heat 

measurements: in FIG. 5.7 experimental results are reported [93]. 
Also in this case the different behaviour of the two pairs of 
samples is clear. In FIG. 5.7(a) the specific heat of the 
derivatives with R=Me, Ph (weakly frustrated systems) are 
plotted. In the high temperature region Cp/R∝T3,  as expected 
from the lattice contribution. At low temperature (T<1K) this 
contribution is two orders of magnitude smaller than the 
magnetic one. The most important low-T feature is the presence 
of a neat peak for both samples, at T∼0.6K and in particular at 
T=0.6K for Phenyl compound and at T∼0.68K when R=Me. This 
anomaly is in good agreement with the one displayed by 
susceptibility measurements where a change in the slope of the 
curve occurred [93] (data not reported).  
In the temperature range below the peak, the behaviour 
Cp/R∝T3/2 is typical of a 3D quantum spin-wave contribution. In 
the light of these findings and taking into account the λ-shape of 
the peak, a transition to a 3D phase of ferromagnetic nature 
occurs at T∼0.6K. 
The values of the so-called total anomalous entropy (calculated 
by subtracting lattice contribution to the low temperature 
extrapolation) resulted ∆S/R=2.76(7) and 2.65(8) for Gd-Me and 
Gd-Ph respectively, close to the value 4ln2 expected for a system 
constituted by two sublattices with S=7/2 and s=1/2 [93]. 
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In FIG.5.7(b) data for Gadolinium chains with R=iPr, Et are 
reported. In this case the behaviour of the specific heat is deeply 
different from the one for weakly frustrated systems. In fact these 
fully  frustrated  systems,   do  not   present  the   T3

   temperature  

dependence at high temperatures and a peak occurs for both 
compounds,  at T∼2K. At low  temperatures the behaviour of  the 
 

          

 

FIG.5.7 Preliminary experimental data of specific heat as a function of 

temperature for the four samples investigated. In (a) R=Ph (o) and 

R=Me (x) are reported, while (b) refers to R=iPr (∆∆∆∆) and R=Et (+) [93]. 

 

specific heat tends to a plateau for both compounds around 
T=500mK. At very low temperatures, the data on Gd-Et show an 
almost linear behaviour (Cp(T)∼0.8T). 
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The total entropy extracted is ∆S/R=2.74(4), close to the total 
value 4ln2: this means that, also in these measurements, all the 
magnetic  contribution has been evidenced. It has to be  remarked  

that the peak does not signal a Schottky anomaly related to 
hyperfine  interactions or magnetic  impurities,  because  the 
calculations give unrealistic values for the anisotropy of 
Gadolinium ion [95].  

In the next section we will analyze the nature of the anomalies in 
both compounds. 

 

5.2 Spin Dynamics 

 

To investigate the spin dynamics in the low temperature region, 
where anomalies are present in χ and Cp, novel and more 
accurate measurements of χ, Cp and longitudinal muon relaxation 
rate λ, have been performed. Here below we present the results 
for three compounds of the family. These new measurements 
have been performed also to verify the occurrence of Villain’s 
conjecture [29].  

 

5.2.1 Gd(hfac)3NITPh 

 

Specific Heat 

 
The ability of specific heat measurements [94] to detect λ-peaks 
in correspondence to the phase transitions was extensively used. 
The results are shown in FIG. 5.8.  
One can notice the presence of a sharp λ-peak at temperature 
TN≅0.63K   [94]    in   very   good    agreement    with   the   early  
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measurements. Transfer matrix calculations performed treating 
the interchain interactions in the mean field approximation,  gave    

TN =0.64K.  This is a  clear indication  that the peak  displayed  in 
 

               

    

FIG.5.8 Specific heat data as a function of temperature: the 3D helical 

transition is signalled by the λλλλ-peak at TN=0.63K (RIGHT). Very low 

temperature behaviour of specific heat as a function of T is well-fitted 

by a 3D spin waves model with strong anisotropic interactions (LEFT) 

[94].  

 

this curve is related to the 3D helimagnetic phase transition.  
The behaviour of C/R as a function of temperature below the 
peak gives a definitive support: in fact C/R∝T just below the 
peak, while at lower temperatures C(T)∝Tα where 2<α<3:  this is  
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typical of free 3D spin-waves characterized by strong anisotropic 

interactions [98]. 

 
µµµµSR 

 

µSR measurements on Gd(hfac)3NITPh have been performed 
[58] at Paul Scherrer Institute facility on the LTF beam line. The 
powder sample used have been inserted in a small and soft 
sample holder made up of mylar for a good thermalization, 
mounted on the edge of the probe and then put in the cryostat 
where the experiment takes place. Measurements have been 
performed in Zero Field in the temperature range 0.02K<T<40K.    
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FIG.5.9 Zero-field measurements of muon longitudinal relaxation rates 

(fast λλλλ1 and slow λλλλ2 components) as a function of temperature for 

Gd(hfac)3NITPh extracted from muon asymmetry [58]. 
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The muon asymmetry a0 in all the temperature range 
investigated, after the subtraction of the background contribution, 
can be fitted by the function  

 
                    ( ) ( )tataa 22110 expexp λλ −+−=                   (5.8) 

 

where λ1 and λ2 are the fast and slow relaxation rates, 
respectively, and a1/a2 ~ 2. The bi-exponential behaviour of the 
depolarization function suggests the presence of, at least, two 
muon implantation sites giving rise to two relaxation times due to 
different environments. The relaxation rates are plotted in FIG. 
5.9. 
As can be clearly seen, both λ1 and λ2 show the same qualitative 
temperature dependence: in the temperature  range  investigated  
they increase progressively, pass through a shoulder and reach a 
plateau at T∼0.75K; the flattening persists till the lowest 
temperature measured. 
 

     

FIG.5.10 Phase diagram for weakly frustrated systems (Gd-Ph and Gd-

Me chains). 

 
 

The temperature at which the shoulder occurs (T∼0.75K) 
corresponds    roughly    to    the    3D    helimagnetic    transition 
  

3D LONG RANGE 

HELICAL PHASE 

PARAMAGNETIC  

PHASE 

     TN        0 

    
T 



~ 173 ~ 

 

5.   Gd(hfac)3NITR Chains 

 
temperature displayed in the specific heat (T∼0.6K). The 
difference in the temperature at which the anomalies occur in λ 
and C/R is ascribed to the low precision of the thermometer and 
the low thermal conductivity of the powder sample in the µSR 
measurements.  
The expected peak in the muon relaxation rate ( see section 5.2.3, 

Gd-Et case, for a more detailed discussion) is probably quenched 
by the insurgence of low temperature (T<0.75K)  spin excitations  
occurring at frequency near to the precession frequency of the 
muon polarization, which is of the order of 10kHz (i.e. ∼0.5Oe) 
in our case. The flattening of λ(T) suggests that these spin 
excitations have a quantum origin. The presence of an anomaly 
in C/R and λ(T) is typical of a phase transition where the two-
spin (∝λ(T)) and the four-spin (∝C/R) correlation functions 
diverge. 
 

5.2.2 Gd(hfac)3NITiPr 
 

Susceptibility 

 

The preliminary susceptibility measurements which didn’t show 
any anomaly in these systems needed a confirmation.  
A run of magnetic susceptibility measurements very accurate 
(steps of 0.02K) around the temperature T∼2K (where Cp 

displays a peak, see also next sub-paragraph) has been recently 
performed. The results are plotted in FIG.5.11 for Gd-iPr 
derivative at a very low field of 5.5Gauss [58][99]: this value has 
been chosen in order to be far from the critical field (Hc=2.06T), 
where the system changes its spin configuration because of 
distortion effects caused by the external field itself. As can be 
clearly  seen especially  in  the inset of  FIG.5.11,  where the data  
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around T=2K are shown, no anomaly has been found. This is a 
confirmation of the insensitivity of the susceptibility to the 
physical mechanism giving rise to the specific heat peak.   

                              

      

FIG.5.11 Susceptibility data as a function of temperature for 

Gd(hfac)3NITiPr. INSET: susceptibility plot around 2K: no anomaly is 

present.  

 
Specific Heat 

 

Since preliminary specific heat measurements gave the most 
interesting results, new experiments [57] have been performed in 
different periods on samples deriving from different batches and 
with different age (see FIG.5.12). 
The most striking property evidenced from FIG.5.12 is still the 
peak occurring at T=2.09(±0.01)K for all the samples measured.  
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The differences between the five curves depend on the age of the 

compound. In fact, the newer the sample the higher the peak: 
ageing effects are evident as the lability of  the organic  radicals 
causes  the  chains  to  cut  in shorter  segments,  loosing  most of  
                     

     

FIG.5.12 Specific heat measurements as a function of temperature for 

Gd(hfac)3NITiPr performed in various runs on samples from different 

batches and with different ages and pressure [57]. 

 
 

their properties, as will be explained in the following discussion. 
For instance differences between the results obtained in first 
(A/a) and second run (A/d) performed four months later, on 
sample A of FIG.5.13 are clear; looking at the results on B 

sample we notice that the peak becomes rounded and tends to 
vanish when the sample becomes older. 
Another parameter that alters the quality of the samples is the 
compression; in fact the samples C1 and C2 come from the  same  
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batch and measured at the same time, but the pellets for the 
measurements have been prepared pressing the powders with two 
different pressures, respectively 1tonn/(/φ=8mm) for C1 and 
2tonn/(φ=8mm) for C2. 
The most  reliable information  can be  obtained from sample  C1  

 

  
FIG.5.13 Specific heat data versus temperature for Gd(hfac)3NITiPr 

performed in Zero Field and in two different applied field (H=0.5T, 

5T). The smoothing of the peak with increasing field demonstrates the 

magnetic origin of the anomaly [100].   

 
since all of the procedures regarding preparation have been the 
best ones. In this sample, the curve below the peak decreases 
almost linearly with temperature between 1K and 175mK, as 
already noticed in preliminary measurements of Gd-Et, which is 
characteristic     of    systems    with    strong     antiferromagnetic  
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interactions. The dependence of the specific heat behaviour on 
the sample quality rules out that the peak is related to the 
excitations of chiral domain walls and suggests, instead, that it 
originates from a real phase transition.             
In a further run of specific heat measurements [100] performed 
about three years after the previous one (see FIG.5.13), the robust 
and neat λ-peak is still reproducible in the same position around 
T=2K and below the anomaly the behaviour  is still almost  linear 
as a function of the temperature, which confirms that the system 
remains 1D also below the phase transition.  
These measurements have been performed in Zero Field (ZF) and 
for H=0.5T and H=5T: the peak smoothens with increasing  field,  

 

   

FIG.5.14 Temperature dependence of specific heat data in an enlarged 

scale. At very low temperature, a new neat λλλλ-peak has been detected, 

suggesting the presence of a phase transition.   
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indicating the magnetic origin of the anomaly. All these 
experimental observations suggest that the peak observed could 
be due to the insurgence of the chiral phase transition at 

temperature T0 defined by Villain [29]. In this case the four-spin 
correlation  function  (proportional to C)  should shows a neat  λ- 

peak in C/R data as typical of a genuine phase transition, while 
the two-spin correlation function (proportional to the magnetic 
susceptibility) shows no anomaly.  
To investigate the possible occurrence of a low-temperature 
phase transition, very low-T specific heat data were collected 
(see FIG.5.14 [99]). 
As can be seen from the plot (FIG.5.14), new data taken from 
300mK to 29mK, represented by open squares, show a second 
anomaly (in the form of λ-peak) occurring at T=39mK. The 
actually accepted hypothesis is that the peak is due to the 
occurrence of the Villain’s transition to the 3D long-range 

helical order (TN≅39mK).  Again the sharp form of the peak 
suggests the presence of a phase transition; the association of this 
anomaly to a Schottky-like contribution has been ruled out [99]. 
 
 

µµµµSR 

 

For a complete understanding of the spin dynamics of fully 
frustrated  systems, we have  also performed µSR  measurements  
[58] at ISIS Muon Facility and at PSI Muon Facility on powder 
samples in the temperature range 0.04-300K in Zero Field and in 
a longitudinal field of 500Oe. 
Information can be obtained from Muon Asymmetry, which 
probes the interactions between muons and lattice. 
Muon asymmetry A, shown in FIG. 5.15 at T=4K, has been fitted 
in  the entire temperature range by a single stretched  exponential 
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decay function whose expression is 
 

                                     ( ) ( ) 5.0
teCtf λ−=                           (5.9) 

 

                           

 

FIG.5.15 Muon asymmetry as function of time at T=4K for 

Gd(hfac)3NITiPr. The solid line represents the fit obtained by a 

stretched exponential function. 
 

 

where C is the total asymmetry depending on the experimental 
geometry (at ISIS ∼0.25, at PSI ∼0.30). 
This analysis already gives us at least two important information: 
(i) the stretched behaviour suggests the presence of a distribution 
of relaxation rates in the sample related to different sites in the 
sample where muons implant; (ii) the regular behaviour of the 
asymmetry curves signals the absence of local fields caused by 
long-range magnetic order at muons sites, since in this case loss 
of  asymmetry or an  oscillation  (or a Kubo-Toyabe function)  in  
the asymmetry  would be expected,  due  to the precession  of the 
muon spin around the local field.  

T=4K 
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FIG.5.16 Muon longitudinal relaxation rate for Gd(hfac)3NITiPr 

powder sample as a function of temperature in Zero Field and in a 

longitudinal field of 500Oe. No anomalies related to possible phase 

transitions have been detected in 0.04-300K temperature range 

investigated.  INSET: data taken at very low temperature in Zero Field. 
 

Muon relaxation rate as a function of temperature (extracted from 
eq.5.9) is reported in FIG.5.16 in Zero Field and in a longitudinal 
field H=500Oe. The behaviour of this parameter does not show 
any anomaly in the whole temperature range investigated, 
especially around T0=2.08K, but a rapid increase of λ for T<1K 
is observed. Because of experimental limits and of the 
temperature sensor calibration, we could not reach TN≅39Mk (the 
nominal 0.04K is probably a higher T). For this reason from 
measurements of  λ, no support to specific heat data that show an 
anomaly at 39mK can be given. The increase of λ for T<1K can 
be   related   to  a   “resonance”   with   a  spin-wave   mode   with  
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progressive increase of correlation lengths [100]. It should be 
also noticed the flattening of λ for T<0.5K. As regards the 
absence of anomalies at T0, the data are coherent with 
susceptibility data, since, both susceptibility and µSR 
measurements probe the spin-pair correlation function which is 
not sensible to chiral order as discussed above.  
 
 

5.2.3 Gd(hfac)3NITEt 

 
The recent data [101] on Ethyl derivative have shown evidences 
of  Villain’s conjecture [29] as discussed below. Also in this case 
susceptibility, specific heat and µSR measurements have been 
performed.  
  

Susceptibility 

 

Susceptibility measurements on this compound have been 
performed with a SQUID Magnetometer in the temperature range 
between 300K and 1.75K with steps of 0.01K around T∼2K. 
New  information can be obtained  from the curve shown in  FIG.  
5.17: in fact an abrupt increase in the slope of susceptibility, as a 
function of temperature, is clearly visible at T≅1.87K±0.02K. As 

for Gd-iPr sample, susceptibility was measured as 
0→








=
HH

M
χ in 

a very small field of 5.5Gauss. The sample has been measured in 
Field Cooled (FC) and Zero Field Cooled (ZFC) conditions: 
within experimental error, the two curves superimpose, i.e. no 
mechanism driven by slow relaxation of magnetization, as it 
happens for superparamagnets and spin glasses, is present in the 
temperature  range  investigated.  The  anomaly  detected  can  be  
ascribed to  the onset of a  3D  phase transition, since,  as already 
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mentioned, no measurable effects can be detected by two spin 
correlation function related  to susceptibility as regards  the chiral 

          

 
FIG.5.17 Magnetic susceptibility vs temperature of Gd(hfac)3NITEt 

performed with ZFC and FC techniques from 300K to 1.75K. INSET: 

detail of the anomaly displayed by the powder sample at TN=1.87K in 

the plot of χχχχ⋅⋅⋅⋅T vs T. 

 

long range order. This hypothesis is confirmed and supported by 
the data reported in the following sections.  
  
Specific Heat 

 
Specific heat measurements have been performed on 
microcrystalline  powder in the temperature range  175mK-100K,  
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to exploit the behaviour of C/R in all the three phases predicted 
theoretically by Villain [27-29]. The accuracy of the 
measurements was kept within 1% of the absolute temperature 
value measured.  
 

  

FIG.5.18 Specific Heat data as a function of temperature for 

Gd(hfac)3NITEt powder sample plotted as C/(RT) vs T
2
. The solid line 

represents the fitting function of the high temperature data; the fit 

equation is also reported.
  

 
In FIG. 5.18 the specific heat normalized to the gas constant 
(R=8.314Jmol-1K-1) is shown. Plotting specific heat  as C/(RT) vs 
T2,  it can be shown that,  in the range between 4K and 10K,  data 
are well-fitted by the function 

 
                              C/(RT)=0.297+0.00295T2.                      (5.10) 
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Eq.5.10 is the result of  two different contributions to the specific 
heat: the second term in eq.(5.10) is the Debye-like lattice 

contribution (Cp∝T3 at high temperature), while the first term is 
related to the presence of spin waves. This overall behaviour  had  
  

      

FIG.5.19 Specific Heat normalized to the gas constant as a function of 

temperature for Gd(hfac)3NITEt: these recent measurements have been 

performed for H=0, 1000, 5000Oe and they display two λλλλ-peaks 

signalling the two phase transitions researched.  

 
been detected also for Gd-iPr derivative (see section 5.2.2              
Specific Heat [57][99-100]) and it is peculiar for 3D  helimagnets 

in this range of temperature. 
Let’s analyze now the low-temperature region (FIG. 5.19): the 
most important feature is the presence of two anomalies in the 
temperature   range   1.8K<T<2.2K:   the  first   bump   has   been  
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detected at T0=2.19±0.02K and the second (λ-peak) at 
T=1.88±0.02K, as predicted   by transfer  matrix calculations  for  
the phase transition temperatures TN and T0 (Villain’s conjecture 
[28-29]).  
 

     

FIG.5.20 Excess of specific heat normalized to the gas constant R 

obtained from the subtraction of the contributions eq. (5.9) from the 

total specific heat at H=0T of Gd(hfac)3NITEt; the two λλλλ-peaks are 

clearly observed. 

 

By repetitive measurements both peaks have been detected 
reproducibly.                               

In FIG.5.20 we have plotted the excess of specific heat, i.e. the 
specific heat obtained from the subtraction of the term 
C/R=0.297T+0.00295T3 from the total C/R. The two anomalies 
are now more evident. The order of the transitions has been 
inferred  from the fact that no  hysteresis  has been detected  with  
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cycling temperature: this means that both the transitions are of an 
order higher than the first one. The measurements performed 
with various fields applied to the sample and shown in FIG. 5.19, 
confirm also in this case the magnetic origin of the transitions 
signalled by λ-peaks: in fact the peaks disappear when the 
magnetic field is applied. 

 

µµµµSR 

 

The µSR measurements give unique information about phase 
transitions as the muons are a local probe. Measurements have 
been done at Paul Scherrer Institute in Villigen (CH) on GPS 
beam line. We have investigated the temperature range between 
1.5K and 10K in Zero Field (ZF) configuration on a powder 
sample. The muon asymmetry is well-fitted in the whole range 
by the sum of two exponential components after the subtraction 
of the background contribution. The corresponding expression of 
the depolarization curves is: 

 
                     ( ) ( )tataa 22110 expexp λλ −+−=     (5.11) 

 
where λ1 and λ2 represent the muon relaxation rates related to, 
respectively, a fast and a slow relaxing component. The 
occurrence of two different relaxation rates for muons means, 
also in this case, that they implant at least in two different sites 
inside the sample. 
Following the temperature dependence of a0, we can obtain the 
T-behaviour of the relaxation rates. Before going to details, let’s 
introduce the theoretical background of the relaxation rate 
behaviour in presence of phase transitions.  
In  the   weak-collision  approach,  that  is  when fluctuations  are  
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faster than muon (or nuclear) resonance frequency, the general 
expression for muon relaxation rate λ is (see also [48][100]): 

 

                                ( ) ( )[ ]LL JJ ωωγλ −+ +∝ 2                     (5.12) 

 
where ωL is the muon resonance frequency, γ the muon 
gyromagnetic ratio and  

 

                           ( ) ( ) >⋅<= ±±
−

± ∫ 0hthedtJ
ti Lω                (5.13) 

 
are the spectral densities related to the correlation functions for 
dipolar and contact field components in the transverse directions. 

Rewriting eq.(5.12) in terms of collective spin components qs r
r

 

and qS r

r
 respectively for organic radicals and Gadolinium ions 

spins, whose fluctuations are supposed to be isotropic, and 
considering three different correlation functions involving two 

spins ( s
r

 with s
r

, S
r

 with S
r

 and S
r

 with  s
r

), eq.(5.12) becomes         
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                                                                                               (5.14)             
 

with S
rr

=1σ , s
rr

=2σ , qhr

r
 is the Fourier Transform of the lattice 

functions,  coupling muons to the  spins of the magnetic ions  and 

( )xg
z

i

e

qi ξ

ω
=Γ  is the  decay rate of the collective spin 

fluctuations. Here ωi
e are the so-called Heisenberg exchange 

frequencies and f(x) and g(x) are homogeneus function in x 
(x=qiξi with ξi being the correlation lengths).  
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Let’s investigate now the behaviour of  the relaxation rate above 
a phase transition temperature which will be referred as Tc. 

Starting from eq.(5.14) and expanding the expression of qhr

r

 

around the Q
r

 critical wave-vector of the long-range order below 

Tc, using scaling arguments and after some algebra the 
expression for muon relaxation rate is 

 

                            ( ) ( )
( )∑ ∑ −

−

∝
3 2

2 1

i q
z

ie
i

i
eff

i

i

i

i

xg

xf

N
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ξω

ξ
γλ

η

           (5.15) 

 
where hi

eff represents hyperfine fields felt at muons sites (due to 
Gadolinium and radical spins arrangement) in the ordered 

configuration and iq
r

 are wave vectors. Converting the 

summation in eq.(5.15) in an integral which converges to unity, λ 
can be rewritten as 

 

                           ( )∑ −+−∝
3

22 1

i

dz

i
e

i
eff

i iih
ηξ

ω
γλ             (5.16) 

 
and, since ξi∝(T-Tc)

-ν
i, one would expect a divergence at Tc i.e.: 

 
 

                                      ( )∑ −−∝
3

i

n

c
iTTλ                          (5.17) 

 

with ni=νi(zi-1-ηi) where ηi  is the critical exponent introduced by 
Fisher  (1967) as  a  correction to  the static  two-spin  correlation 
function with respect to its behaviour in the mean field approach 
(here η=0 and η≈0 in 3D systems), while νi and zi are further 
critical exponents. 
The  most important feature to be  pointed out from the µSR  data  
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(FIG.5.21) is an abrupt increase of both muon relaxation rates 
below T∼3K with a flattening for T<1.9K persisting till 1.5K, the 
lower temperature investigated. 
The ratio between the values of both relaxations rates at T=3K 
and the values at T=1.88K where the plateau occurs is  
 

                          

             

FIG.5.21 Fast (λλλλ1) and slow (λλλλ2) components of the muon relaxation 

rates as a function of temperature in Zero-Field in Gd(hfac)3NITiEt.    
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suggesting a divergence due to the phase transition to 3D long-
range helical order. The flattening observed for T≤1.85K is 
possibly related to low-energy excitations, like e.g. spin-waves, 
as  previously  detected  also  in  Gd-iPr derivative [58].  We  can  

H=0T 
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thus conclude that the abrupt increase marks the 3D long-range 
order phase transition occurring at the same temperature of the 
change  in the slope of magnetic  susceptibility  and the  anomaly  
detected at T=1.87K in specific heat measurements. Also in this 
case no muon precession has been detected in the temperature 
range investigated, i.e. local spins fluctuations are faster than 
muon precession (for H=0.5mT νµ≈60kHz) also in the 3D 
helimagnetic phase. 
Finally we conclude that the peak observed at higher temperature 
T0=2.19K in C/R is ascribed to the transition to chiral phase. This 
observation allows to verify entirely the Villain’s conjecture [28-
29]. 

 

5.3 Conclusions 

 

In this chapter a thorough experimental study of quasi-one 
dimensional frustrated molecular chains has been done. 
In particular the attention was focussed on four compounds of the 
family of Gd(hfac)3NITR chains containing, in the radical centre, 
Iso-Propyl (iPr),  Phenyl (Ph), Ethyl (Et) or Methyl (Me)  groups. 
They display properties never observed before from an 
experimental point of view in magnetic systems: in fact they are 
characterized by competition between nearest-neighbour (nn) 
ferromagnetic coupling interactions (J1>0) and next-nearest-
neighbour (nnn) antiferromagnetic interaction between Gd3+ ions 
(J2<0, SGd=7/2) and between radicals (J’2<0, sRad=1/2) which are 
dominant. They also have weak dipolar  intrachain and  exchange  
interchain (J⊥) interactions which become relevant at low 
temperature.   
These derivatives can be classified into two different groups:  the 
samples  with R=Ph, Me  named  weakly  frustrated systems,  and 
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The samples containing R=iPr, Et called  fully frustrated systems. 
This classification has been done taking into account the strength 
of the exchange coupling: when the ratio between nnn and nn 
interactions exceeds a certain value (2(δ+δ’)>1), the system is 
fully frustrated, otherwise the system is weakly frustrated.  
For Phenyl and Methyl compounds a change in the slope of 
χ(T) has been detected at T∼0.6K for both samples in 
preliminary measurements [93], in correspondence to a peak in 
specific heat data at the same temperature for Gd-Ph and at 
T≅0.68K for Gd-Me [93]. Further investigation on Gd-Ph 
performed through µSR measurements confirmed this feature. In 
fact a sharp increase of the muon longitudinal relaxation rate λ 
for T approaching 0.6K was observed. For T<0.6K spin waves 
excitations possibly occur and λ tends to flatten. The overall 
ferromagnetic behaviour of susceptibility and the T3/2 temperature 
dependence of the specific heat in the region below the detected 
peak, characteristic of a 3D ferromagnetic quantum spin-wave 
contribution [94], led to the conclusion that the Gd-Ph system 
simply undergoes 3D long range phase transition of 
ferromagnetic type at T∼0.6K. 
A more complex situation is instead found in fully frustrated 

systems Gd-iPr and Gd-Et: the strong competition between nnn 
and nn interactions and the presence of intrachain dipolar 
interactions creates an easy plane of magnetization in x-y plane 
perpendicular to the chain direction. Susceptibility, specific heat 
and µSR measurements demonstrated the occurrence of Villain’s 
conjecture [29] in Gd-Et. Such conjecture can be described by a 
complex  phase  diagram  including  three  magnetic  phases;  the  
novelty with respect to conventional quasi one-dimensional 
systems is related to the presence of an intermediate magnetic 
phase between the high temperature paramagnetic phase and the 
low temperature 3D long range magnetic ordered phase.  
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Summarizing, it is assumed that in the different temperature 
regions the system is in the following different phases: 
 

• T>T0 →→→→ PARAMAGNETIC PHASE 

 

• TN<T<T0 →→→→ ORDERED CHIRAL PHASE (spins can 
be depicted as a collection of corkscrews turning all 
clockwise or counterclockwise in the x-y plane with phases 
randomly distributed) 

 

• T<TN →→→→ 3D ORDERED HELICAL PHASE 

 

The temperature T0 has been experimentally signalled by a neat 
λ-peak in specific heat at T0∼2.08K±0.01K for Gd-iPr and at 
T0∼2.19K±0.02K for Gd-Et [99][101]. The magnetic origin of 
this transition has been verified by measuring the specific heat in 
Zero Field and in different applied magnetic fields [100-101]: the 
peak rounded and vanished as the field magnitude was increased. 
The indication for a transition to chiral order at T0 was further 
probed by the T-dependence of the specific heat below the peak, 
almost linear, i.e. proper of a 1D quantum spin-wave contribution 
and by the fact that for T<T0 the residual magnetic entropy is of 
59% of the total magnetic entropy [94], which is a too high value 
for a long-range ordered phase (for instance in TMMC for T<TN 

the residual magnetic entropy is 1%). The magnetic origin 
(chiral)  of the transition has been  finally  proved by the  absence 
of anomalies at T0 in quantities testing the spin-pair correlation 
function, i.e. the magnetic susceptibility and the muon 
longitudinal relaxation rate λ. 
Very low temperature specific heat measurements [99] 
performed  on  Gd-iPr  revealed  the  existence  of  a  3D  helical  
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phase transition through a peak at T≅39K where interchain 
interactions cannot be neglected. The difficulty in detecting this 
phase transition was ascribed to two main factors: first the 
entropy removed below this phase transition is really low and its 
observation is, consequently, subtle; secondly the degree of 
sample damage is often relevant preventing the transitions to take 
place. In fact ageing effects act on chains by cutting them into 
shorter segments and the coherence for 3D transition is 
destroyed; on the other hand the less strict requirement consisting 
in the establishment of the same chirality for each segment is, in 
practice, not influenced.  
As regards the compound containing Ethyl, specific heat, 
susceptibility and µSR measurements gave clear indications for a 
transition to 3D long range order transition at TN≅1.88K. More in 
details: (i) C/R shows a λ-peak at TN=1.88±0.02K [101] thus 
suggesting a phase transition whose magnetic origin is assured by 
the fact that by applying a magnetic field during measurements, 
the peak smoothened; (ii) the 3D origin is, instead, assured by the 
abrupt increasing in the T-dependence of the susceptibility at 
TN=1.87K [101] and confirmed by the increase of the muon 
longitudinal relaxation rate λ at the same temperature. Below TN 
the presence of low energy excitations causes a plateau in λ(T).  
These experimental evidences for Gd-iPr and Gd-Et are in 
agreement with theoretical predictions about different phase 
transitions predicted in the framework of the Villain’s  conjecture 
[28][29]: (a) the chiral phase transition, being the results of a 
randomly distributed  phase  configuration  of the spins,  can only 
be detected by specific heat measurements which probe the four-
spin correlation function; (b) on the other hand no anomalies 
must be found both in susceptibility and in µSR data, which 
probe the two-spin correlation function related to long-range 
order phase transitions.  
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The relative position in temperature of TN and T0 is confirmed 
and supported by theoretical calculations where it is predicted 
TN< T0. This is related to the Ising nature of the chirality; in fact 
chiral correlation length ξk, related to chirality-chirality 
correlation function through the expression 

 
                                ( )kn naAkk ξ/exp11 −≈+                      (5.19) 

 
diverges exponentially with decreasing temperature as follows 

 

                                        ( )TJk /exp≈ξ                             (5.20) 

 
where J  is the exchange coupling constant. On the other hand the 
spin correlation length ξs, related to spin-spin correlation function 
by the relation  

 

                             ( )sn naASS ξ/exp'11 −≈⋅ + ,                   (5.21) 

 
diverges as a power law with the following expression 
 

  

                                           TJs /≈ξ .                                (5.22) 

 
The final result  is that  chirality-chirality correlation  function  is 
stronger than the spin-spin correlation function, thus giving 
TN<T0. 
In Table5.2 the results obtained on the samples treated in this 
chapter are summarized.  
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Table 5.2 Schematic summary of the crucial properties of the four 

compounds studied in this chapter.          
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General Conclusions 
 

In this thesis we have studied, in collaboration with the 
University of Firenze and the University of Modena, some 1D 

molecular magnets belonging to the class of the low dimensional 
systems which nowadays are available as a result of the 
improvement in synthesis methods of molecular chemistry. The 
experimental investigation was done by means of magnetization 

measurements and of NMR and µSR techniques. In particular 
these two last techniques are very useful in complementing the 
macroscopic measurements, since they probe the microscopic 
electronic spin dynamics via the hyperfine interactions coupling 
the nuclei (muons) with the magnetic moments of the system.  
We have focussed our attention on CoPhOMe single chain 

magnets (pure and “doped”) and on the Gd(hfac)3NITR family of 
frustrated helimagnetic quasi one-dimensional spin systems. 
CoPhOMe is the first single chain magnet which showed the 
slow dynamics predicted by the Glauber Ising Kinetic Model [1]. 
The characteristics of the slowing down of the magnetization at 
low temperatures have been investigated and found to follow a 

thermally activated Arrhenius-like behavior 






 ∆
=

T
exp0ττ . In the 

first part of this thesis we have studied the behavior of CoPhOMe 
doped with various concentrations of Zinc diamagnetic 
impurities.  
Susceptibility measurements performed in Firenze [83-84][86] 
had shown that in the doped samples the Arrhenius behavior is 
still valid with an energy barrier ∆, equal to that of the pure 
sample but with a shorter pre-exponential factor τ0 . The shorter 
the segments, the shorter τ0. It was also noticed that with 
increasing the dopant concentrations the finite-size effects are 
more and more relevant. In particular it was pointed out that 
finite-size  effects were present  also in  the pure  compound  (the 



~ 198 ~ 

 

General Conclusions 

 
estimated length is about 3000/4000 spins). This conclusion was 
inferred by the fact that the predicted reduction by a factor two of 
the energy barrier expected in doped samples was not observed. 
Our NMR Spin-Lattice Relaxation measurements have added 
additional information about the spin dynamics. In the doped 
samples investigated the spin-lattice relaxation rate T1

-1 of 

protons has been found to display a maximum for 15K<T<50K 
and a shoulder for T<15K. This result is qualitatively similar to 
the one found in pure CoPhOMe (indicating two different 
relaxation mechanisms) but the same heuristic model used for 
CoPhOMe did not yield a satisfactory fit for the data. 
Furthermore the 1

H  NMR spectra as a function of temperature 
show an anomalous broadening of the line width with decreasing 
temperature even above the temperature (≅60K) where the spins 
start to freeze, according to susceptibility data. Thus the initial 
interpretation of the two peaks in pure CoPhOMe based on the 
presence of two different thermally activated relaxation 
mechanisms related to two different sublattices in the system 
[58][79-80] has to be partially reconsidered in the light of the 
new data in the doped samples. Moreover new data showed that 
even in the nominally pure compound the finite-size effects 
introduced, in this case, by intrinsic natural defects are present. 
As a consequence regarding the shoulder observed at lower 
temperature in nuclear relaxation we propose tentatively that it is 
due to the collective reversal of all spins in each segment [87]. 
As regards the maximum at higher temperature we still claim that 
it is due to the slowing down of the Glauber spin dynamics but 
affected by the size of finite chains. Both these interpretations are 
only qualitative and speculative at this stage. Detailed 
quantitative model to describe the nuclear relaxation including 
finite-size effects and soliton-like type excitations needs to be 
developed. 
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In the second part of  this work we have investigated a family of 
compounds which presents a complicated puzzle of competing 
interactions, the Gd(hfac)NITR molecular chains, where 
R=Me, Ph, iPr and Et. We have studied only the last three 
derivatives. These compounds are characterized by the 
alternation of Gd3+ ions (S=7/2) and radical groups (S=1/2) along 
the chains. The resulting Hamiltonian consists in a term deriving 
from the easy-plane anisotropy normal to the direction of the 
chains, and three different intrachain interactions [58]: a 
ferromagnetic nearest-neighbor exchange coupling and two 
antiferromagnetic next-nearest-neighbor interactions involving 
the two different species of magnetic centers (Gd and R) along 
the chain. Depending on the relative strength of these 
interactions, the compounds can be classified into two different 
groups. The first group includes Me and Ph derivatives: they 
present a phase diagram constituted by two different phase, the 
paramagnetic one for T>TN and the 3D phase of ferromagnetic 
type for T<TN. The frustration effects due to competing 

interactions are not strong in these systems, which are called 
weakly frustrated. We have investigated in particular the Gd-Ph 
chain through specific heat and µSR measurements. Our 
experimental work has confirmed the occurrence of a 3D phase 
transition of ferromagnetic nature as clearly manifested by the 
neat λ-peak at TN≅0.63K [94] in specific heat measurements and 
by the abrupt increase in the muon longitudinal relaxation rates 
when the temperature is decreased toward TN≅0.75K. The 
experimental data are also in excellent agreement with the 
theoretical predictions (the theoretical value for the transition 
temperature obtained through transfer matrix calculations is 
TN≅0.64K).    
The second group includes Gd-iPr and Gd-Et compounds: these 
systems are named  fully frustrated, because in this case the  ratio  



~ 200 ~ 

 

General Conclusions 

 
between nnn and nn interactions exceeds a critical value (see 
Chapter 5 Par.5.1.3) and the frustration effects are dominant. The 
latter systems show the complex phase diagram theoretically 
predicted by J. Villain [29]: at high temperature (T>T0), the 
systems are in the paramagnetic phase; at low temperature 
(T<TN ) a helical 3D phase is observed; at intermediate T 
(TN<T<T0) the compounds are in a chiral phase, where the spins 
can be described as a collection of corkscrews in the x-y plane 
turning all clockwise or anticlockwise but with phases randomly 
distributed. All these predictions have been tested and confirmed 
by susceptibility, specific heat and µSR measurements.  
In Gd-iPr the two transitions have been clearly evidenced by the 
two pronounced peaks in the specific heat measurements at 
T0≅2.08K [57][93-94][99-100], signalling the chiral transition, 
and at TN≅39mK [99] where the helical long range ordered 

phase takes place. This peak was attributed to 3D helical order 
and it was shown that it is not due to a Schottky-like contribution. 
For this sample neither susceptibility (1.7K<T<300K the 
investigated T-range) nor µSR muon relaxation rate 
(0.04K<T<10K) (related to two-spin correlation function) 
showed an anomaly in the whole temperature range investigated 
as both quantities are insensitive to the chiral phase transition. 
The limited range of temperature investigated by means of χ and 
λ measurements, prevented the detection of the 3D helical phase 
transition at TN∼39Mk. The fact that only the specific heat is able 
to detect both transition temperatures is justified from a 
theoretical point of view: in fact only the four-spin correlation 

function probed by specific heat is able to detect, besides the 3D 
ordered phase, also the chiral transition characterized by 
randomly distributed phases, while the spin-pair correlation 

function, probed by susceptibility and µSR measurements, can 
only detect a long range ordered phase transition.                                   
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In Gd-Et the Villain’s complex phase diagram [29] was also 
confirmed by the observation of  both peaks in the specific heat 
at T0≅2.19K and TN≅1.88K [101]. As expected for the reasons 
indicated above, also in this case, neither susceptibility nor µSR 
detect the chiral phase. On the other hand, the long range ordered 
magnetic transition at lower temperature was signaled by both 

susceptibility at TN≅1.87K and µSR at TN≅1.9K.  
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APPENDIX A 
 

A.1 NMR Pulsed Sequences 
 

In this section the most common NMR pulsed sequences will be 
described [102-103].  
In the entire following discussion the RF pulse is supposed to 
have the shape of a square wave (from transmitter to probe) and 
the length τ  of the RF pulse to be much shorter than relaxation 

times  1T  and 2T . In this way, no relaxation of the nuclear system 

takes place during τ.  
 

A.1.1 T2 Sequences 
 

As already mentioned (see Chapter 2), the most common 
procedure to detect a NMR signal is the application of 2/π  RF 
pulse along x’ axis of the rotating frame. As a consequence, 

magnetization M
r

entirely lies along  y’ axis. Since the receiver 

coil is placed in the x-y≡x’-y’ plane, the observed signal (called 
Free Induction Decay, because spin are free to precess with no 

RF pulses applied) consists in the intensity of xyM  which decays 

to zero after the occurrence of transverse decay with the time 

constant 2T . In real systems the measure of 2T  is often not 

possible with a simple 2/π  pulse, because many factors interfere 
with the free precession of the spin. This is mainly related to the 
inhomogeneity of the static magnetic field. In fact nuclei in 
different parts of the sample feel different fields due either to the 
external  applied field  or to the  different dipolar  internal  fields,  
varying from site to site, with a total distribution having an 

average width 0H∆ . The relationship between 2T  and the 

effective (shorter, because of inhomogeneity of fields)  relaxation 
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time T2* is   

 

                                    .
2

1
*

1 0

22

H

TT

∆
+= γ             (A.1) 

 

As a consequence of field inhomogeneity, nuclei precess at 
different frequencies and tend to dephase with each other faster; 

for this reason T2* is shorter than 2T . 

To measure the intrinsic 2T  an ingenious method was proposed 

by Hahn: pulse sequence used is πτπ −−2/ . Let’s describe step 
by  step the magnetization configuration: 2/π  RF pulse along  x’  
 
 

 

FIG.A.1 Magnetization configurations during Spin Echo Sequence in 

rotating reference frame [102]. 

 
drives magnetization along y’ lying in x-y plane; after the time 
interval τ, during which spins dephase progressively, feeling a 

distribution  of  magnetic  fields 00 HH
rr

∆± ,  another π  pulse  still 
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along x’ is applied. The result is that spins still stand in the x-

y≡x’-y’ plane but reverse their dephasing thus reconstructing a 
signal called echo. 
The magnetization vector will be “built” again to a value 
decreased by the (exp(-2τ/T2)), which takes into account 

irreversible 2T  decay processes, caused by spin-spin nuclear 

interaction.          

 

 

FIG.A.2 Representation of the sequence characterized by ππππ/2 pulse and 

the subsequent FID signal (ABOVE) and Hahn Spin-Echo Sequence for 

evaluation of spin-spin relaxation time with the detection of the 

“reduced” echo signal (BELOW).    

 

A.1.2 T1 Sequences 

 

As regards T1 the most common sequences, used also in this 
work, are the so called saturation and inversion recovery 

sequences.   
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FIG.A.3 Classical Saturation Recovery Sequence for the detection of 

the longitudinal relaxation time.  

 

 

In the saturation recovery sequence a 2/π  pulse places the 
nuclear magnetization in the x’-y’ plane and then a reading 

sequence performed at various delays τ  from saturation pulse 
detects the reconstruction of the longitudinal component of 

( )tM ; in the inversion recovery, instead, the “reading sequence” 

follows a π  pulse which inverts the magnetization along z 
direction.    
In the data presented in this thesis we have used, instead, a Hahn 

echo sequence ( ππ −2/  reading pulse) preceded by a comb of 

saturation 2/π  pulses. 
The initial comb of 2/π  pulses is applied to have the nuclear 
spin levels equally populated; in terms of quantum mechanics the 
temperature of the ensemble of spins is ∞=T . As said above, 
after the comb a delay τ  is applied before a ππ −2/  Hahn spin-
echo. By varying τ, the recovery of the magnetization ( ( )τM ) 

towards equilibrium is followed. In the vectorial model, after the  
comb  of 2/π   pulses, the nuclear  magnetization  stands in  x’-y’ 
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plane and, subsequently, the Echo Sequence detects the 
reconstruction along  z axis ( zH || ) of the nuclear magnetization. 

It should be noticed that in most of the exponential cases of the 
present thesis, the “reading” pulsed sequence ππ −2/  is reduced 
to a 2/2/ ππ −  one, to maximize the signal. The 2/2/ ππ −  
sequence is usually called solid echo and it is typically used in 
paramagnetic systems.                                                    

   

 
FIG.A.4 Sketch of the pulses in the saturation comb spin-echo sequence 

used in the T1 measurements performed in this thesis. ττττsat is the time 

interval between ππππ/2 saturation pulses, ττττ is the delay varied for the 

reconstruction of the longitudinal component of the nuclear 

magnetization, ττττeco is the time interval between the two pulses of the 

reading sequence and Dead Time is the time between the reading 

sequence and the acquisition.     
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B.1 NMR Experimental Equipment 
 
 

 

B.1.1 NMR Spectrometer 
 

In the current thesis we used a Fourier Transform-pulsed 

spectrometer to perform NMR experiments in the pulsed mode. 
The spectrometer allowed us to work in the frequency range from 
5MHz and 450MHz. Digital pulses are created by a pulse 

programmer  connected to a calculator, which permits to  choose 
 
 
 

 

 

 

 

 

                                                                
 
 

                                                       

 

                                                                                                                  

 

 

       

     
 

  

 FIG.B.1 Sketch of a pulsed NMR spectrometer 
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separation and time length of the pulses, and to mix through a 
multiplexer, the generated pulses with one of the four (or more 
than four) carrier waves with different phases. These waves have 
their own frequency, named iν , independent from the frequency 

of measure: in this way it is not necessary that phases have to be 
calibrated anytime the measuring frequency is varied. 
Radiofrequency pulse of frequency iν  is mixed with a signal, 

called reference signal, whose frequency is 0νν +i , being 0ν the 

Larmor frequency. The resulting signal after passing through a 
filter which cuts the high frequencies, in this case represented by 

02νν +i , has frequency 0ν  (irradiating frequency). Before arriving 

to the probe, pulses are amplified by a power amplifier (generally 
400W). The process of detection can be summarized as follows: 
a diode bridges system deviates the free precession signal coming 
from the irradiated nuclei and revealed by the coil, whose 
frequency is 0ν , to an output circuit where a preamplifier is 

placed. In this way the signal is modulated with the one at 0νν +i  

frequency, split in two different channels and mixed with a 
frequency reference signal of frequency iν  with phases θ=0o in 

the first channel and θ=90o in the second one: two radio signals 
in quadrature can be obtained. This method allows us to 
understand if the resonance frequency is higher or lower than 0ν . 

The resulting signals have a low intensity, so that they need to be 
further amplified and filtered finally entering a digitizer 
connected to the calculator. If  necessary the phase of the output 
signal can be alternated before the amplification. 
 

B.1.2 NMR Probe 
 

The NMR probe consists in a RLC resonant circuit, where L is 
the  inductance  of the  coil  surrounding   the sample  and C   the 
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circuit  capacitance controlled  through two variable  capacitors. 
The NMR probe has to satisfy three fundamental characteristics: 
(i) the resonant condition ω0= LC/1 ; (ii) it has to present an 
impedance matching between the output amplifier and the probe 
(50Ω), to reduce the reflected wave: for this purpose in parallel to 
the LC circuit, an inductance or one or more capacitances which 
can be varied are used; (iii) an high Q-factor (Q=R/(ωLL) 
requested to maximize the power reaching the coil.  

 
B.1.3 Cryogenic Equipment  
 
 

The cryogenic equipment used in this work for NMR 
measurements covers a temperature range between 1.5K and 
360K. We used two different cryostats depending on the 
temperature range investigated: a continuous flow cryostat and a 
bath cryostat. In the first case, probe is placed inside the cryostat 
in the uniform static magnetic field and cooled down by direct 
contact with the cryogenic liquid or gas inserted in the same 
chamber. The thermal exchange between the sample and the 
environment at room temperature is reduced by a vacuum jacket 
(vacuum pressure of the order of 10-6 Torr) adjacent to the sample 
chamber where a superinsulating material is contained. This   
material has very low thermal conductivity and with high  
reflectivity  and  consists of  multilayers of mylar and aluminium. 
The pump system is constituted by the combination of a rotary 

pre-vacuum pump and a turbo-molecular pump to reach high 
values of vacuum. The connection between pumps and the 
components where the vacuum is necessary, is assured by 
flexible tubes which are highly isolated from the surrounding 
environment.  
In  the  continuous  flow  system  the  pathway  of  the  cryogenic 
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FIG.B.2 Sketch of a continuous flow cryostat used in NMR 

measurements (Oxford Instruments)   

 

 
liquid is the following: the liquid  contained in a supply  dewar is  
picked  up by a transfer  tube, which  connects the dewar and  the 
cryostat, containing capillary tubes (thermally insulated by a high 
vacuum chamber), where the flow passes; then the liquid goes 
through  the sample chamber  where it  is in contact directly  with 
the sample. The exhaust gas is expelled from the system through 
a circuit coaxial with respect to the one where the gas is 
introduced. The circulation of the refrigerating liquid is assured 
by a pump. The liquid used for cooling the sample varies 
according to the temperature range to be investigated: Nitrogen is 
used   from    room    temperature    to   77.3K;   to   reach   lower  
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temperatures till 4.2K, instead, liquid Helium is necessary. 
The temperature of the sample is monitored thanks by a Au-Fe-

Chromel thermocouple whose reference temperature is 77.3K.  
As a  common thermocouple it reads the voltage,  displayed by  a  
 

                             

     

FIG.B.3 Phase diagram of He4 where its characteristics and critical 

temperatures are shown.  

 
voltmeter and then converted in temperature units using a 
calibration table. In the sample chamber is also placed the so-
called heat exchanger, consisting in a resistor which switches on 
when the refrigerating liquid flow has to be warmed up. The 
resistor  and the heat exchanger  are monitored and controlled  by  
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an external Intelligent Temperature Controller (ITC) through 
which the temperature can be set at the desired value. This 
system allows rapid variations of temperature which can be 
stabilized with great precision (±0.05K). 
 

  

                   

FIG.B.4 Schematic view of the bath cryostat used in NMR 

measurements (Oxford Instruments).  
 
The bath cryostat, instead, works in a different way: it is made 
up of an internal chamber which must be filled with liquid 
helium (T=4.2K) where the sample is placed. This chamber is 
surrounded  by a chamber containing liquid Nitrogen at 77K  and 
another external vacuum chamber to “screen” the sample 
chamber from the external environment. The vacuum chamber 
contains a superinsulating material composed, also in this case, 
by   foils  of  mixed  mylar  and  aluminium.  To   cool  down  the  
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sample below 4.2K, a high vacuum pump is connected to the 
main chamber of the cryostat to lower adiabatically the pressure 
inside the chamber itself. Lowering the pressure over the liquid 
causes a decrease also of its temperature till values as low as 
T≅1.5K. The real temperature range of work of bath cryostats is 
4.4K to 1.5K with a great stability of ±0.01K for several hours.  

 

B.1.4 Field Source Equipment 
 

The static magnetic field used in the NMR experiments was 
provided by two different devices: an electromagnet and a 
superconducting magnet. 
The first system is made up of two field poles each constituted by 
electrical wire coils. The current flowing in the coils is provided 
by a current source that rectifies the line AC current to obtain a 
pure direct current (DC). As well-known from the 
electromagnetism laws, a direct current produces a static 
magnetic field in the space between the poles where the sample is 
placed inside the cryostat.  
The electromagnet is supplied by a 60A maximum direct current 
and 200V voltage. Varying the DC current and depending on the 
position of the field poles, the electromagnet can produce a 
maximum static magnetic field of about 2.3Tesla. The field 
produced is then measured by a Hall effect gaussmeter.  
To perform higher magnetic field measurements(H>2T) a 
superconducting magnet was used. It is constituted by a Cu/NbTi 

coil where NbTi alloy is the superconducting component 
(Tc≅9K) while Cu provides stability and protection to the wire 
and the coil. The coil is placed in a superinsulated chamber full 
of  liquid helium and surrounded by another chamber containing 
liquid nitrogen for pre-cooling of the internal chamber. The 
instrument has  an external chamber for superinsulation.  To vary  



~ 216 ~ 

 

Appendix B 

 
the magnetic field, the coil has a small superconductive part that 
 

                                    

               

FIG.B.5 The electromagnet used for measurements in the NMR 

laboratories of the University of Pavia  

 
can be warmed up by a heater, so the superconducting state is 
destroyed  in that region,  while  the  rest  of  the  coil  remains 
superconducting. At the edges of this warmed part, a current 
source is put inside the coil to reach the desired magnetic field. 
When the set current value is reached, the heater is turned off and 
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FIG.B.6 Internal view of the device containing the superconducting 

solenoid for the creation of high static magnetic fields with the 

indication of the N2 and He reservoirs for keeping the solenoid in its 

supeconducting phase. 

 
the coil becomes again entirely superconducting. The ratio 
between the static magnetic field produced and the current flow 
inside  the coil is  1000Gauss  per 1.03A. In  fact using  a  current  
source  reaching 90A, the  maximum  magnetic  field that can  be 
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produced in our laboratory is about 9Tesla.    
 
 
 

  

      

FIG.B.7 Superconducting magnet used for NMR measurements at high 

magnetic fields in the NMR laboratory at University of Pavia.  
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B.2 µµµµSR Experimental Equipment 
 

 

B.2.1 Introduction 

 
 

µSR measurements presented in this thesis have been performed 
at RAL (Rutherford Appleton Laboratory) Facility in Chilton, 
England, and at PSI (Paul Scherrer Institute) in Villigen, 
Switzerland. In particular at PSI two different equipments have 
been used depending on the temperature range of investigation: 
GPS (in the range 1.8K<T<300K) and LTF (20mK<T<1.8K).  
In this section we will describe just GPS equipment since the two 
systems work in a similar way.  

 

B.2.2 Muon Beamline and GPS Instrument 
 

 

The area of PSI Facility where there is the beamline dedicated 
exclusively to µSR experiments and where GPS and LTF 
instruments are placed is called Area πM3 and its sketch can be 
observed in FIG.B.8.  
The protons beam hit the target M made up of Berilium and 
placed at 22.50 with respect to the forward direction, where the 
muons produced by this collision are directed to πM3 line. They 
are then driven by a series of magnets, used for various purposes, 
along the line: the magnets are quadrupoles, bending magnets, 
steering magnets and slits: two of them are always fully open, 
while the flow of muons is controlled by a third slit close to the 
area of GPS instrument. Along the line, a 3m long crossed-field 

separator can be used either as a muon/electron separator in 
longitudinal geometry or as a muon spin rotator in transverse 
geometry (spin rotator consists in mutually perpendicular 
electrical and magnetic fields): in the first case the settings of  the  
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FIG.B.8 Scheme of the beam magnets in area ππππM3 from the target to 

GPS and LTF instruments. QXXNN are quadrupoles, ASXNN are 

bending magnets, SSKNN are steering magnets and FSNNN are slits.   
 
two fields are correlated so that just muons of chosen velocity are 
transmitted; in the second case the spin rotator rotates the muon 
spin upward of about 500 with respect to its original direction. 
Finally muons reach the GPS instrument where the sample is 
placed and before impinging on it the muons go through various 
materials: two mylar windows (2x4µm), a detector made up of a 
scintillator material whose thickness is of 0.2mm, two layers of 
superinsulation (aluminized mylar: 2x10µm) and the cryostat 
titanium window (10µm). The actual amount of material passed 
through by the muons and their distributions is roughly 
130mg/cm2 of material, i.e. about 1.33mm of water, 0.6mm of 
silicon etc..  
GPS Instrument is placed in area πM3.2: it is designed for zero-

(ZF), longitudinal-(LF) and transverse-field (TF) µSR 

experiments. Sample rotation is provided for the study of 
orientation–dependent effects in single crystals.    
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FIG.B.9  3D view of GPS instrument; muons enter from the right-hand 

side.  

 
 

The arrangement of the detectors consists in: 

 
1) a muon detector M (see FIG. B.10) of thickness 0.2mm (as 

already mentioned above) connected to two different 
photomultipliers 
 

2) five positrons detectors: Forward (F), Backward (B), 
Up(U),Down (D), Right (R) with respect to the beam 
direction 
 

3) a Backward veto detector (Bveto) whose purpose is to 
collimate the muon beam in a 7x7mm2 spot and to reject 
the muons missing the aperture. It is made up of hollow 

scintillators  pyramid  (BL
veto, B

R
veto, B

U
veto, B

D
veto)   with  a 
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7x7mm2 hole facing the M counter. 

  
 

 

FIG.B.10 Sketch from the top of the main detectors around GPS 

instrument.  

 
 

4) a Forward veto detector (Fveto) which rejects muons which 
have not stopped in the sample: it is mainly used with 
small samples. In fact for bigger samples, i.e. when all the 
muons have stopped in the sample, it can be added to the F 
detector to increase the forward solid angle of detection. 

 

B.2.3 Cryogenic Equipment 

 

For measurements performed at temperatures below room 
temperature, the QUANTUMCOOLER Continuous Flow 
Cryostat  is used: it utilizes liquid  helium as a coolant to  provide                            

stable, controllable sample temperature. The system consists of 
three components: 

 
1) The QUANTUM continuous-flow cryostat 
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2) The QUANTUM return vapour-shielded liquid-helium 

transfer line 
 

3) The QUANTUM removable Sample Stick 
(QUANTUMSTICK)     

 

 

FIG.B.11 Diagram of the Quantum Cryostat used for refrigeration in 

GPS instrument. EX=Heat Exchanger, F=Flow, P=Pressure, PS=Phase 

Separator, V=Valve. 

 

The liquid Helium flow is drawn from supply dewar and goes 
through the centre of the transfer line, enters the first component 
of the cryostat and the flow is then split in two different 
directions. The first part of flow enters the top of the Phase 

Separator (PS) and the  liquid is expanded through the needle 

valve V4 and then is injected in the sample chamber, with the 
flow controlled by the manual valve V2, the electromagnetic 

valve V3b and the pumps PUMP2_A and PUMP2_B. The second 

flow enters  the top  of the Phase Separator,  and  the  gas  exiting 
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FIG.B.12 Scheme of the temperature heaters and sensors. 

 

from the top of the PS is used to cool the sample chamber and the 
main heat shields (EX). The cold return gas is then used to cool 
the transfer  line shield. In this  case the flow is controlled  by the 
valve V1 and the pump PUMP1. 
The helium in the Sample Chamber is heated at the set 
temperature by the Diffuser Heater (DH) and its temperature is 
detected by a Cernox temperature sensor. The temperature range 
of  operation of GPS Instrument  is 1.8K<T<300K  which can  be  
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divided into two different ranges (1.8K<T<10K and 
5K<T<300K) where the preliminary setting procedures of the 
cryogenic equipment are different. 
Inside the cryostat is placed the sample which is packed on the 
sample holder shown in FIG.B.13 and then connected to the 
probe, which enter the cryostat, with the use of two screws.  
 

 

                          

FIG.B.13 Support for the sample in µµµµSR measurements with the 

indication of the direction of the muon beam.    

  

B.2.4 Magnets in GPS instrument 
 

To generate the magnetic field in the sample zone two sets of 
Helmoltz coils are available: 
 
1a) WED: these coils are used for the production of a magnetic 
field along muon-beam direction used for both Longitudinal 

Field  (where  the  magnetic  field  is parallel  to the  direction  of 
muons polarization) and Transverse Field studies when the muon 
spin is rotated by the Spin Rotator. The magnetic field range with 
this power supply is 100G<H<6.4kG. 
1b) WEDlow: with the same set of Helmoltz coils, magnetic 
fields  lower than 100G can be  reached  with high  stability.  The 
range with this kind of power supply is T<450G. 
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2) WEP: this pair of coils produces a horizontal magnetic field 
perpendicular to the muon-bean direction. In this case the highest 
field that can be reached is H=60G. This kind of power  supply is  
used for calibration, that is to say to determine the total 
asymmetry or the parameter alpha. 
 

     

 
FIG.B.14 Scheme of the interconnections of the various  hardware 

items for GPS instrument.   

 



~ 227 ~ 

 

Appendix B 
 

 

B.2.5 Computers 
 

The main item is the Linux console (pc6012), which is the 
interface for the back-end Linux system (psw405) placed in the 

WHGA building and which runs the data-acquisition. The core of 
the electronics is the pico-second Time Analyser (pTA 9308-OR-
TEC) module which is connected to a µSR logic box which 
provides the pTA module the appropriate label (“tag”) for a given 
muon or positron event. The so-called MIDAS front-end, which 
reads out the events and builds the histograms, controls the pTA 
module. Histograms are transferred then to the back-end 

workstation psw405. All the parameters such as temperature, 
magnetic field and number of events per measurement can be set 
by this system of computers (see FIG. B.14) directly from 
counting room above GSP experimental area. 
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