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Studi di Pavia

Dipartimento di

Fisica “A. Volta”

Dottorato di Ricerca in Fisica - XX Ciclo

Optical properties of opal-based
photonic crystals

dissertation submitted by

Alessandra Balestreri

to obtain the degree of

Dottore di Ricerca in Fisica

Supervisor: Prof. L. C. Andreani

Referee: Prof. V. N. Astratov



Cover

Top: Real and imaginary part of the effective refractive index estimated
from the absolute phase delay and the transmission coefficient for
polystyrene opals of different thicknesses. Experimental and theoret-
ical data are presented. More details can be found in Fig. 3.4 of this
thesis.

Bottom left: Contour plot of experimental transmittance spectra with
respect to the incidence angle for a polystyrene opal whose horizontal
layers are oriented along [100] direction of face centered cubic lattice.
In black line band structure calculation obtained by means of plane
wave expansion. More details can be found in Fig. 5.12(a) of this
thesis.

Bottom right: A schematic view of the five cylinder approximation used
in this thesis work to retrieve optical spectra for thin opal films by
means of scattering matrix method. More details can be found in
Chapt. 2.

Optical properties of opal-based photonic crystals
Alessandra Balestreri
PhD thesis - University of Pavia
Printed in Pavia, Italy, November 2007
ISBN 978-88-95767-03-1



Non chiederci la parola che squadri da ogni lato
l’animo nostro informe, e a lettere di fuoco
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Introduction

In recent years a great deal of attention has been devoted towards photonic
materials. The technology of photons, named photonics in analogy with elec-
tronics, has become the driving force for the advancement of areas such as
communications and computing, information technology and even biotechnol-
ogy, for sensing devices.

An answer to the many demands that arise in the previously cited resarch
fields can be photonic crystals (PhCs). They are the optical analogous of ordi-
nary crystals, since their periodicity in refractive index determines a structure
of allowed and forbidden bands for the light frequency dispersion with respect
to the wavevector inside the structure. When light propagation is inhibited
for any polarization and any direction inside the crystal a complete photonic
bandgap is achieved. Due to the analogy between PhCs and ordinary crystals,
the study of these artificial materials took advantage of concepts well known
in solid state physics, with the aim of investigating photonic band structure
and optical spectra and of realizing functional devices.

As it has been firstly suggested in the works of Yablonovitch [1] and John
[2], to obtain a complete control on light propagation, three dimensional (3D)
PhCs are the most appropriate structures to deal with. Nevertheless, the
realization of optical devices can be achieved even by one or two dimensional
structures.

Bragg mirrors, constituted by a periodic stacking of thin dielectric layers
usually of optical thickness λ/4, λ being the light wavelength, are the most
common example of one dimensional PhCs. A planar defect embedded between
two of these mirrors acts as an optical microcavity, leading to an enhancement
of the field intensity in the cavity region. Bragg mirrors have been studied
also as non-linear materials, as an example for second harmonic generation
[3, 4, 5, 6]. One dimensional structures do not allow the control of light prop-
agation on three dimensions, on the contrary light is confined just along the
direction perpendicular to the stacking. Thus the effectiveness of Bragg mirrors
depends strongly on incidence angle for light impinging on the layer surface:
far from normal incidence the reflectivity is very low and the device behaves
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Introduction

as a transparent medium.

More difficult to realize, two dimensional PhCs stand out for the possibility
of being applied to integrated optics and to the so-called photonic circuits. As
a matter of fact these materials can be fabricated exploiting techniques well
known in electronic, such as photo- or electron beam lithography, to realize
optical devices [7]. Among all two dimensional structures, PhCs slabs [8] are
one of the most promising devices to be employed in integrated circuits. In
these systems light is confined in the plane by the photonic structure and in
the perpendicular direction by total internal reflection due to the dielectric
discontinuity of the slab. By inserting a line or a point defect in such a crystal,
one can obtain a waveguide or an optical cavity, respectively [9, 10, 11, 12].
These can be the starting point to realize a planar integrated photonic circuit,
similar to an electronic one, realized on a silicon wafer. The difficulty lies on
avoiding out of plane losses, due to the fact that light is only partially confined
in the vertical direction [13, 14, 15, 16]. Nevertheless these losses allow to study
the photonic band structure of these systems by means of reflectivity techniques
[17, 18]. Another important class of two dimensional PhCs are photonic fibers,
which basically consist of a pure silica core surrounded by a silica-air PhC-
like material with a two dimensional pattern [19, 20, 21]. The frequency of
the guided mode lies within the band gap of the photonic structure, hence its
confinement is highly enhanced.

Concerning 3D systems, the realization of a structure presenting a complete
photonic band gap has attracted a large community of scientists. The first
success in this field was the proposal of Yablonovitch [1] of a material presenting
a face centered cubic (fcc) lattice of non-spherical objects, obtained by drilling
holes in a bulk dielectric material. Afterwards, different attempts have been
made in order to fabricate artificial materials presenting a three dimensional
pattern. Among these, artificial opals are readily available 3D PhCs as they
can be produced with easy and low cost processes based on self-assembly from
colloidal solutions, such as natural sedimentation or vertical deposition.

Bare opals consist of dielectric spheres arranged in a close-packed fcc lattice
oriented along the [111] crystallographic direction and they may be infiltrated
with high-index materials to obtain the so-called inverse opals. The latter,
provided that the index contrast is high enough, present a complete photonic
band gap as it has been demonstrated both theoretically [22] and experimen-
tally [23]. A large scientific community has investigated the optical properties
of opal-based PhCs and they have been increasingly well known over the years.
Many interesting issues can be studied in these structures: to name only a few,
we can list superprism effects [24], superluminality [25, 26, 27, 28, 29], diffrac-
tion phenomena [27, 30, 31, 32, 33] and the control of spontaneous emission
[34, 35, 36, 37].

The first works were concerned with the fundamental stop band and its evo-
lution as a function of incidence angle, with multiple peaks related to diffrac-
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Introduction

tion appearing at high angles. The advancements in self-assembly fabrication,
which lead to high-quality crystals, give the possibility to probe the optical
properties in the regions around and above the second-order stop band, oth-
erwise hidden by disorder and imperfections, where diffraction effects due to
higher-order crystalline planes come into play. A theoretical description of the
optical properties including diffraction in the high energy region is needed in
order to understand the specific features of these systems.

The aim of the present work is to introduce a reliable theoretical model
that allows to calculate optical spectra of opal-based PhCs to be compared
to experimental measurements. As a matter of fact many methods, such as
scalar wave approximation, Korringa-Kohn-Rostoker method, transfer matrix
and Finite Difference Time Domain, have been applied to the study of these
materials especially in the low energy region. Most of this methods fails in
giving results in the high energy region, or, at least, result in a time-consuming
code. Our approach allow retrieving the optical properties of bare opals even
above diffraction threshold, when the light wavelength involved is comparable
to lattice constant, without any free parameters, provided that the dielectric
contrast is not to large.

The original codes used in this thesis were developed within the group of
Prof. L. C. Andreani at Dipartimento di Fisica “A. Volta” of Università di
Pavia. In particular the scattering matrix code is due to Dr. M. Agio. Proper
modifications in order to adapt the codes to the present research subject have
been introduced.

Experimental measurements presented in the thesis have been mainly re-
alized by Dr. M. Galli, Dr. J. F. Galisteo López and Dr. M. Patrini in the
Optical Spectroscopy Laboratory at Dipartimento di Fisica “A. Volta” of Uni-
versità di Pavia. The samples whose measurements are presented in Chapt. 3
and Chapt. 5 have been grown at Instituto de Ciencia de Materiales (ICMM)
in Madrid by the group of Prof. C. López.

The work has been organized in six chapters:

• In the first Chapter an overview on the fundamental concepts that char-
acterize PhCs is presented. Their physical properties are analysed in
term of photonic band dispersion. Afterwards we restrict ourselves to
three dimensional structures, introducing the state of the art on opal-
based PhCs.

• The theoretical approach exploited in this work is explained in Chapt. 2.
Basically, after a description of the crystallographic structure of opals, we
present the plane-wave expansion and the scattering matrix, the methods
used to calculate the photonic band structure and the optical properties
such as reflectance and transmittance, respectively. The last section is
dedicated to the staircase approximation introduced to apply the scat-
tering matrix scheme to opal-based PhCs.
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• Chapter 3 deals with the optical properties of colloidal crystals in the
energy region of the first pseudogap. Firstly results on transmission and
optical phase delay at normal incidence, varying sample thickness, are
presented. From these two quantities group velocity and effective refrac-
tive index are derived and analysed in detail. All the data derived from
numerical simulations are compared with experimental measurements.
In the second section, optical properties for finite incidence angle along
ΓW direction are investigated, analysing also the role of mixing between
TE and TM polarization with respect to ΓLW plane in the first Brillouin
zone. Finally we study the threefold symmetry of the L point of the fcc
lattice: this property can be verified in opals grown along [111] direction,
with their hexagonal faces parallel to sample surface.

• Chapter 4 is addressed to photonic band structure calculations, obtained
by means of a supercell method. This scheme gives the possibility to
investigate the optical properties of a thin opal film, which can be very
different from those of a bulk PhC and to analyse the frequency dispersion
of an opal-based PhC wherein a planar defect has been introduced.

• Diffraction in opal PhCs is the subject of the last chapter, as this is
the phenomenon that dominated the optical behaviour of opals in the
high energy region. The first two sections deal with the dependence
of diffraction and transmission features on sample thickness. The Pen-
dellösung effect is a mutual interchange of energy between transmitted
and diffracted beam and it take place above diffraction threshold. In the
same energy region, when a dip in transmission occurs, for instance in the
second order stop band, a change from slow to superluminal behaviour
can be observed varying the number of layers, as explained in Sect. 5.2.
Finally, the study of optical properties of a sample whose growth is ori-
ented along [100] direction is presented: it can be seen that the spectra
are strongly influenced by the presence of diffraction.
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Chapter 1
Three-dimensional photonic
crystals: generalities and state
of the art

In this Chapter we would like to introduce the basic concepts that characterize
a particular class of periodic metamaterials, called photonic crystals (PhCs).
After a presentation of their physical properties we will restrict ourselves to
three dimensional (3D) PhCs, and finally we will present the state of the art
on self-assembled colloidal crystals, which are the subject of the present thesis
work.

1.1 The photonic band structure

PhCs are a class of artificial materials in which the dielectric function undergoes
a spatially periodic variation in either one, two or three directions: a simple
example is shown in Fig. 1.1. The length scale of this variation determines
the spectral range of interaction between the electromagnetic wave and the
structure itself.

There are strong analogies between photonic and ordinary crystals. The
spatial variation of dielectric function gives rise to effects on photons similar to
those generated by periodic atomic potential on electrons. Reflection occurring
at the interface between two different dielectric materials can create stationary
waves, due to constructive interference, and, consequently, photonic band gaps
(PBGs) and a photonic band structure analogous to the electronic one, well-
known in solid state physics [39, 40]. In particular, we can speak of a complete
PBG if a PhC can forbid light propagation in a specific range of frequencies
independently of propagation direction and polarization. A three dimensional
periodicity is needed in order to have a zero density of photonic states for a
certain frequency range, condition that leads to a complete PBG.
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1. Three-dimensional photonic crystals: generalities and state of the art

Figure 1.1: Examples of one, two and three dimensional PhCs [38].

The simplest examples of this kind of meta-materials are the so called
Distributed Bragg Reflectors (DBRs), i.e. dielectric mirrors constituted by a
periodic multilayer. These systems present a reflectivity very close to unity
in a specific range of frequencies (determined by the lattice constants and the
dielectric contrast) and incidence angles, due to constructive interference of
the reflected beams at every single interface. Hence DBRs have been exten-
sively used as dielectric mirrors since the 50s [41]. Up to here we explained
the behaviour of these objects only by using geometrical optics; changing the
point of view, we can examine DBRs as one-dimensional PhCs and study their
frequency dispersion ω(k) where ω and k are respectively the frequency and
the wavevector of light propagating inside the crystal. In particular, carrying
on the comparison with solid-state physics we can trace back the problem to
the Kronig-Penney model [40], remembering that the role of atomic potential
has been taken by dielectric function. For certain energy ranges no purely real
solutions exist and the wavevector has a non-vanishing imaginary part, mean-
ing that the wave undergoes attenuation and does not propagate through an
infinite crystal, but can only be reflected at the surface. The situation is illus-
trated in Fig. 1.2, where the opening of a PBG can be observed for increasing
values of dielectric contrast.

PhCs were first proposed in the works of Yablonovitch [1] and John [2] at
the end of the 1980s, relating their optical properties to the photonic band
structure. In the first of these two works the author studies the role of a com-
plete PBG, overlapping the electronic band gap, in suppressing spontaneous
emission, while in the other paper a new mechanism for strong Anderson local-
ization is predicted to take place in periodic structures with a specific amount
of disorder. Both papers deals with a periodic spatial variation of dielectric
function in three dimensions, more suitable in producing a complete PBG, as
written before. Since then a large amount of work has been done in this partic-
ular research field. Besides the thousands of papers that have been published
during these twenty years, there are also some books that give a complete
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1.1. The photonic band structure

Figure 1.2: The photonic band dispersion for on-axis propagation for three different
multilayer films having layers of0.5a. On the left the empty lattice model with
a dielectric constant ε = 13 is shown, in the center panel the band structure of
alternate layers of dielectric functions ε1 = 13 and ε2 = 12 and, on the right, of
dielectric functions ε1 = 13 and ε2 = 1 is presented [38].

overview of the problem. To name a few, we cite the two of them written by
Joannopoulos’s group [38, 42], the one by Sakoda [43] and some others that
give a complete overview both from a theoretical and experimental point of
view [44, 45, 46].

To study the optical properties of PhCs one has to start from Maxwell
equations (in cgs units) in a dielectric medium, assuming that free charges and
electric currents are absent:

∇ ·D(r, t) = 0, (1.1a)

∇ · B(r, t) = 0, (1.1b)

∇× E(r, t) = −1

c

∂

∂t
B(r, t), (1.1c)

∇×H(r, t) =
1

c

∂

∂t
D(r, t); (1.1d)

E and H are, respectively, the electric and magnetic field, while D and B
are the displacement and magnetic induction fields. Since we do not deal
with magnetic media, we can assume that the magnetic permeability µ is
equal to unity, as in free space. Restricting ourselves to the linear regime and
considering materials whose dielectric function is frequency independent, we
can write the two following constitutive equations:

D(r, t) = ε(r)E(r, t), (1.2)

B(r, t) = H(r, t). (1.3)
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1. Three-dimensional photonic crystals: generalities and state of the art

Assuming a harmonic time dependence for both the magnetic and electric
fields

H(r, t) = H(r)e−iωt,
E(r, t) = E(r)e−iωt,

(1.4)

we can rewrite Maxwell equations (1.1) in the following way:

∇ · D(r) = 0 , (1.5a)

∇ · H(r) = 0 , (1.5b)

∇× E(r) = −iω

c
H(r) , (1.5c)

∇× H(r) =
iω

c
ε(r)E(r) . (1.5d)

There are two ways to decouple this set of equations. On one hand, we can
write a master equation for the electric field E and subsequently derive the
magnetic field H:

∇×∇×E(r) =
ω2

c2 ε(r)E(r) , (1.6a)

H(r) = −i
c

ω
∇× E(r). (1.6b)

On the other hand, we can write an equation for the magnetic field and then
obtain the electric field:

∇×
[

1

ε(r)
∇× H(r)

]

=
ω2

c2 H(r) , (1.7a)

E(r) = i
c

ω

1

ε(r)
∇× E(r). (1.7b)

It is better to solve equation (1.7a) as it is an eigenvalue equation with a
hermitian operator. The exact solutions, apart from numerical approximation,
can be found by means of a variety of methods, the most widely used one being
plane wave expansion, described in Chapter 2.

When dealing with ordinary crystals, the electronic band structure is de-
termined starting from Schrödinger equation with a periodic potential, due to
discrete translational symmetry. The Bloch theorem, well known in solid state
physics, states that the eigenvectors of such an equation can be written as a
plane wave modulated by a function with the same periodicity as the potential.
Also in PhCs there is a discrete translational symmetry:

ε(r + ai) = ε(r), (1.8)

where ai are the elementary lattice vectors. Hence the Bloch-Floquet theorem,
the optical analogous of Bloch theorem, holds for any component of the fields
and we can write the solutions of master equation (1.7a) as:

Ψnk(r) = eik·runk(r) , (1.9)

8



1.1. The photonic band structure

where n is the index identifying the eigenvectors of the hermitian operator
involved in the master equation for magnetic field. unk(r) is a function with
the same periodicity as the lattice:

unk(r + R) = unk(r). (1.10)

Once again there is a strong analogy between electronic and photonic features.
An interesting characteristic of PhCs is the scale invariance. Suppose, as an

example, to have an electromagnetic mode H(r) of frequency ω in a dielectric
configuration ε(r). We recall the master equation (1.7a):

∇×
(

1

ε(r)
∇× H(r)

)

=
ω2

c2 H(r). (1.11)

Now we want to study the harmonic modes in a configuration that is just a
compressed or expanded version of ε(r), ε′(r) = ε(sr), for a scale parameter s.
Changing the variables in a proper way, with r′ = sr, we obtain:

s∇′ ×
(

1

ε(r′/s)
s∇′ × H(r′/s)

)

=
ω2

c2 H(r′/s). (1.12)

Dividing out the scale factor s we find:

∇′ ×
(

1

ε′(r′)
∇′ ×H(r′/s)

)

=
(ω/s)2

c2 .H(r′/s) , (1.13)

that is, if we want to know the mode profile after changing the length scale
by a factor s we just scale the old mode and its frequency by the inverse of
the same factor. This property, that does not have a counterpart in ordinary
crystals, allows us to plot photonic band structure in dimensionless units: the
most common is ωa/2πc = a/λ, where a is the lattice constant and λ the
wavelength in vacuum. From an experimental point of view, one can easily
build PhC samples in a millimeter range scale and test them in the microwave
regime, before fabricating samples with smaller size, that are usually more
difficult and expensive. Besides the scalability in space there is a scalability
in the dielectric function: two systems whose dielectric functions scale by a
factor ε′(r) = ε(r)/s2 have the dispersion relation scaled by the same factor:
ω′ = sω.

As well as one of the greatest advantage of semiconductors in electronics is
the fact that their conduction properties can be strongly modified by doping,
PhCs achieve their highest functionalities once defects are introduced in a
controlled manner. In particular, depending on the periodicity of the PhC,
planar, linear or point defect can be defined in order to create the analogous of
impurity states in semiconductors, presenting interesting physical properties.

In one dimensional PhCs a planar defect can be embedded in the periodic
stacking by varying the thickness or the refractive index of a single layer. This

9



1. Three-dimensional photonic crystals: generalities and state of the art

structure breaks the discrete translation symmetry along the stacking direction
and it give rise to a photonic state that, if it is properly tuned, may have a
frequency inside a stop band. The defect mode is usually localized inside
the defect in real space, with an evanescent field on both sides of the layers.
This state correspond to a Fabry-Pérot mode inside a dielectric microcavity,
embedded in two Bragg mirrors.

Dealing with two dimensional structures, we can introduce a point or line
defect. The first one corresponds to a situation similar to that analysed in the
previous paragraph, with the defect acting as a cavity inside the crystal. On
the other hand a line defect behaves as a waveguide for light inside the crystal,
since the photonic mode have an imaginary component of the wavevector in
the direction perpendicular to the defect, resulting in an evanescent field on
both sides of it, and a real component that allows propagation along the defect
itself.

Finally, in 3D PhCs it is possible to realize all the kinds of defects described
before. In particular the case of a planar defect will be treated in detail in
Chapt. 4, analysing the localization of the defect state by means of a supercell
approach. Moreover a point defect tuned in order to produce an allowed state
inside a complete PBG will give rise to a three dimensional optical cavity,
able to trap the light inside the crystal. Placing an emitter within this cavity
gives the possibility to study the modifications on radiation decay, due to a
strong change of the three dimensional density of states. As we will see in next
Sect. 1.3, this effect has been investigated in artificial opals.

1.2 Three-dimensional photonic crystals

Since their first proposal, a great attention has been devoted towards the fab-
rication of three-dimensional (3D) PhCs, since in principle they give the pos-
sibility of having a complete PBG. The task was not a trivial one, especially
when dealing with samples working in the optical regime, due to reduced di-
mensions. Nowadays there are several examples of 3D PhCs, which can be clas-
sified in two sets, according to the fabrication method. They can be realized
by means of top-down methods, such as lithography, holography and micro-
manipulation; otherwise they can be grown with self-assembly techniques, also
known as bottom-up methods. In the following we will briefly describe some
of the structures that can be built with these two techniques.

1.2.1 Top-down fabrication methods

The first realization of a crystal with a complete PBG was performed by
Yablonovitch [47]. The samples were fabricated drilling three tilted holes 35.26
degrees off vertical in each position of an hexagonal lattice marked on the sur-
face of a block of low loss dielectric material. The structure obtained is a
face centered cubic (fcc) lattice with a basis of non spherical atoms and has
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1.2. Three-dimensional photonic crystals

(a) (b)

Figure 1.3: (a) Schematic view of the procedure that leads to yablonovite [47]. (b)
Photonic band structure of yablonovite: the complete PBG is highlighted in yellow
[38].

taken the name of Yablonovite, in its inventor’s honor. A view of the drilling
directions is illustrated in Fig. 1.3(a), together with the photonic band struc-
ture that presents a complete PBG, shown in Fig. 1.3(b). The first samples,
with millimeter-size holes, were conceived to work in the microwave regime,
more suitable for fabrication and measurements. Exploiting the scalability of
photonic band structure, from then on many efforts have been devoted to re-
alize similar structures working in the telecommunications or optical regime
[48, 49, 50, 51, 52].

A way to proceed in the fabrication of 3D structures is to implement those
techniques that are well-known in microelectronics, such as photolithograpy
and electron beam lithography in a layer by layer approach. A famous example
of this method is the woodpile structure [53, 54], shown in Fig. 1.4(a). The
process consisted in defining a 1D array of bars in a thin layer of Silicon, the
empty space among which is subsequently backfilled with silica and planarized.
A second layer of Si is deposited and the process is repeated, drawing the bars
perpendicular with respect to the previous layer. These are backfilled and
planarized and the process starts over again. Finally the silica is removed with
selective etching and a 3D structure is obtained. A similar technique leads
to the realization of an fcc structure of cylinders [55], shown in Fig. 1.4(b):
two layers (one hole layer and one rod layer) are fabricated in one process
cycle, which consists of material deposition, aligned lithography, etching and
planarization. As a result, seven functional layers can be achieved in four
process cycles. Defects can been introduced during growth, a very important
feature for technological applications.

Holographic techniques have been studied as being able to produce ex-
tended regions of PBG materials [56, 57, 58, 59, 60, 61]. In those processes
several beams are made to interfere in the presence of a photosensitive resist
creating a pattern, fixed by polymerization. If four non-collinear beams are
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1. Three-dimensional photonic crystals: generalities and state of the art

(a)
(b)

Figure 1.4: Examples of woodpile structure [53] and of an fcc lattice made by cylin-
ders [55].

considered a 3D pattern is obtained. The period and the geometrical lattice of
the structure are determined by laser wavelength, relative phases and incidence
directions of of the beams, while the shape of the lattice basis is the result of
beam polarization.

Recently, robot manipulation allowed the realization of a diamond lattice
structure made of microspheres [62]. Two sets of microspheres, made respec-
tively of latex and silica, are arranged by means of a nano-robot in two inter-
penetrating diamond lattices, giving rise to a body centered cubic structure.
Latex spheres, acting as a scaffold for the silica structures, are removed after
growth to obtain a single diamond lattice.

1.2.2 Bottom-up fabrication methods

Self-assembly techniques are widely studied and used to fabricate 3D struc-
tures, because they are essentially inexpensive and they do not need compli-
cated processes [63]. They are based on the natural tendency of micrometric
colloidal particles of silica, polystyrene or polymethilmetacrylate to self assem-
ble in a ordered fcc lattice. An SEM image of a bare opal made of polystyrene
spheres is shown in Fig. 1.5(a). The counterpart of these methods is the un-
avoidable degree of disorder present in the samples: among the known causes
of such a phenomena, we mention the polydispersity in size of the microspheres
and the inherent stacking defects developed during the deposition process [64].
Many attempts have been made to improve the quality of the final samples
and this led to a variety of growing techniques such as sedimentation [65], even
on a patterned substrate [66], vertical deposition [67, 68], or confinement in
special cell [69, 70].

The most widely used is vertical deposition, that basically consists in sub-
merging a flat substrate in a diluted colloidal suspension and allowing the
solvent to evaporate. The forces intervening at the meniscus allow the growth
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(a) (b)

Figure 1.5: Scanning Electron Microscope (SEM) images of direct (courtesy of Dr.
Galisteo-López) and inverse opals [23].

of a close packed lattice of microspheres. Spinning techniques can be applied
to obtain a rapid fabrication in large scale, at the price of lowering sample
quality [71]. A way to decrease the disorder in samples is to direct the natural
sedimentation starting from a patterned substrate, that allows the microsphere
to be placed in the correct position avoiding stacking faults, vacancies, or lat-
tice relaxation. This process allows to grow samples oriented along directions
different from [111], that is the natural tendency of sedimentation [72].

An important issue of opal fabrication is the infiltration of the bare struc-
ture by high-index materials, leading to the so-called inverse opals shown in
Fig. 1.5(b). As a matter of fact, it has been demonstrated that a complete
PBG can open in these crystals, on the condition that index contrast is high
enough [22]: this is the situation illustrated in Fig. 1.6. Usually infiltration is
done by chemical vapor deposition, a technique well suited for using semicon-
ductors as silicon and germanium, materials with high dielectric function. In
order to increase the refractive index contrast the silica or latex spheres of the
template are removed by selective etching [73, 74, 75, 23, 68] . Inverse opals
can be obtained also by filling a bare opal with a precursor of TiO2 by precip-
itation from a liquid-phase chemical reaction and then heating the sample to
form anatase Titania and to remove the latex template [76].

Another great advantage of colloidal crystals is the possibility of introduc-
ing controlled defects, leading to the formation of localized states, possibly in
a forbidden energy region [77]. A number of different approaches for the fabri-
cation of defects in colloidal crystals have been used by different groups. These
can go from conventional photolithography based methods or direct laser writ-
ing and direct surface writing for point or line defects, spin coating techniques
[78, 79] to Langmuir-Blodgett growth [80, 81].
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Figure 1.6: Band structure of a inverse opal with air voids (εair = 1.00) embedded
in a Silicon matrix (εSi = 12.00). Notice the complete band gap for energies around
0.8ωa/(2πc).

1.3 Opal-based photonic crystals: what has

been done?

The discovery that the structure of natural precious opals consists of peri-
odically packed silica spheres goes back to the beginning of 1960s, from the
papers of J. V. Sanders and co-workers [82, 83]. Afterwards, synthetic opals
for jewelry were developed since 1970s by Pierre Gilson and few others.

As mentioned before, colloidal crystals offer now an excellent means in
controlling electromagnetic wave propagation because their fabrication is com-
paratively straightforward and basically inexpensive. Ref. [84] is the first work
that presents artificial opals as 3D PhCs for visible light, showing that their
band structure can be determined by transmission and reflection measure-
ments. Besides it is proven that their system of interconnected pores can be
infiltrated with semiconductor nanocrystals in order to study the dependence
of the PBGs on the refractive index contrast [84, 73]. From then on the optical
properties of opals have been intensively studied from an experimental point
of view, besides a large improvement in fabrication techniques.

The photonic band structure of direct and inverse opals is well known from a
variety of methods [22, 85, 86], the simplest one being 3D plane-wave expansion
[87, 38, 46], examined in Chapt. 2. The difficulty in studying these systems lies
in developing a good theoretical approach to model their optical properties,
such as reflectance, transmittance and diffraction, in the high energy regime,

14



1.3. Opal-based photonic crystals: what has been done?

where the wavelength of electromagnetic waves involved is of the same order as
the microsphere size and, consequently, as lattice constants. Many approaches
have been used to give a theoretical analysis of optical spectra and they have
been proved to give quite good results in the region of lower energy, before the
onset of diffraction. In the following we will name some of them.

First, a scalar-wave approximation [88, 89, 90, 28] is frequently employed
for a quick analysis of experimental results in the region of the first-order stop
band, even when defects are included [79]. In this approach, the electric field
in the medium is treated as a scalar rather than a vector quantity. Then it is
assumed that the conditions of the experiment strongly favor scattering off of
one particular set of lattice planes, and that the effects of all other lattice planes
may be neglected: this is justified by the fact that the Fourier coefficient of the
dielectric function expansion decreases with increasing reciprocal lattice vectors
G, i.e. only the shortest reciprocal lattice vectors contribute significantly. This
approximation is clearly unsuitable to study the effects due to higher-order
diffraction, dominant in the region of the second order stop band and above.

The finite-difference time domain (FDTD) method is widely used to study
electrodynamic problems. Maxwell’s equations (in partial differential form)
are modified to central-difference equations, discretized, and implemented in
software. The equations are solved in a leapfrog manner: the electric field
is solved at a given instant in time, then the magnetic field is solved at the
next instant in time, and the process is repeated over and over again [91].
Neglecting numerical approximation essentially due to time and space grids,
the code gives exact solutions of Maxwell equation in a variety of systems,
with either finite or infinite size. Finite structures are usually surrounded by
Perfectly Matched Layers, i.e. a numerical material which has the property
of absorbing any incoming field and hence simulate an infinite open region.
Periodic and/or symmetric boundary conditions can also be implemented. This
approach has been applied to study light propagation in 3D PhCs [92], however
it requires heavy numerical calculations, especially for thick samples. Moreover
it reproduces the optical spectra, but it gives little help in understanding the
physics underneath the experiment.

Third, the transfer matrix method [93] has been used in order to study
the optical properties of opals in the surroundings of the first pseudo-gap
[94, 95, 96]. This approach is well known from solid state physics [39, 40],
where it is usually applied to super-lattices. The transfer matrix relates the
coefficients of plane waves on the left side of a dielectric layer to the waves on
the right side. The method relies on a discretization of Maxwell equations and
on the multiple scattering formula. It presents some difficulties when dealing
with thick samples, because of numerical overflows. On the other hand, the
scattering matrix method, illustrated in Chapter 2 of this thesis, has the great
advantage of relating the incoming waves with the out-coming ones, thereby
avoiding overflows.

Fourth, the vectorial Korringa-Kohn-Rostoker (KKR) method is an accu-
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rate one for treating spherical particles in colloidal solutions [97, 98, 99, 100].
The method relies on a subdivision of the 3D structure in 2D layers of spheres
and it proved to be hard to apply to close-packed opals, in which two con-
secutive layers along the (111) direction partially overlap. Very recently this
method has given good results studying the optical response of opals intro-
ducing extinction in dielectric function of spheres to take account of intrinsic
defects that determine the shape of experimental spectra [101].

The first works on optical characterization of artificial opals were concerned
with the fundamental stop band (or Bragg peak) and its evolution as a function
of incidence angle, with multiple peaks related to diffraction appearing at high
angles [102, 30, 31, 96, 103, 104, 105]. The reason for that resides in the
fact that for higher energies the optical properties depend strongly on the
quality of the sample, because the wavelengths involved are of the order of
lattice constant. Hence, even a small amount of disorder can return in large
broadening of the peaks and a precise measurement of optical properties can
became impossible. Recently, studies on high-quality opals with large single
domains allowed a precise determination of optical spectra in the region around
and above the second-order stop band [68, 106, 107], where diffraction effects
due to higher-order crystalline planes come into play even at normal incidence.

Finally we want to name a few of the interesting issues that can be stud-
ied in opal structures. One of them is the “super-prism phenomenon”, where
the light path shows a drastic wide swing with a slight change of the incident
light angle owing to the strong modification of group velocity. Such feature
can be explained by means of equifrequency surfaces (EFS) of photonic band
structure [108]. For light travelling in a homogeneous material of index n its
EFS is a sphere described by the relation ω = ck/n, otherwise in PhCs EFS
are determined by the photonic band dispersion. When low dispersion bands,
associated to multiple diffraction, are present, the EFSs assume complicated
shapes, commonly defined as “monster”: the group velocity, that is the gradi-
ent of the frequency ∇kω with respect to the wavevector and it is thus always
perpendicular to these surfaces, can assume very different values even for close
light wavelengths and yields to the “super-prism” effect. This effect has been
shown by Kosaka et al. [109] in a 3D PhC made of alternate layers of amor-
phous Si and SiO2 on a patterned Si substrate having a hexagonal array of
holes that resemble graphite structure. Ochiai and Sánchez-Dehesa theoreti-
cally investigated the effect in opals [24]. The light propagation angle inside
the opals is determined by the group velocity vector of the bulk eigenmodes
having the strongest coupling with the incident light at the boundary of the
opal. It is found that the super-prism effect takes place quite generally in the
frequency range where many flat bands exist owing to the zone folding.

Another appealing phenomenon is superluminality. The implications on the
violation of causality principle have attracted much attention from scientific
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world and the effect has been investigated in many media [110, 111, 112].
Besides this, also slow light has been a hot topic in the last few years [113,
114, 115]. A superluminal behaviour has been proved, both theoretically and
experimentally, to exist in the first stop band of opals band structure: the
phenomenon is strictly related to the extinction occurring inside the pseudo
gap, in agreement with causality principle. This is accompanied by a very
low group velocity at the two band edges near the gap, where bands become
flat [25, 26, 27, 28, 29]. In Chapter 5, instead, we show a shift from slow to
superluminal and even negative group velocity in the second-order stop band
region: in this case the effect is related to higher order diffraction.

Many of the phenomena that can be observed in the high energy region in
bare opals are someway related to higher order diffraction and, in particular, to
the flat bands near the second order stop band [27, 30, 31, 32, 33]. In Chapter 5
we will name a few of them that can be examined with the theoretical model
developed in this thesis.

Finally, inverse opals are really a good system to investigate the inhibition
of spontaneous emission, basically because the high dielectric contrast induces
a strong modification in density of states [116]. In the works of Schriemer et al.
[34] and Koenderink et al. [35] spontaneous-emission spectra from laser dye in
PhCs made of inverse opals in Titania are presented. The latter demonstrates
the inhibition of emission up to a factor ∼ 5 over a large bandwidth of 13% of
the first order Bragg resonance frequency and experimental measurement are
supported by calculation of total density of states. Modification in spontaneous
emission have also been studied in bare opals [36, 37].
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Chapter 2
A theoretical approach to band
structure and optical properties
of opals

This chapter introduces the theoretical approach exploited in this work to study
the optical properties of opal-based photonic crystals (PhCs). The first sec-
tion is devoted to the description of the crystallographic structure of opals.
Subsequently an overview of both plane-wave expansion and scattering matrix
methods is given. These techniques are used to derive the photonic band struc-
ture and the optical properties such as reflectance and transmittance. Finally,
the staircase approximation introduced for scattering matrix calculations is pre-
sented.

2.1 The opal structure

A direct opal is a crystal made of dielectric spheres in air, which are arranged
in a face centered cubic (fcc) lattice. Usually (111) planes are parallel to the
substrate on which the sample is grown, hence the opal structure can be viewed
as a stacking of layers in a close-packed arrangement: each layer perpendicular
to the [111] direction is a triangular lattice with periodicity equal to sphere
diameter d = a/

√
2, where a is the fcc lattice constant, and it is shifted with

respect to the previous one following a sequence of ABC, ABC. . . The situation
is depicted in Fig. 2.1(a), which shows a top view of three consecutive (111)
planes. Here, it is clear that each of them is shifted along the y-direction by
a quantity equal to d/

√
3 with respect to the previous one. The equivalence

between this lattice and the fcc one (Fig. 2.1(b)), as usually shown in text
book, is not easily figured out. In Fig. 2.1(b) the [100] direction is taken as the
vertical one and the orientation of (111) planes, i.e. cube diagonal, is identified
by the same color of the spheres. Now it is easy to recognize that the fcc lattice
can be viewed as a stacking sequence of triangular layers, bearing in mind that
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Figure 2.1: Sketches of a close-packed fcc lattice as viewed from two different crys-
tallographic directions: (a) [111] direction (hexagonal face in dashed black line) and
(b) [100] direction (square centered face in dashed black line). In (a) the reference
frame used in the text is shown. Notice that the same colors (yellow, cyan and
magenta) identifies the same lattice planes in both the two drawings.

the period along the vertical direction is made of three layers instead of two,
as in the close-packed hexagonal lattice. More details about these two Bravais
lattices can be found in Appendix A.

For sake of clarity it is better to fix a reference frame that will be used
hereafter. Since the opal growth is usually oriented along the [111] crystallo-
graphic direction this will be taken as the vertical direction. Therefore, x and
y direction will be those shown in Fig. 2.1(a).

A vertical cross section of the opal structure in the yz plane is shown in
Fig. 2.2(a). It can be seen that two consecutive layers are interpenetrating,
i.e. the distance between the two is smaller than the sphere diameter. In
particular, the distance d111 between two planes of spheres along the [111]
direction is given by

d111 =

√

2

3
d =

a√
3
, (2.1)

where, as before, d is the sphere diameter and a the fcc lattice constant. A
detailed description of the region where the planes are interpenetrating, high-
lighted in Fig. 2.2(a) by two dot-dashed lines, is really important. In Section 2.4
we will see that modelling this region is essential in order to reproduce diffrac-
tion effects. A starting point in giving a picture of the interpenetration can be
the calculation of the characteristic length of this region: the height Hcap of
the sphere caps and their radius Rcap at the contact point. We obtained the
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Figure 2.2: (a) Cross-sectional view of an fcc-lattice oriented along [111] direction.
Similar colors refers to the same lattice planes shown in Fig. 2.1(a). The region
where two consecutive planes are interpenetrating is defined by two dashed-dotted
lines. The quantities Rcap and Hcap are also defined. (b) Cross section at the contact
point between spheres belonging to different planes. In dotted line sphere diameters
of two consecutive layers are presented.

following values:

Hcap =

(

1 −
√

2

3

)

d , Rcap =
d

2
√

3
. (2.2)

Figure 2.2(b) shows the particular arrangement of sphere caps in the plane
where contact points lie, i.e. halfway between the two dash-dotted line in
Fig. 2.2(a). This is the so-called graphite lattice, i.e. a triangular lattice with
a basis of two atoms per unit cell [39, 40].

The geometrical description presented in this section is essential in order to
understand the structure we have to model, especially when we need to slice
the spheres to exploit the scattering matrix formalism.

2.2 The plane-wave expansion

The plane-wave expansion [38, 46, 87] is the natural way to implement the
master equation (1.7a). Firstly, the periodic dielectric function ε(r) can be ex-
panded in a Fourier series involving plane waves. Moreover, as seen in Sect. 1.1,
the Bloch theorem states that the electric and magnetic fields can be expressed
as a plane wave modulated by a function with the same periodicity as the lat-
tice, which can also be expanded in plane waves.

The method can be applied both to two and three dimensional PhCs. In
the following we will analyse the latter example, since it is the case of the

21



2. A theoretical approach to band structure and optical properties of opals

opal arrangement. Due to its nature, the method allows to obtain photonic
band dispersion and field profile of an infinite PhCs. Finite size effects and/or
defects states can be studied by means of super-cell, as will be explained in
Chapt. 4. The convergence of the method can be quite convenient, especially
if the index contrast of the structure is not too high.

We recall here for convenience the master equation for the magnetic field
H (1.7a):

∇× [η(r)∇× H(r)] =
ω2

c2 H(r) , (2.3)

η(r) being the inverse of the dielectric function. This change will turn useful in
the following, as the way η is calculated is crucial for the method’s convergence.

Now the H field is rewritten in the way suggested by the Bloch-Floquet
theorem:

H(r) =
∑

G

H(k + G)ei(k+G)·r . (2.4)

Maxwell equations impose the magnetic field H to be transverse with respect
to the propagation direction. This means that one can project every vector
H(G) of the Fourier expansion on two orthogonal versors ê1,k+G and ê2,k+G

chosen in such a way to constitute an orthonormal tern with the vector k+G.
The magnetic field can now be expressed as follows:

H(r) =
∑

G′

(h1,k+G′ ê1,k+G′ + h2,k+G′ ê2,k+G′) ei(k+G′)·r , (2.5)

where h1,k+G and h2,k+G are the components of H(G) projected on the two
versors previously defined.

The periodicity of the dielectric function and, consequently, of its inverse
η(r) allows us to write:

η(r) =
∑

G

η̂(G)eiG·r . (2.6)

The two previous expressions, (2.5) and (2.6), substituted into the master
equation (2.3), lead to the following equation:

∑

G

η̂(G − G′)|k + G′||k + G|
[

ê2,k+G · ê′
2,k+G′ −ê2,k+G · ê′

1,k+G′

−ê1,k+G · ê′
2,k+G′ ê1,k+G · ê′

1,k+G′

] [

h1,k+G′

h2,k+G′

]

=
ω2

c2

[

h1,k+G

h2,k+G

]

, (2.7)

where G = G′ − G′′. This is an eigenvalue equation that can be solved with
standard routines for matrix diagonalization.

The dimension of the matrices involved depends on the number of recip-
rocal lattice vectors at which the field and dielectric function expansion are
truncated. If we take a number N of vectors G, linear combination of recip-
rocal lattice vectors, the problem dimensions become 2N × 2N . Moreover,
reciprocal lattice vector truncation gives rise to unavoidable numerical error.
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Figure 2.3: Schematic diagram for forward and backward propagating waves in
different layers of the structure. l = 0 label the surface, l = N the substrate of the
multilayer.

In our code the number of plane waves is usually chosen accordingly to the
symmetry of the lattice, i.e. taking into account a closed shell of n-order neigh-
bours in reciprocal lattice, represented by vectors with the same length: this
gives a reasonably small error close to the Γ point, where symmetry conditions
are fully respected.

The convergence of the method depends strongly on the way the inverse
of the dielectric function η(r) is calculated. In our code we follow the one
developed by Ho et al. [87] that guarantees a faster convergence. It consists
in calculating the Fourier transform of the dielectric function ε(r) and then
obtain his inverse η(r) imposing the condition that

η(G′′ −G) = ε−1(G′′ − G) . (2.8)

If the number of reciprocal lattice vectors taken into account was infinite, then
it would be equivalent to calculate η(r) as ε−1(r) and then derive its Fourier
transform. This is no more true when a truncation on the number of plane-
waves is needed and in this case the numerical procedure embodied in Eq. (2.8)
yields better convergence properties.

The Fourier transforms of the dielectric function ε(r) are obtained analyti-
cally and then implemented in the code. In Appendix B the basic calculations
to obtain the Fourier transform of the dielectric function of the main lattices
used in this thesis are reported.

2.3 The scattering matrix method

In this section we would like to report the basic concepts of the scattering
matrix formalism and, in particular, of the Fourier modal expansion as it has
been developed by Whittaker and Culshaw [117]. This particular formulation
allows to deal with multilayered structures with an in-plane patterning, hence it
is suitable to study the optical properties of opals, even if some approximations
are needed. It is worth mentioning that there are other formulations of the
scattering matrix method, developed in Refs. [118] and [119].

The scattering matrix method is well known in solid state physics when
dealing with multilayered structures such as superlattices, quantum wells, etc.
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The formalism is somehow similar to the transfer matrix one [40] as it is based
on a matrix built layer by layer which relates forward and backward states
on the two sides of a system, but it has the advantage of overcoming the
possible overflow problems occurring with exponentially growing components.
Both formalisms can be applied to optical systems, where the incoming and
outgoing states are represented by the electromagnetic waves.

For a finite N-layer structure, as the one shown in Fig. 2.3, we call al and
bl the coefficients of the “forward” and “backward” states, respectively, with
the former ones defined as those which propagate or exponentially decay in
the positive-z direction, from left to right in the figure, and the latter as those
which propagate or exponentially decay in the negative-z direction. Labelling
l = 0 the semi-infinite medium at the left side of the structure and l = N the
one at the right side, the scattering matrix S(0, N) relates the coefficients of
outgoing states, namely aN and b0, with those of incoming states, a0 and bN :

(

aN

b0

)

= S(0, N)

(

a0

bN

)

. (2.9)

To figure out the main difference between the two matrix methods, we report
the definition of the transfer matrix:

(

a0

b0

)

= T(0, N)

(

aN

bN

)

. (2.10)

It can be observed that this matrix relates the coefficients of the forward and
the backward states on one side of the systems to those at the opposite side.
When evanescent states are present this formalism can result in an exponential
increase of the transfer matrix elements, that is difficult to treat in numerical
calculation, resulting in overflow errors.

As in the transfer matrix scheme, one has to build the scattering matrix
of the total system layer by layer. For the subsystem between the lth and the
l′th layer, we define:

(

al

bl′

)

= S(l′, l)

(

al′

bl

)

=

(

S11 S12

S21 S22

)(

al′

bl

)

. (2.11)

The boundary conditions, that require continuity of the in-plane components
of electric and magnetic field Ex, Ey, Hx and Hy can be expressed in a matrix
relationship to give:

(

al

bl

)

= I(l + 1)

(

al+1

bl+1

)

=

(

I11 I12

I21 I22

)(

al+1

bl+1

)

, (2.12)

where I(l + 1) is the interface matrix representing the coupling at the (l + 1)
interface.

The expressions of the fields in each layer of the structure are needed in
order to define the interface matrix. The procedure developed by Whittaker
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and Culshaw [117], that we will analyse in the following, gives us the possibility
to treat a patterned multilayer, i.e. a structure where each layer is characterized
by a dielectric function ε(r) which is periodic in the plane perpendicular to the
stacking.

Exploiting this periodicity, the magnetic and electric fields can be expanded
as a sum over reciprocal lattice vectors G for a given two-dimensional Bloch
wavevector k:

H(r, z) =
∑

G

H̃(G, z)ei(k+G)·r , (2.13a)

E(r, z) =
∑

G

Ẽ(G, z)ei(k+G)·r . (2.13b)

Due to the same reasons, the dielectric function of each layer can be Fourier
transformed as follows:

ε̃(G) =
1

Ω

∫

Ω

dr ε(r)e−iG·r , (2.14)

where Ω is the area of the in-plane unit cell. It is useful to define a matrix ε̂,
such that each element ε̂GG′ = ε̃(G − G′). Also the inverse of the dielectric
function η(r) = ε−1(r) can be expressed as a Fourier expansion η̃(G) and a
similar matrix representation η̂ can be defined.

At this point it is worth stressing the two main conditions that are needed
in order to study the optical properties by means of this formalism. First of
all the same reciprocal lattice vectors must be defined in all the layers of the
structure; this means that the lattice must be the same except for the basis
vectors and/or a shift between one layer and another, since this would not result
in a change of reciprocal lattice. Second, layers must be homogeneous along
the z direction, since it is supposed that the dielectric function is periodic only
in the xy plane. While the former condition is automatically satisfied in opal
PhCs, an approximation is needed to treat the sphere, as they are obviously
non-homogeneous along the vertical direction.

Now the field expansion (2.13) must be introduced in Maxwell equations.
According to Ref. [117], we assume a harmonic time dependence for the fields,
we rescale them such that ωε0E → E and ω/c → ω, and we write the two
Maxwell curl equations as follows:

∇× H = −iεE , (2.15)

∇× E = −iω2H . (2.16)

Using the Fourier vector notation of Eqs. (2.13) and (2.14), the three compo-
nents of equation (2.15) can be expressed as:

ik̂yhz(z) − h′
y = −iε̂ex(z) , (2.17a)

h′
x(z) − ik̂xhz = −iε̂ey(z) , (2.17b)

ik̂xhy(z) − ik̂yhz(z) = −iε̂ez(z) , (2.17c)
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where h(z) = [H̃(G1, z), H̃(G2, z), . . .]. A similar expression holds also for
ê(z):

ik̂yez(z) − e′y = −iω2hx(z) , (2.18a)

e′x(z) − ik̂xez = −iω2hy(z) , (2.18b)

ik̂xey(z) − ik̂yez(z) = −iω2hz(z) . (2.18c)

k̂x and k̂y are diagonal matrices with (k̂i)GG = (ki + Gi) (i = x, y) and the
primes denotes differentiation with respect to z.

To solve the equation system in each single layer, the H field is expanded
in basis states with zero divergence:

H(r, z) =
∑

G

(

φx(G)

[

x̂− 1

q
(kx + Gx)ẑ

]

+φy(G)

[

ŷ − 1

q
(ky + Gy)ẑ

])

ei(k+G)·(r)+iqz ,

(2.19)

where x̂, ŷ and ẑ are the conventional unit vectors and φx(G), φy(G) are
expansion coefficients. A shift of the lattice origin that may occur between two
different layers will result in a phase factor that multiplies the field expansion:

H(r + r′, z) =
∑

G

H̃(G, z)ei(k+G)·r′ei(k+G)·r . (2.20)

Practically speaking, the fields inside the layer are exactly the same, apart from
a translation of the reference frame, but the phase factor has to be multiplied
by the coefficients φ(G) of the expansion when the interface matrix is built up.
A change in the basis vectors of the lattice will result simply in a change of
the dielectric function ε(r) and in its Fourier transform ε̃(G) in a given layer.

Defining the two vectors φi = [φi(G1), φi(G2), . . .]
T , where the subscript i

refers to x and y, we can translate Eq. (2.19) in the momentum representation

h(z) = eiqz

{

φxx̂ + φyŷ − 1

q
(k̂xφx + k̂yφyẑ)

}

. (2.21)

Using Maxwell equations defined in (2.17), we can write an analogous equation
for ê(z)

ê(z) =
1

q
eiqzη̂

{

[k̂yk̂xφx + (q2 + k̂yk̂y)φy]x̂

−[k̂xk̂yφy + (q2 + k̂xk̂x)φy]ŷ + q[k̂yφx − k̂xφy]ẑ
}

.

(2.22)

From the second set of Maxwell equations, namely Eq. (1.1), three identities
are obtained, the third of them being linearly dependent from the first two.
Writing the two linearly independent ones in a matrix notation the following
equation is given:
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2.3. The scattering matrix method

{(

η̂ 0
0 η̂

)[

q2 +

(

k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y

)]

+

(

k̂yη̂k̂y −k̂yη̂k̂x

k̂xη̂k̂y −k̂xη̂k̂x

)}

×
(

φx

φy

)

= ω2

(

φx

φy

)

. (2.23)

This is an eigenvalue equation for ω, that can be rewritten in a more com-
pact form, naming as H, K and K the three 2 × 2 matrices appearing in the
equation:

[

H(q2 + K) + K
]

φ = ω2φ . (2.24)

Multiplying the latter by the matrix E , i.e. the inverse of H with block diagonals
ε̂, an eigenvalue equation for q is obtained:

[

E(ω2 −K) − K
]

φ = q2φ . (2.25)

This is an asymmetric matrix eigenvalue problem, but a symmetric one can be
found by multiplying by ω2 −K and exploiting the fact that KK = 0:

[

(ω2 −K)E(ω2 −K) − ω2K
]

φ = q2(ω2 −K)φ . (2.26)

By solving this equation we obtain a set of eigenvalues qn and eigenvectors
φn that can be used as basis states to expand the field in each layer of the
structure. The orthogonality relation for these eigenvectors is given by:

φT
n (ω2 −K)φn′ = δnn′ . (2.27)

The next step towards the scattering matrix formalism is to expand the
fields into the basis set obtained a few lines earlier, from Eqs. (2.26) and
(2.27), and to express them as a combination of forward and backward prop-
agating waves with wave numbers qn, and complex amplitudes an and bn.
Then, boundary conditions at the interfaces give rise to the interface matrix
and, subsequently, to the scattering matrix of the whole system.

From Eq. (2.21) we can write
(

hx(z)
hy(z)

)

=
∑

n

(

φxn

φyn

)

(eiqnzan + eiqn(d−z)bn) , (2.28)

where d is the thickness of the layer. Notice that an is the coefficient of the
forward wave at z = 0, i.e. at the left end, and bn of the backward going wave
at z = d, i.e. at the right end. Similarly, for the electric field component we
can write:

(

−ey(z)
ex(z)

)

=
∑

n

t

(

η̂ 0
0 η̂

)[

q2
n +

(

k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y

)]

(2.29)

×
(

φxn

φyn

)

1

qn
(eiqnzan + eiqn(d−z)bn) . (2.30)
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2. A theoretical approach to band structure and optical properties of opals

Finally, combining these two equation we get:

(

e‖(z)
h‖(z)

)

=

(

(ω2 − ‖)Φq̂−1 −(ω2 − ‖)Φq̂−1

Φ Φ

)(

f̂(z)a

f̂(d − z)b

)

, (2.31)

where Φ is a matrix whose columns are the vectors φn, and q̂ and f̂ are diagonal
matrices such that q̂nn = qn and f̂nn(z) = eiqnz, respectively.

The scattering matrix is now built starting from the matrix definition given
in Eqs. (2.11) and (2.12), with a little change in interface matrix definition:

(

f̂l(dl)al

bl

)

= I(l + 1)

(

al+1

f̂l(dl)bl+1

)

=

(

I11 I12

I21 I22

)(

al+1

f̂l(dl)bl+1

)

.

(2.32)
Imposing continuity of the in-plane components Ex, Ey, Hx and Hy the inter-
face matrix is derived as follows:

I(l, l + 1) =
1

2
q̂lΦ

T
l (ω2 −Kl+1)Φl+1q̂

−1
l+1

(

1 −1
−1 1

)

1

2
ΦT

l ω2 −Kl+1Φl+1

(

1 1
1 1

)

.

(2.33)

In the case of a shift between two different plane this is the point in which
the phase factor has to be taken into account and, specifically, it has to be
multiplied to Φl and/or Φl+1. We mention here that this shift is needed since
we are assuming the preservation of inversion symmetry in each layer of the
structure under study. The following scattering matrix elements result:

S11(l
′, l + 1) = (I11 − f̂lS12(l

′, l)I21)
−1f̂lS11(l

′, l) ,

S12(l
′, l + 1) = (I11 − f̂lS12(l

′, l)I21)
−1(f̂lS12(l

′, l)I22 − I12)f̂l+1 ,

S21(l
′, l + 1) = S22(l

′, l)I21S11(l
′, l + 1) + S21(l

′, l) ,

S22(l
′, l + 1) = S22(l

′, l)I21S12(l
′, l + 1) + S22(l

′, l)I22f̂l+1 ,

(2.34)

starting from S(l’,l’)=1.
Reflectance and transmittance coefficients of the multilayered structure are

obtained from the total scattering matrix S(0, N). If light is impinging from
the left side of the medium, then a0 is obtained by the incidence geometry and
bn is equal to zero: b0 = S21(0, N)a0 represents the amplitude of the reflected
beam and aN = S11(0, N)a0 that of the transmitted beam.

From Eq. (2.31) the amplitude coefficients can be related to the in-plane
component of the field and, thus, to the incidence angle and to the polarization
of the incoming and outgoing fields. The phase delay ϕout of the outcoming
wave can be derived by means of the following relationship:

ϕout = ℑ(ln
an

a0
) . (2.35)
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2.4. Five-cylinders approximation

This quantity can give information on group velocity and effective index of the
structure under examination.

If the lattice period is short enough with respect to the wavelength of the
incident electromagnetic field, then the transmitted and reflected amplitudes
correspond to the G = 0 components of the amplitude a0, while the G 6= 0
components vanish. The transmitted and reflected beams are obtained by
taking the components corresponding to G = 0 of the coefficients aN and b0.
The situation is more complicated when diffraction occurs, i.e. when the lattice
period is large enough to give rise to scattering states. In that case reflectance
and transmittance amplitudes are derived from the components of aN and b0,
corresponding to the proper G vector. All the other components corresponding
to non evanescent waves contribute to diffraction. If all the media are lossless
then D = 1 − R − T : this is the definition for diffraction used in the rest of
the work. In a more refined treatment, diffraction channels corresponding to
different G vectors could be explicitly separated.

2.4 Five-cylinders approximation

The scattering matrix codes gives us the possibility to calculate optical prop-
erties of a system constituted by one or more dielectric layers with the two
following conditions: firstly each layer must be homogeneous along the verti-
cal direction; secondly the reciprocal lattice vectors must be the same in each
layer to exploit the Fourier modal expansion. Nevertheless this approach is
very convenient as it allows distinguish zero-order Bragg reflection and trans-
mission from higher-order processes, corresponding to diffraction in directions
other than those of the transmitted and reflected beams.

A way to overcome the first of the two conditions named above is to use a
staircase approach, and to subdivide each sphere in a set of cylindrical slices
in xy plane. Luckily, the second of the two limitations is easily satisfied,
since in each layer the spheres are arranged in a triangular lattice, even in the
interpenetration region, as we have seen in Sect. 2.1.

By means of plane wave expansion code one can calculate the photonic band
dispersion of an infinite crystal whether the lattice basis is made by spheres
or by cylinders. Hence, a comparison between the two band structure can be
used to optimize cylinder parameters or to test the validity of the approach,
since it is proved that the optical properties of PhCs are strongly dependent
on band dispersion. Once it is demonstrated that the approximation is good
enough for our purposes, the cylinder parameters are implemented in scattering
matrix code to get optical spectra, such as transmission and reflection [120].
Results obtained in this way are subsequently compared with experimental
measurements.

In the following we will analyse in detail the way the cylinders parameters
have been chosen. To give a true comparison between the different degrees
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Figure 2.4: Photonic band structure of a bare opal made of polystyrene spheres in
thick grey line. In thin red line the photonic band dispersion calculated with one-
cylinder approximation. Besides a schematic view of the main dimensions of the
cylinder used in calculation. The lengths R1 and H1 are proportional to the value
given in Eq. (2.36).

of approximation introduced, we take as a reference sample a bare opal made
of polystyrene spheres (εpoly = 2.4964) in air (εair = 1.00). Thanks to scale
invariance (see Sect. 1.1) the photonic band structure can be plotted in dimen-
sionless units, so the sphere diameter does not need to be specified.

The simplest way to implement such an approach is to substitute each
sphere constituting the actual structure with a single cylinder. In this way we
obtained a layout that is similar to the layered dielectric structure described
in Refs. [42, 121, 55]. In Fig. 2.4 results for photonic band structure are
presented; in the same figure height and radius of the cylinder are also defined.
In particular, the parameters used in calculations are:

H1 = 0.7261d , R1 = 0.4791d, (2.36)

where d is the sphere diameter. These particular values have been chosen keep-
ing constant the volume to preserve the filling fraction of the actual structure,
and varying the radius in order to fit the position of the first pseudo-gap. They
are sensitive to the dielectric function and may change corresponding to the
variation of dielectric contrast. As we can see from Figure 2.4, this approxi-
mation reproduces fairly well the photonic band structure near the first order
stop band. Practically speaking, to reproduce the band dispersion in the low
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Figure 2.5: Three-cylinders approximation. In thick grey line the photonic band
dispersion for the sphere layout is presented; in thin red line the dispersion obtained
substituting each sphere with three cylinders. Cylinders parameters are also defined.

energy range along ΓL direction two conditions are needed. The first one is
to preserve the mean effective index of the medium in order to have the same
dispersion of the bands; this is fulfilled as the filling fraction is exactly the same
in both the sphere and the cylinder layout, i.e. f = π/(3

√
2) = 0.7405; the

second one is to introduce a proper periodicity in dielectric function to open a
small gap in the L point, but this can be given also by the cylinder lattice as
the wavelengths involved in the low energy region are larger than the sphere
radius and they do not perceive, at least in first approximation, the change in
geometry.

An interesting feature to notice is the narrow gap that splits up at the X
point for the cylinders structure, while in the case of spheres the first two bands
(four, if we consider also polarization) are degenerate. A reason for this can be
the fact that the cylinder structure breaks the symmetry along [100] direction,
as the cylinder axes are tilted with respect to this direction. Furthermore even
the connection between the spheres can influence band gaps openings: as a
matter of fact in this model there are no contact points between cylinders in
the xy plane and, above all, the interpenetration region is absent. This two
aspects must be taken into account if one wants to improve the approximation.

Given that the one-cylinder approximation works quite well in low energy
region, it is worth to study the case of subdividing each sphere in a set of
three cylinders in order to extend the study of optical properties in a higher
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2. A theoretical approach to band structure and optical properties of opals

energy range. Once again cylinder parameters have been chosen in order to
better reproduce the first order stop band. The superimposed conditions are
the following: firstly the two outer cylinders have been chosen to be equal in
order to maximize the symmetry of the object substituting the sphere; secondly
the volume has been kept constant to maintain filling fraction, as in the one
cylinders approach; finally the total height of the cylinders has been fixed equal
to the distance d111, to avoid a possible overlap between cylinders. The results
are presented in Fig. 2.5 as well as the definition of the relevant dimension of
cylinders. The values used in the calculation have been taken as follow:

H1 = H3 = 0.1724 d , R1 = R3 = 0.3995 d ,
H2 = 0.4716 d , R2 = 0.4872 d .

(2.37)

It can be seen that the radius of the inner cylinder is closer to sphere radius
than the one-cylinder case, and the two outermost cylinders are smaller than
the inner one. The band structure in low energy region is once again fairly
well reproduced. Even at higher energies the model seems to better mimic
flat bands related to diffraction. Once again, it has to be noticed that at X
point a little gap, smaller than the one-cylinder case, opens up. The reason
are probably the same as described in the previous paragraph. Usually optical
properties of opals are probed along ΓL direction, as this is the natural growth
orientation, and even at finite incidence angle the ΓX direction cannot be
probed, so this feature in X point it is not particularly relevant. However the
optical properties along this direction can be probed in some particular sam-
ples, as will be shown in Section 5.3, so it may become important to improve
this approximation.

In the two previous examples the total height of the object substituting
the sphere is at most equal to the distance d111. This means that the region
highlighted in Fig. 2.2(a) is not properly introduced in the optical spectra
calculation. The problem is overcome if each sphere will be subdivided into
five slices, whose total height is made equal to sphere diameter. The two
outermost cylinders must be displaced following the graphite lattice shown in
Fig. 2.2(b).

Figure 2.6 presents results for band structure obtained with this approach;
in the same figure the relevant dimensions (cylinder radii and heights) are
defined. Following the procedure adopted for the three-cylinders case, cylinders
1 and 5 are equal, as well as cylinders 2 and 4, to preserve symmetry with
respect to the horizontal plane. The total height of the five cylinders is equal
to the sphere diameter d. The outermost cylinders (no. 1 and 5) have the same
height Hcap as the overlapping layers and the same radius Rcap as the sphere
caps at the contact point. These cylinders are arranged in a graphite lattice
shifted by Rcap = d/(2

√
3) with respect to the previous layer (see Fig. 2.2(b)),

while the three inner cylinders (2 to 4) are arranged according to the usual
triangular lattice in their respective planes. Again, the total dielectric filling
fraction is fixed to that of the spheres.
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Figure 2.6: Five-cylinder approximation. In thick grey line the photonic band dis-
persion for the sphere layout is presented; in thin red line the dispersion obtained
substituting each sphere with three cylinders. Cylinders parameters are also defined.

Once all the previous conditions are satisfied, only two degrees of freedom
for cylinder parameters are left. A fine loop on these two lengths allow to op-
timize the approximation. The best parameters are chosen by minimizing the
difference between the true energy values (i.e. the one obtained with spheres)
and the approximate ones at the Γ point in a range of dimensionless frequen-
cies up to ωa/(2πc) ≤ 2. This procedure is justified by the fact that in this
particular point of the Brillouin zone the energy values are less affected by
truncation of reciprocal lattice vectors in the plane-wave expansion, as pointed
out in Sect. 2.2.

The best choice for the cylinder parameters is as follows:

H1 = H5 = 0.1835 d , R1 = R5 = 0.2886 d ,
H2 = H4 = 0.1721 d , R2 = R4 = 0.4309 d ,
H3 = 0.2888 d , R3 = 0.5000 d .

(2.38)

The radii and heights are those defined in Fig. 2.6, where results for photonic
band dispersion are given. The radius of cylinder no. 3 turns out to be the
same as the radius of the sphere. The condition that the total height is equal
to sphere diameter is essential in order to give a good representation of light
coupling at the interfaces for an opal of finite size. In this case the interface
between air and opal (or substrate and opal) has a corrugated profile due to
sphere caps, that is reproduced, at least roughly, by the outermost cylinders.
This is certainly not the case of the one or three cylinders approximation,
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2. A theoretical approach to band structure and optical properties of opals

where there is no interpenetration region.
In Fig. 2.6 the band dispersion for the fcc structure with both spheres

and cylinders is shown. The agreement of the photonic bands is amazingly
good, even in the high-energy region (where the folding of free-photon bands
corresponds to the occurrence of diffraction) and also along directions different
from ΓL, i.e. for non-normal incidence. The overall error between the two band
dispersions does not exceed 2%: this means that the approximation error lies
within the the polydispersity of the spheres in real samples and, subsequently
within the possible experimental error.

A pretty good feature to notice is that the gap in X point is no more notice-
able: this is an effect of the improvement in modelling the sphere geometry by
a consistent number of cylindrical slices. Furthermore, the increased number
of sphere slice yields a better geometrical approximation of the sphere, hence
the cylinder parameters are less dependent on dielectric contrast between the
air and the dielectric. Due to this robustness, these are the parameters that
have been used for all the optical spectra calculations presented in this thesis.
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Chapter 3
Low-energy region: band
structure and optical spectra

In this chapter the optical properties of opal-based photonic crystals (PhCs)
in the energy region of the first pseudogap are studied. First of all results for
transmission and optical phase delay at normal incidence, varying the sample
thickness, are presented: the calculated spectra will be compared with exper-
imental measurements. Subsequently, from these two quantities the concepts
of group velocity and effective refractive index will be derived and analysed in
detail. In the second section, the optical properties for finite incidence angle
along ΓW direction will be investigated. The role of mixing between TE and
TM polarization with respect to ΓLW plane in the first Brillouin zone will also
be analysed. Finally, theoretical calculation will prove that there is a threefold
symmetry axis perpendicular to sample surface, in opals grown along [111] di-
rection and that LU and LK direction, albeit indistinguishable in reflection, are
clearly not equivalent.

3.1 Optical properties in the first pseudogap

region

By means of the scattering matrix method, involving the five-cylinder approx-
imation, described in Chapt. 2, we calculate the transmittance T (ω) and the
absolute phase delay ϕ(ω) of the light beam transmitted through the crystal.
Such quantities have been obtained for opal films having different number of
layers in order to investigate their dependence on crystal thickness. From the
absolute phase delay it is possible to derive the group velocity vg or, better, the
group index c/vg that gives information on the dynamics of light propagation
inside the crystal. Besides, the real and imaginary parts of the effective re-
fractive index neff of the structure can be retrieved from the above mentioned
quantities, allowing to analyse thoroughly the interaction between light and
crystal and, most of all, the role of structural disorder, present in real samples.
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Figure 3.1: Photonic band structure of the relaxed lattice described in the text
for a polystyrene opal (εpoly = 2.455): plotted in thick grey line is the dispersion
calculated for the sphere layout, while in thin red line are the bands obtained by
means of the five-cylinder approach. The in-plane lattice constant is assumed equal
to 730 nm, the sphere diameter d is 705 nm and the cylinder parameters are equal
to those introduced in Sect. 2.4.

These theoretical results have been compared to experimental measure-
ments presented in Ref. [29]. Employing a white light interferometry set-up
[122] in the time domain, phase delay and transmittance were recorded for
samples having an increasing number of layers in a large spectral range (from
visible to near infra-red). The samples measured consisted of artificial opals
made of polystyrene spheres, having a diameter equal to 705 nm within 3% of
polydispersity and a controlled thickness, grown on glass substrate [104].

In order to model more realistically the optical response of opal PhCs, in
the theoretical calculations the dispersion of the dielectric function εpoly(ω) of
polystyrene has been taken into account by using published data [123]. The
Bragg peak in experimental measurements is located at higher frequency with
respect to theoretical calculations performed with a face centered cubic (fcc)
lattice. This discrepancy could be reduced by assuming a smaller diameter for
the spheres, due to the scalability of the band structure, but this would lead
a value of 685 nm, at the lower limit of polydispersity. Otherwise, a slight
relaxation of the in-plane lattice, that decreases the mean refractive index, can
be considered to match the spectral position of the Bragg peak. The latter is
justified from the fact that according to diffraction measurements, the lattice

36



3.1. Optical properties in the first pseudogap region

parameter b of in-plane triangular arrangement has been observed to be equal
to 725-730 nm. These values are quite different from the sphere diameter of
705 nm, but they still remain within the limits of polydispersity. The best
agreement with experimental results is obtained leaving unchanged the dis-
tance between two consecutive layers, namely a/

√
3, a being the fcc constant,

along the vertical direction. Thus we believe that the sphere arrangement in
the sample measured presents a small deviation from a truly fcc one, probably
due to the difference in size of the spheres. While the in-plane arrangement is
dominated by larger spheres resulting in a relaxed triangular lattice, the verti-
cal stacking depends on the mean diameter value without any variation from
the actual value of a/

√
3. In order to prove the validity of the five cylinder

approximation even for this relaxed lattice, in Fig. 3.1 a comparison between
the photonic band structure calculated both for the sphere and cylinder lay-
out is presented. This relaxed lattice has to be described by an hexagonal
lattice similar to that introduced in App. A.2, hence bands are plotted along
ΓA line in the Brillouin zone: this is the direction explored in normal inci-
dence experiments and it corresponds to the ΓL direction in the fcc reciprocal
lattice. Since the hexagonal unit cell is three times larger than the fcc one,
the bands are folded three times in the figure. It should be remembered that
in the plane wave expansion method the frequency dispersion of the dielectric
function cannot be taken into account, hence we assumed a dielectric constant
εpoly = 2.455 for polystyrene, close to the phenomenological value in the sur-
roundings of the first pseudogap. The agreement between the actual band
structure and the approximated one is certainly satisfactory, even in the high-
energy region, proving the validity of our optical spectra calculations, as can
be deduced from Fig. 3.1.

3.1.1 Transmission and phase delay

From the scattering matrix code we retrieved transmittance and phase delay for
unpolarized light impinging on the sample normally to the surface. Figure 3.2
presents a comparison between the calculated and measured quantities, for
samples with an increasing number of layers, from 10 up to 40, as indicated in
the panels.

In transmittance spectra, a dip can be observed in Fig. 3.2(a) associated
to the stop band opening in the dispersion relation, at the edge of the first
Brillouin zone at the L point. The dip becomes more pronounced for thicker
samples, reaching very small values close to zero for 31 and 40 layer opal films.
The pseudogap that opens in L point is related to Bragg diffraction by the
[111] planes, parallel to sample surface: the efficiency of Bragg diffraction in-
creases with the number of layers. Eventually, in the limit of infinite crystal,
transmission vanishes because in this frequency region only wavevectors with
an imaginary component are allowed: inside the crystal there would be only
an evanescent field near the surface and light would be totally reflected. Out-
side the stop band secondary oscillations appear, clearly visible in calculated
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3. Low-energy region: band structure and optical spectra

(a)

(b)

Figure 3.2: (a) Transmission spectra and (b) absolute phase delay for polystyrene
opals, having an increasing thickness. In red line the experimental data are shown,
while in black line theoretical data obtained by means of scattering matrix calcula-
tions are presented. The opal thickness whose phase data are presented are, from
bottom to top, 10, 15, 20, 28, 31, 35 and 40 layers, respectively; transmission data
are shown only for 10, 20, 31 and 40 layer samples, as indicated. Vertical dashed
lines indicate the edges of the stop band as extracted from band calculations.

spectra, but also present in experimental measurements: they are due to the
finite size of the samples, representing interference fringes between the light
beams reflected at the air and glass interfaces of the sample, and they are usu-
ally known as Fabry-Pérot oscillations. The decreasing background present in
measured transmittance spectra, which is absent in theoretical ones, is mainly
related to structural disorder, causing light diffusion in the sample [26, 64].
The role of the unavoidable disorder present in real samples, partly due to
the dispersion in size of the spheres and partly due to the self-assembly pro-
cess, will be explored later, when dealing with the imaginary part of effective
refractive index.

Regarding Fig. 3.2(b), it can be noticed that phase delay shows a linear
behaviour, with a slope change in the region of the stop-band. For the thinner
samples the change in slope is rather small, while the phase delay becomes
flatter in this region increasing sample thickness. A similar jump is known to
occur in one dimensional PhCs [124], being a signature of Bragg diffraction in
the forbidden stop bands. In analogy to what has been said for transmittance
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3.1. Optical properties in the first pseudogap region

spectra, the change in slope of the phase delay accounts for the evolution
towards the infinite crystal behaviour, where a phase change of π across the
pseudogap is predicted [41]. Here we have to describe separately the theoretical
data and the experimental ones. In the former the phase delay is derived from
the coefficients of the light states for the incoming and outgoing waves. If the
light undergoes to a strong extinction inside the crystal the phase delay of
the outgoing states can be retrieved even if it is an evanescent state. On the
other hand in the experimental measurements phase delay is obtained from
the transmitted beam: in our case, experimental transmittance reaches very
small, but finite values, hence phase delay can be determined without losing
its meaning even in the stop band. We would like to point out here that
the calculated phase is an absolute one: it is calculated starting from ω = 0
and then is unwrapped by adding a proper multiple of 2π in order to obtain a
continuous quantity, as the values coming out of the code are contained between
−π and π. The curves obtained in this manner help in retrieving the absolute
phase measured by the interferometer, as in this case measurements start from
a finite value of frequency different from zero. Once again the agreement
between theory and experiment is excellent: only slight deviations in the low-
energy side of the pseudogap are present. These discrepancies become more
evident when dealing with group index or effective index, hence they will be
explained extensively in next subsection.

3.1.2 Group velocity and effective refractive index

From the transmittance coefficient and the absolute phase delay, either ob-
tained from numerical computation or experimentally measured, one can derive
other physical quantities, such as group velocity or effective refractive index,
which play an important role in order to clarify the dynamics of interaction
between the propagating light beam and the PhC.

The group velocity is usually defined as the speed at which the peak am-
plitude of a light pulse propagates through a medium. For an infinite PhC,
group velocity can be extracted from band dispersion considering that it is
the derivative of ω(k) with respect to k, hence it is related to the slope of
the bands [43]. On the other hand, for a finite-size PhC, the group velocity
of light travelling along the ΓL direction, that is the direction involved with
normal incidence measurements, can also be extracted from the phase delay,
as ϕ(ω) = Dk, D being the crystal thickness. In our case we derive the group
index ng, i.e. the inverse of vg, normalized to the speed of light c, as expressed
in the following relationship:

ng =
c

vg

=
c

D

dϕ

dω
. (3.1)

In an infinite PhC, when extinction is absent vg equals the energy veloc-
ity, i.e. the speed at which electromagnetic energy propagates [41]. When no
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Figure 3.3: Group index for samples having an increasing number of layers, indicated
in the panels. Horizontal dashed lines indicate the limit of superluminal velocity vg =
c. Vertical dotted lines indicate the pseudogap edges predicted by calculated bands.
Experimental data appear in red line, while theoretical calculation are presented in
black.

electromagnetic state is allowed inside the crystal, neither the group velocity
nor the energy velocity can be defined. Otherwise for a finite crystal, such as
the opal films currently investigated, light is exponentially attenuated but it
may still be transmitted through the crystal, as shown in Fig. 3.2(a), hence vg

can still be obtained from the phase delay even if it does not equal the energy
velocity [5]. Fig. 3.3 shows the frequency dispersion of ng for samples having a
different number of layers. The theoretical calculations, plotted in black line,
reproduce very well the experimental curves in the whole spectral range. The
small oscillations due to the finite thickness of the sample and related to Fabry-
Pérot fringes in reflectance and transmittance spectra, are perfectly matched
in position and intensity, besides small deviations at higher frequencies. The
main discrepancy is observed at the lower edge of the pseudogap: here the pre-
dicted value is bigger than the measured one and contrarily to experiment it
reaches a greater value with respect to the high-energy edge peak 1. A possible

1Spectral region where ng changes rapidly are present at both sides of the pseudogap
region in the experiment and correspond to water absorption [29]
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3.1. Optical properties in the first pseudogap region

explanation for this behaviour is the fact that when the group velocity is small
the time of interaction between the light and the crystal increases, hence the
possibility for light being scattered by defects inside the crystal increases. The
difference between the high-energy edge and low-energy one may be related to
the fact that the in the lower band the field is mainly confined in dielectric
medium, nevertheless it may be due also to the particular relaxed model we
assumed for the structure.

For thin opals ng has small variations, even if the Bragg peak is clearly
visible. Increasing the number of layers, two narrow peaks appear at energies
corresponding to those of the stop band edges. As mentioned before the bands
become flat in this region, consequently the group velocity slows down to very
small values: in the limit of an infinite crystal vg vanishes at the two stop band
edges. The thicker the sample, the smaller these values become: this is another
evidence supporting the evolution towards the infinite crystal behaviour.

For frequencies within the pseudogap, ng assumes values smaller than unity,
at least if the sample is thick enough. This means that group velocity is greater
than c, the speed of light in vacuum, when travelling through the crystal. As
we have seen from transmission spectra and band dispersion, in this region
the light beam undergoes a strong extinction, hence the energy values remains
below c for all frequencies, not violating the causality principle.

In order to better understand the role of disorder and the dynamics of light
interaction within the crystal we analyse the effective refractive index of the
structure, in its real and imaginary part. The complex transmission coefficient
t(ω) of a system is defined as:

t(ω) = [T (ω)]1/2eiϕ(ω) , (3.2)

where T (ω) = |t(ω)|2. Starting from the absolute phase delay ϕ(ω) and the
transmission intensity T (ω), the effective refractive index neff is given by the
following relationship:

neff = ℜ(neff) + ℑ(neff)

=
c

ωD
ϕ(ω) − i

c

2ωD
ln[T (ω)] ,

(3.3)

where D is the thickness of the sample and it has been taken equal to the
number of layers times d111 = a/

√
3, i.e. the distance between two consecutive

planes in vertical direction. The present definition for neff has been firstly
introduced by Centini and co-workers [4] to describe the optical properties of
one dimensional PhCs and it has been applied to investigate the conditions
that enhance second harmonic generation in such crystals. In this low-energy
region the optical properties of thin opal films are dominated by the vertical
periodicity, i.e. by diffraction from [111] planes, therefore the definition given
for one dimensional PhCs is a valuable tool to study the dispersive properties
of these structures. We would like to stress the fact that, unlike the definition
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3. Low-energy region: band structure and optical spectra

(a) (b)

Figure 3.4: (a) Real and (b) imaginary part of the effective refractive index esti-
mated from the absolute phase delay and the transmission coefficient for different
sample thicknesses: from bottom to up, 10, 20, 31 and 40 layers. Vertical dashed
lines indicate the edges of the stop band as extracted from band calculations. Ex-
perimental data appear in red line, while theoretical calculation are presented in
black.

given by Notomi [108], where the refractive index is derived from equifrequency
surfaces and it is a property of an infinite PhC, the present definition for
effective index accounts for dispersive properties of these finite samples along
a given direction for light propagation, normal incidence in our case.

Fig. 3.4(a) shows the real part of neff , derived both from theoretical and
from experimental absolute phase. The agreement between the two seems to
increase for thicker samples. First of all we notice that for lower frequencies
the refractive index tends to

n̄ =
√

ε̄ =
√

fεpoly + (1 − f)εair . (3.4)

where f is the filling fraction of the dielectric material, with respect to air.
For the relaxed lattice we took into consideration in theoretical calculation the
filling factor is 0.69, clearly smaller than that of a fcc lattice (ffcc = 0.74).

Then, small fringes related to Fabry-Pérot oscillations are observed in all
the spectral range, apart from the stop band. Here the slope of neff changes
its sign, revealing a region of anomalous dispersion that becomes narrower
with increasing thickness, in perfect agreement with the narrowing of Bragg
peak in transmittance spectra. A systematic discrepancy between theory and
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Figure 3.5: Evolution of the imaginary part of the effective index as a function of
the number of layers, determined from experiments: in the left panel for a frequency
inside the stop band and on the right for a frequency outside of it. The error bar in
right panel take into account the presence of Fabry-Pérot fringes.

experiment appears at the low edge of stop band, ascribable to an increased
interaction of light with the PhC which boost the effect of disorder: increasing
incoherent scattering, which does not contribute to the measured phase. More-
over the values derived from experimental data are smaller than the theoretical
ones for lower frequencies while the opposite happens for higher frequencies.
This difference is more evident for thinner samples. The phenomenon is prob-
ably due to the relaxation that occurs in these self-assembled crystals, as men-
tioned before: thinner samples presents a filling fraction that is smaller from
that assumed in numerical simulations.

The effective index is defined as a complex quantity: its imaginary part,
derived from transmission coefficient has been plotted in Fig. 3.4(b), for the
same sample thickness as Fig. 3.4(a). Theoretical calculations well reproduce
the spectral behaviour of ℑ(neff), showing a pronounced peak for frequencies
within the L-pseudogap, due to extinction in the form of Bragg diffraction.
Fabry-Pérot fringes are clearly visible outside the stop band: here the back-
ground is equal to zero for theoretical data, while it takes a finite value for
experimental ones. This behaviour is clearly due to unavoidable light diffusion
that causes a reduction of absolute transmittance. The background is absent
in the simulation as the structure presents neither defects, nor absorption.

Finally it is worth pointing out the evolution of ℑ(neff) with respect to the
number of layers for a frequency inside the stop band and one outside. With
this purpose, in Fig. 3.5 a comparison between the two situations is shown.
It is quite evident that the trend is opposite in the two cases. Inside the
pseudogap the imaginary part increases when the opal film becomes thicker,
according to the fact that the dip in transmission evolves towards the infinite
crystal model. Outside the gap the values decrease with increasing thickness,
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Figure 3.6: Band structure along the LW direction in reciprocal lattice and optical
spectra at finite incidence angle in the ΓLW plane for a polystyrene opal made of
21 layers: incident light has (a) TM polarization and (b) TE polarization. The
incidence angle θ in air increases in steps of 5 degrees. The spectra are convoluted
with a Gaussian lineshape of variance σa/(2πc) = 0.005.

proving that thicker samples are less affected by disorder. Presumably thin
opal films made of a few sphere layers are less stable and hence presents a
larger density of intrinsic defects, than thick colloidal crystals where the high
number of layers leads to a bulk fcc lattice. Moreover this decreased efficiency
of the thinner sample growth may be another reason for the relaxation of the
in-plane lattice, that would account for the discrepancy between the theoretical
and experimental value of ℜ(neff) for the 10 layer sample.

3.2 Reflectance and transmittance at finite in-

cidence angles

After a detailed analysis of the optical properties for light impinging at normal
incidence on the samples, it is worth to study, at least from a theoretical point
of view, what happens if the incidence angle is different from zero. Hence we
studied the optical properties along the ΓLW direction in Brillouin zone. This
orientation should present polarization mixing effects due to the fact that the
ΓLW is not a symmetry plane.
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3.2. Reflectance and transmittance at finite incidence angles

Hereafter we present the optical spectra in the low-energy region for a
polystyrene opal constituted by 21 layers (i.e., by 7 periods along the [111]
direction). Since we do not compare the results with experimental data, we
assumed an fcc lattice, avoiding any kind of relaxation, and we neglected fre-
quency dispersion for the polystyrene dielectric function, considering the value
εpoly = 2.49642, in such a way that optical spectra are consistent with band
structure calculations.

In Fig. 3.6 we compare the photonic band structure, calculated by means of
the five cylinder approach, along the ΓLW segment in the first Brillouin zone
with zero-order reflectance (R) and transmittance (T), as well as diffraction
(D) spectra. This quantity has been calculated as

D = 1 − R − T, (3.5)

representing the intensity of light diffracted in all directions, with the exception
of those of the reflected and transmitted beams. The spectra are calculated
for transverse magnetic (TM) and transverse electric (TE) polarizations of the
incident beam and they are taken for an incidence angle in air that increases
from 0 to 70 degrees in steps of 5 degrees. All the curves are convoluted with
a Gaussian lineshape of variance σa/(2πc) = 0.005 in order to approach ex-
perimental conditions wherein some broadening is inevitably present. We can
clearly see the Bragg peak and its frequency dispersion for different incidence
angles, in close agreement with the band structure, for both TM and TE in-
cident light. In the same figure we can also notice a peak in reflection that
crosses the pseudo-gap for incidence angles greater than 50 degrees: this fea-
ture arises from band coupling occurring near the W-point of the Brillouin
zone, related to multiple diffraction from {111} and {200} Bragg planes, as
previously observed and discussed [96, 30, 104, 105]. This is confirmed by the
examination of diffraction spectra. Between ωa/(2πc) = 1.0 and 1.2 we can see
many diffraction structures, related to flat bands in that energy region. These
structures are more visible in transmittance than in reflectance. Although
the diffracted beam subtracts intensity both to the transmitted and reflected
beams, the effect on R spectra is a minor one since reflectance is small anyway.

It has to be noticed that the labels TE and TM can be referred only to
the incident light beam: in fact, since the ΓLW plane is not a symmetry
plane of the fcc structure, there is a mixing between the two polarizations
for the outgoing light. The intensity of TM-polarized outgoing light for TE
incoming light in transmission and reflection is shown in Fig. 3.7. The incidence
angles are the same as in the previous figure and all the curves are convoluted
with the same Gaussian lineshape. It can be noticed that there is no mixing
at normal incidence, in agreement with group-theoretical considerations in

2This value for dielectric function is slightly different from that assumed in the previous
section. This is due to the fact that the polystyrene function presents a small frequency
dispersion, therefore we have chosen the value closer to that of the frequency range we are
studying.
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Figure 3.7: Mixing TE-TM, or TM-polarized outgoing light for TE-polarized incom-
ing light, for a polystyrene opal made of 21 layers. The incidence angle θ increases
in steps of 5 degrees.

the presence of a three-fold rotation axis. The TE-TM mixing is greater in
transmittance than in reflectance and it grows considerably in the same range
of angles and energies for which the diffracted intensity becomes appreciable:
thus, polarization mixing and diffraction are related to each other. Up to date,
the only experimental data available for this sample orientation [104] are not
polarization resolved, hence it would be interesting to further extend that work
in order to experimentally verify this polarization mixing.

3.3 Evidence of a threefold symmetry axis in

[111] oriented opals

In the previous section we investigated the optical properties at finite incidence
angle in the ΓLW plane of the first Brillouin zone, i.e. for light impinging on
a plane oriented as a hexagon diagonal on the sample surface. Now we want
to study the optical behaviour of an opal grown, as usual, along the [111]
direction when the plane of incidence is parallel to a hexagon apothem, as
shown in Fig. 3.8. In this case, the light wavevector lies in the ΓLU or ΓLK
plane, depending on incidence angle.

When looking at the sample surface, one may think that the six incidence
planes described by the six apothems are perfectly equivalent, or, better, con-
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Figure 3.8: (a) Schematic view of the plane of incidence employed for the calculations
shown in this section. (b) Top view of the opal structure, the incidence plane π is
depicted in dot-dashed line. (c) The Brillouin zone of the fcc lattice: high-symmetry
points used in the text are indicated. The grayed area represents the plane of the
zone corresponding to the incidence plane.

sidering the incidence plane shown in Fig. 3.8(a), that it is equivalent to im-
pinge from positive or negative incidence angle. Hereafter we will prove that
this is not true, due to symmetry features of the fcc lattice: as a matter of
fact, it is well known from group theory [43, 125], that at the L point the
symmetry point group of the Brillouin zone of an fcc lattice is D3d, hence the
cell is invariant with respect to rotations of 2π/3 angles. Moreover, the K
and U points are clearly not equivalent: this can be easily seen looking at the
Brillouin zone, shown in Fig. 3.8(c), since the former is located on the edge
between two hexagonal faces and the latter between a square and a hexagonal
one.

In Fig. 3.9 the band structure of an infinite opal made of Silica spheres3

(εSiO2
= 2.1) calculated along the ΓLUΓ line in the reciprocal lattice, high-

lighted by the red line in the picture on the right side of the figure, is presented.
Since the ΓLU plane represents a symmetry plane for the first Brillouin zone, it

3Silica opals are taken into account in this section since these results have been thought
to be compared to experimental measurements done on this particular kind of samples. We
mention here that we employed the same cylinder parameters as for polystyrene opals (see
Chapt. 2), evidencing the robustness of the approximation.
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Figure 3.9: Band structure calculated along the ΓLUΓ line in the first Brillouin
Zone, indicated on the right side. In red (green) line the modes that are even (odd)
for the mirror reflection operator with respect to the ΓLU plane.

is possible to classify the modes in the photonic band dispersion by parity with
respect to a mirror reflection operator, hence we plot the even and odd modes
by a red and a green line, respectively. Similarly in Fig. 3.10 the photonic
band dispersion has been calculated along ΓLKΓ line. It can be noticed that
the band structures are identical on the surface of the Brillouin zone (LU and
LK segments), while they are rather different when calculated inside the zone
(ΓU and Γk), especially for the flat bands in the high-energy region, which are
related to diffraction.

The difference between the two directions in reciprocal space can be de-
tected even in optical spectra, but only for transmitted light. When light of
a specific frequency propagates through the crystal it assumes a wavevector k
that is allowed from the photonic dispersion ω(k). By varying the incidence
angle different directions in reciprocal space are probed. The fact that the
component k‖ parallel to sample surface is left unchanged when crossing the
interface between the air and the opal guarantees that the light wavevector k
lies always in a well-defined plane of the reciprocal lattice, strictly related to
the plane on incidence while only its vertical component, in the present case
the projection along the ΓL direction kΓL, changes according to frequency and
incidence angle. Hence the optical behaviour for light propagating in the ΓLU
or ΓLK plane can be investigated by impinging in a plane as that shown in
Fig. 3.8 by changing from positive to negative incidence angle or by rotating
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Figure 3.10: Band structure calculated along the ΓLKΓ line in the first Brillouin
Zone, indicated on the right side. In red (green) line the modes that are even (odd)
for the mirror reflection operator with respect to the ΓLK plane.

the sample by 180 degrees. It is not so trivial to understand which of the two
planes are probed with positive or negative angles, respectively: basically it de-
pends on the stacking sequence of the sample and on the vertical component of
the incoming light wavevector. An intuitive way to identify the reciprocal lat-
tice direction probed by a particular incidence angle is to compare Fig. 3.8(b),
that shows a top view of an opal, to Fig. 3.8(c). Assuming the [111] direc-
tion as the vertical one, there are six sets of crystallographic planes, each of
them related to a hexagon edge on the surface: three sets of planes having
the spheres arranged in a square lattice, namely (200), (020) and (002) ones,
corresponding to square faces of the Brillouin zone and three sets of hexagonal
planes, namely (111), (111) and (111) ones, corresponding to the hexagonal
faces. In our case we are impinging on the top of the sample, hence the verti-
cal component of the wavevector kΓL is negative. Remembering that U and K
are exchanged on the lower face of the Brillouin zone, referring to Fig. 3.8(c),
we are probing the ΓLK (ΓLU) plane for positive (negative) incidence angle,
according to the reference frame introduced in Fig. 3.8(a). The transmitted
beam crosses the sample only in the forward direction hence it probes only
one direction in the reciprocal space, but the reflected beam propagates also
in the backward direction hence it probes the two orientations and no differ-
ence is perceived by measuring reflection with positive or negative incidence
angle. Thus if one want to observe the difference between the two directions,
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(a) (b)

(c) (d)

Figure 3.11: Contour plot of reflection intensity with respect to the incidence angle
(on x-axis) and to the frequency (on the y-axis). Results are presented for LU
and LK direction in the first Brillouin Zone and for the two light polarization, as
indicated in the insets.

transmission measurements are needed.

In Fig. 3.11 we show results for reflectance spectra in a contour plot form,
for both TE and TM polarized light and for the two sample orientations,
calculated for a 12-layer silica opal grown on a glass substrate. The Bragg
peak is clearly noticeable at normal incidence for reduced frequencies of about
0.65ωa/(2πc) and its frequency dispersion with respect to incidence angle is
plainly pointed out. At higher energies a number of peaks related to diffraction
bands are present: we will analyse these features later, since they are more ev-
ident in transmittance spectra. In the whole spectral range one can notice the
presence of Fabry-Perót fringes, due to the finite size of the sample. Neverthe-
less these spectra do not give any information about the two orientations: as
discussed before, the reflected beam probes the whole Brillouin zone and, as a
result, it does not display any difference between LU and LK directions.

On the other hand, in Fig. 3.12 contour plots of transmission intensity are
presented for TE and TM polarization and for light having a wavevector in

50
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(a) (b)

(c) (d)

Figure 3.12: Contour plot of transmission intensity with respect to the incidence
angle (on x-axis) and to the frequency (on the y-axis). Results are presented for
LU and LK direction in the first Brillouin Zone and for the two light polarization,
as indicated in the insets. Superimposed in white line photonic band dispersion
with respect to incidence angle are plotted in order to highlight the agreement with
optical spectra.

ΓLU or ΓLK plane. Superimposed on the transmittance spectra the photonic
band structures calculated along a specific line of the reciprocal lattice are
plotted with respect to the incidence angle, to show that the peak dispersion
in optical spectra is strictly related to photonic band dispersion.

For Fig. 3.12(c) and Fig. 3.12(d), the reciprocal lattice line is described by
the following points:

L = 2π
a (1/2, 1/2, 1/2) ,

U = 2π
a (1/4, 1/4, 1) ,

U′ = 2π
a (0, 0, 3/2) ,

(3.6)

where the U’ point is chosen in such a way that it lies on LU line and the
distance UU′ is double with respect to LU. The modes have been classified by
parity, hence for TE (TM) polarization we show only the odd (even) modes.
It has to be mentioned that, due to the fact that light couples to a mode with
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3. Low-energy region: band structure and optical spectra

a well-defined parity, there is no polarization mixing for incoming light having
a wavevector in this plane.

Regarding Figs. 3.12(a) and 3.12(b), band structure has been calculated
along a line joining the following points:

L = 2π
a (1/2, 1/2, 1/2) ,

K = 2π
a (3/4, 3/4, 0) ,

K′ = 2π
a (1, 1,−1/2) ,

(3.7)

where the K point is not the one defined in App. A.1, but a more convenient
one, arranged along LU line. The K’ point is chosen in such a way that it lies
on LK line and the distance KK′ is double with respect to LK.

The incidence angle has been retrieved from the wavevector k in recipro-
cal space, remembering that the in-plane momentum k‖ is preserved at the
interface between air and sample:

θin = arcsin
[ c

ω
|k − kΓL|

]

, (3.8)

where c is the speed of light in vacuum, ω the frequency of incident light and
kΓL the component of the wavevector k inside the crystal along the vertical
direction.

The comparison between bands and spectra is fairly good, especially in the
low-energy region. The discrepancies can be ascribed partly to the finite size of
the sample that has not be taken into account in band structure calculation and
partly to the fact that we show only the band structure on a plane of Brillouin
zone, while the light propagation is affected by the bands of the whole cell, as
explained before. Nevertheless the comparison gives an intuitive picture of the
origin of the transmission peaks: the Bragg peak shows a really good match
with the pseudogap at L point, while high-energy peak are related to diffraction
band presenting a low dispersion. The Fabry-Perót fringes, noticeable in the
whole spectral range of transmission plots, are related to the finite size of
the structure implemented in the scattering matrix code and hence do not
correspond to any feature of the band structure of the bulk system.

A pretty good feature to notice, that helps in distinguishing LU and LK
spectra, is indeed the Bragg peak dispersion. In particular for LK spectra we
can clearly notice the presence of an anticrossing between the Bragg peak and
a diffracted mode at about 50 degrees. For higher angles the Bragg peaks
dispersion is negative. Contrarily there is no evidence of Bragg peak for higher
angles in the LU direction spectra. As mentioned before, the U point is lo-
cated on the edge belonging to a square and a hexagonal face of the Brillouin
zone, hence if the incidence angle is high enough we are retrieving the optical
behaviour in the surroundings of a X point, where no pseudogap opens up.
On the other hand the K point lies between two hexagonal faces and for high
incidence angle we are once again close to an L point, hence we still observe a
dip in transmittance spectra.
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In conclusion, we have shown that in opal-based PhCs it is possible to
prove the non-equivalence between the U and K points of fcc Brillouin zone,
evidencing a threefold symmetry axis perpendicular to sample surface. This
property is clearly noticeable in transmittance spectra and in photonic band
structure when calculated for points inside the Brillouin zone.
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Chapter 4
Supercell calculations

In this Chapter photonic band structure calculations, performed by means of
a supercell method, will be presented. This particular procedure allows us to
study, in the first section, the photonic modes of a thin opal film, which can
be very different from those of a bulk photonic crystal (PhC). Finally we will
analyse the band dispersion of an opal-based PhC wherein a planar defect has
been introduced.

4.1 Finite-size effects

Some of the optical properties of thin opal PhCs, especially in the high-energy
region, are strongly affected by the finite and small number of layers along
vertical direction, as we will see in Chapt. 5. As reflectance and transmittance
are closely related to photonic band structure, it would be useful to determine
the band dispersion of a system presenting a finite number of layers, instead
of a bulk PhC.

Supercell schemes are well known in solid state physics, when dealing with
surface states that cannot be evaluated using standard expansion methods
with real wavevectors. In these approaches the relevant equations are solved
in the primitive unit cell and the periodicity is reckoned with Bloch theorem.
When dealing with a finite-size system, or a structure presenting an intentional
defect, the periodicity is somehow broken, at least in one dimension, and Bloch
theorem does not hold anymore: to solve the problem by means of a Fourier
expansion method, such as plane wave one, we have to introduce a fictitious
periodicity repeating the whole finite structure.

In our case opal films present a small number of layers along [111] direction,
i.e. normal to the surface, but they preserve the in-plane periodicity of dielectric
function. Hence we need to introduce a supercell with an in-plane triangular
lattice and including in the basis a number of spheres, stacked in the vertical
direction, equal to the number of opal layers and a proper air thickness on both
sides of the crystal. Moreover, as samples are usually grown on a substrate and
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Figure 4.1: Front view of the supercell representing a thin opal film embedded
in air and constituted by (a) an even number and (b) an odd number of layers.
Characteristic lengths are indicated in the two drawings.

this has to be taken into account when comparing theoretical calculations to
experimental measurements, we will also analyse the example of an asymmetric
supercell, where the crystal is sandwiched between air and a dielectric medium
constituting the substrate.

Symmetric supercell. If the opal film is simply embedded in air, its pho-
tonic band structure can be investigated by means of a symmetric supercell
containing n1 spheres, which correspond to the n1 layers of the sample, en-
closed between two air layers high enough to make negligible the interaction
between two adjacent cells. The situation is depicted in Fig. 4.1(a), for a thin
opal with an even number of layer, and in Fig. 4.1(b), for the case of an odd
number of layers. Considering opals grown along [111] crystallographic direc-
tion, the lattice cell takes the form of a sequence of hexagonal planes along
vertical direction, similar to the one presented in App. A.2, described by the
following vectors:

b1 = b (1, 0, 0) , b2 = b

(

1

2
,

√
3

2
, 0

)

, b3 = hSC (0, 0, 1) , (4.1)

where b is the lattice constant of triangular lattice and it is equal to sphere
diameter. For convenience, the two air thicknesses on both side of the crystal
has been expressed by an integer multiple, namely n2, of d111 length, in such
a way that the total height of the supercell results:

hSC = (n1 + 2n2)d111 . (4.2)

Strictly speaking the true opal and air thicknesses in the supercell are:

hop = n1d111 + Hcap and hair = 2n2d111 − Hcap, (4.3)
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4.1. Finite-size effects

where Hcap is the height of sphere caps defined in Sect. 2.1. Defining the air
thickness as a multiple of the vertical lattice constant has the advantage of
giving an intuitive picture of the characteristic lengths of the supercell.

Maintaining the cell symmetric implies real components of Fourier trans-
form and, consequently, a less time-consuming code, as it has to deal with real
matrices. Hence it is desirable to define the basis vectors in the two different
examples presented in Fig. 4.1 preserving inversion symmetry. As a matter
of fact, in the case illustrated in Fig. 4.1(a), where n1 is an even number, the
origin has to be chosen at the contact point between two spheres belonging to
consecutive layers. The basis vectors are thus defined as:

dν = b

(

0,
ν − 1/2√

3
, (ν − 1/2)

√

2

3

)

= a

(

0,
ν − 1/2√

6
,
ν − 1/2√

3

)

,

(4.4)

where a = b
√

2 is the lattice constant of the related face centered cubic (fcc)
lattice and ν = ±1, ±2, . . . ,±n1/2.

Otherwise, if the layers are in an odd number, the origin has to be taken
at the center of the sphere in the middle of the cell and the basis vectors are
given by:

dν = b

(

0,
ν√
3
, ν

√

2

3

)

= a

(

0,
ν√
6
,

ν√
3

)

,

(4.5)

where ν assumes all the integer numbers in the range [−(n1−1)/2; (n1−1)/2].

Asymmetric supercell. Let us now consider a thin opal grown on a sub-
strate. This is the situation more commonly explored in experimental mea-
surements and it has to be taken into consideration if one wants to improve
the comparison between theory and experiment.

A scheme of this supercell, for both even and odd number of layers is shown
in Fig. 4.2. The lattice and basis vectors denoting sphere positions inside the
cell are defined by Eqs. (4.1), (4.4) and (4.5), as in the previous example of a
symmetric cell. Then we have to consider two layers of the same thickness, one
on the top characterized by a dielectric function εair, the same of the medium
embedding the spheres usually represented by air, and one at the bottom with
dielectric function εsub, representing the substrate. The heights of these two
layers and of the opal sample are the following:

hsub = hair = n2d111 −
Hcap

2
,

hop = n1d111 + Hcap ,
(4.6)
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4. Supercell calculations
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Figure 4.2: Front view of the asymmetric supercell representing a thin opal film
growth on a dielectric substrate and constituted by (a) an even number and (b) an
odd number of layers. Characteristic lengths are indicated in the two drawings.

defined in such a way that, similarly to the previous case, the total height of
the cell is:

hSC = (n1 + 2n2)d111 . (4.7)

A comparison between the band structure calculated by means of the two
previously described supercells is shown in Fig. 4.3. In the two examples
the thin opal film is constituted by ten layers of polystyrene spheres in air:
in Fig. 4.3(a) the band dispersion plotted in black line has been obtained
sandwiching the crystal in n2 = 4 air layers, while in Fig. 4.3(b) the bottom
air thickness has been replaced by n2 = 4 glass layers. The value chosen for
n2 guarantees that the interaction between two consecutive crystal films are
small enough to allow the observation of the effects related to an isolated opal
film, as we will prove later on. In green line the band structure of an infinite
opal is plotted.

The bands have been calculated along ΓA direction in Brillouin zone, corre-
sponding to ΓL direction for fcc lattice. Supercell data are folded (n1 +2n2)/3
times in the reduced zone of a bulk opal since the supercell is larger than the
primitive unit cell along vertical direction. To reduce convergence errors due to
plane wave truncation in the numerical code, in all the calculations the number
of waves is chosen in such a way that all the reciprocal lattice vectors having
a modulus smaller than a specific value are taken into account. In general,
increasing the number of layers in the supercell implies a larger number of
plane waves in the expansion in order to reach the convergence, resulting in a
more time-consuming code. Nevertheless the supercell method is an effective
way to study the photonic band dispersion of a finite structure.

In the low energy region the photonic band dispersion presents the usual
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Figure 4.3: Band structure along ΓA obtained by plane-wave expansion method
using a supercell representing a 5-layer opal (black line): (a) totally embedded in air
and (b) lying on a glass substrate (εglass = 2.1). The opal film is made of polystyrene
spheres (εpoly = 2.4964) in air (εair = 1.0). In green line band structure for the bulk
structure are shown.

linear behaviour, proving that the interaction between the light and the crystal
can be described by an effective medium approach. Small gaps, ascribable to
the fictitious periodicity, open up at the edge of the Brillouin zone of the
supercell lattice. The slope of the bands is different from those of the bulk
PhC, because the average refractive index of the cell is smaller due to the
presence of air: when the dielectric substrate is present the refractive index is
closer to that of a bulk opal and the difference is reduced. Moreover it has to
be noticed that for supercell data there is a photonic mode having a frequency
within the stop band of the bulk opal: this state is a spurious effect closely
related to the fictitious periodicity introduced by the supercell. In Chapt. 3
we already analysed the fact that in this low-energy region the increase in
the number of layers leads the optical properties towards the infinite crystal
behaviour. Therefore the main interest of the supercell method lies in the study
of the optical features in the high-energy region, where out-of-plane diffraction
plays a crucial role.

It is now necessary to establish how many air and glass layers are needed in
order to really see finite-size effects in the photonic band structure. In Fig. 4.4
we present the calculations obtained by means of the asymmetric supercell
varying the thickness of the air and of the substrate. As these results will be
compared, in Chapt. 5, with optical spectra obtained with scattering matrix
method and five-cylinders approximation, we use the same approximation in
plane wave expansion. From the figure one can observe that the band corre-
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4. Supercell calculations

Figure 4.4: Photonic band structure calculations performed by means of an asym-
metric supercell by varying the air and substrate thickness: from left to right n2

assumes the values of 3, 4, 6, 8, respectively

sponding to transmitted beam is not really affected by the change of n2, the
number of air and substrate layers, apart from the fact that the filling fraction
varies and thus also the average refractive index, resulting in a slight change
of slope. This dispersive band couples in different ways with flat modes, so
this can create some changes in crossing and anticrossing positions. The lower-
energy states do not change very much from panel to panel, while the difference
is remarkable at higher energies. In particular, when passing from 3 to 4 there
is a sensitive change in position and dispersion of the modes at about 1.25 and
1.3 ωa/(2πc). When n2 is greater than 4, the number of flat states seems to
increase, but this is due only to a denser folding of the bands, as the Brillouin
zone is smaller. Hence, for our purpose, we can conclude that at n2 has to take
at least the value of 4.

Let now discuss the features of band structure in this high-energy re-
gion, i.e. above the diffraction threshold. Above the reduced frequency of
ωa/(2πc) = 1.0, flat bands arise, responsible of diffraction states. This bands
couples with the dispersive mode associated to transmission inside the crystal
resulting in a number of crossings and anticrossings that strongly affect phase
delay measurements in this high-energy region for thin film opal. In Sect. 5.2
we will analyse this particular phenomenon and we will present in detail a
comparison between supercell calculation and phase delay results obtained by
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4.2. Defect modes in direct opals

scattering matrix method in the high-energy region.

4.2 Defect modes in direct opals

Just like doping in electronic semiconductors, designed defects in PhCs offer
functionalities that are useful for integrated optics. Point defects can act as
light traps or 3D cavities for low-threshold lasers. Line defects can potentially
serve as optical waveguides, the basic building blocks of any planar integrated
optical system. Finally planar defects can give rise to allowed photon states
within the forbidden frequency range, similar to Fabry-Pérot microcavities.

The interesting role of intentional extrinsic defects in PhCs was known
since the first works in this research field [1, 2], however only in the last few
years this issue have been investigated also in self-assembled PhCs. The main
reason for this delay is the high density of intrinsic defects, which are present
in this kind of samples. Thus, before introducing new designed imperfections,
the intrinsic disorder has to be eliminated or at least strongly reduced.

Fortunately, the development of the vertical deposition method, together
with its subsequent improvements, gives the possibility to fabricate planar col-
loidal crystals with high optical quality, allowing control even on the crystal
size. Thanks to this advantage, different techniques with the aim of introduc-
ing intentional defects in opals have been developed. Polymer defect lines in
silica opals were first achieved using a multiphoton confocal laser [126]. Then
different motives have been drawn or built within colloidal crystals by a wide
variety of techniques including direct laser writing, electron beam lithography
and photolithography [127, 128, 129, 130]. Planar defects can be included in
opal PhCs employing different processes. A monolayer of spheres sandwiched
between two opal films made of spheres of different diameter can be prepared
by means of Langmuir-Blodgett technique [81, 80, 131]. Spheres and nanocrys-
tal aggregates can be incorporated by spin-coating [78]. Furhermore, planar
defects have been embedded in colloidal crystals by chemical vapor deposition
[132, 133].

Facing all these experimental advances, from a theoretical point of view it
would be useful to determine optical spectra and photonic band structure of
3D PhCs presenting controlled defects. Reliable calculations may allow the
design of extrinsic defects, helping in guiding technological efforts. So far,
optical spectra of opal films embedding a planar defect has been calculated by
means of scalar wave method [77, 79].

The supercell scheme can be exploited to study the photonic band structure
of an opal presenting point, line or planar defects. In this Section we present
a method to determine band dispersion of a bulk opal embedding a layer of a
dielectric medium.

The unit cell used to define the system in plane-wave expansion code is
depicted in Fig. 4.2. The lattice vectors describing the system are exactly the
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4. Supercell calculations

dSC

d1

d-1d-2

d2

Figure 4.5: Supercell of a opal with a planar defect embedded. Characteristic lengths
are indicated.

same of Eq. (4.1), as the in-plane pattern maintains its triangular periodicity.
The structure can be described preserving inversion symmetry, if the origin of
the unit cell is taken at the center of the defect. Hence an equal number of
spheres n1 is placed on both sides of a defect, having height hdef , according to
the following definitions for the basis vectors:

dν = b

(

0,
±ν − 1/2√

3
, (±ν − 1/2)

√

2

3
+ (1 −

√

2

3
) +

hdef

2b

)

, (4.8)

where ν goes from 1 to N1. The total height of the cell is thus:

hSC = hdef + 2n1d111 + Hcap . (4.9)

Once again we recall that each sphere can be easily substituted by a proper
number of cylindrical slices in case that the photonic results has to be strictly
compared to spectra obtained by means of scattering matrix method, where
the cylinder approximation is needed.

In order to prove the validity of our approach to study the photonic band
dispersion of a bulk opal presenting a controlled planar defect, we studied the
evolution of a defect state when the number of sphere layers in the supercell
is increased. As an example we consider a defect of height hdef = 0.3d111 and
having a dielectric function εdef = 2.56. The thickness of the defect has been
chosen in order to have a defect state inside the first pseudogap. Planar defects
made of Titania nanocrystals, which presents a refractive index similar to that
used in this example, have been recently embedded into polystyrene opals by
spin-coating techniques [78] and their optical properties have been investigated
by means of white light interferometry and a scalar wave approach [79].

In Fig. 4.6 we show the photonic band structure calculated by means of
the supercell method varying the number of sphere layers n1: from top left to
bottom right, we consider n1 = 5, 10, 15, 20, respectively. As in the previous
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Figure 4.6: Photonic band structure along ΓA in the hexagonal Brillouin zone for
an opal containing a planar defect of thickness d = 0.3 a/

√
3 with (a) 10, (b) 20, (c)

30 and (d) 40 layers of spheres between two defects.

section we plot the dispersion in a extended cell scheme, along the ΓA direction
of the Brillouin zone for the hexagonal lattice. The band structure of a bulk
opal made of polystyrene spheres is plotted in green line for comparison. Once
again, we remember that the supercell bands are folded six times due to the
fact that the reciprocal lattice length along [100] direction of the hexagonal
lattice becomes smaller for increasing number of layer.

In the first case, shown in Fig. 4.6(a), there are ten sphere layers between
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4. Supercell calculations

two consecutive defects. In the photonic band dispersion we notice the presence
of two dispersive bands, folded many times in these extended zone representa-
tion, that have the same slope as the dielectric and air bands of the bulk opal
dispersion relation. Moreover, the position of the first pseudogap of the bare
opal is closely matched by the band structure of the opal embedding a defect.
The main difference is represented by the presence of a photonic mode inside
the stop band for the latter band dispersion, that can be associated to the
presence of the planar defect. On one hand the dispersion of the air an dielec-
tric bands do not change significantly by varying the number of sphere layers
n1 of the supercell, at least resulting in a variation of the band edge position
towards a perfect matching with bulk stop band. On the other hand, the pho-
tonic state associated to the planar defect becomes flatter and flatter with the
increasing of the sphere number n1. This means that in the situation depicted
in Fig. 4.6(a) n1 is too small to prevent interaction between two consecutive
defects in the supercell lattice and a spurious effect due to delocalization of
the mode is present. At the same time, the flat band in Fig. 4.6(d) prove that
the defect state is perfectly localized inside the crystal, avoiding any spurious
effect. This evolution shown in the four panels of the figure guarantees the
validity of this supercell approach, provided a proper choice of the supercell
parameters is made.
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Chapter 5
Diffraction in opals

In this chapter we will analyse the role of diffraction in opal-based photonic
crystals (PhCs). The first two sections deal with the dependence of diffraction
and transmission features on sample thickness. The Pendellösung effect is a
mutual interchange of energy between transmitted and diffracted beam and it
takes place above the diffraction threshold. In the same energy region, when
a dip in transmission occurs, for instance in the second order stop band, a
change from slow to superluminal behaviour can be observed varying the number
of layers. This will be the subject of Sect. 5.2. Finally, the study of optical
properties of a sample whose growth is oriented along [100] direction will be
presented: it can be seen that the spectra are strongly influenced by the presence
of diffraction.

5.1 Pendellösung Effect

When the wavelength of the light impinging on the medium is nearly the same
as the lattice constant, diffraction effects may occur. In the band structure this
is viewed by low dispersive bands. This high-energy region has been scarcely
studied because it is very difficult to grow samples with a high enough quality
to measure these effects. As we saw in Chapt. 3, a low dispersive band is related
to a slow group velocity and hence to a pronounced light-matter interaction
which boosts the effect of disorder. Nevertheless the phenomena related to
diffraction are very appealing, and up to now not completely understood.

A starting point to analyse diffraction effects in opal PhCs is to study the
dependence of diffraction intensity as a function of sample thickness, i.e. of
the layer number N . In Fig. 5.1(a) the diffraction intensity in the high-energy
region is shown as a contour plot for N ranging from 1 to 40. These results
have been obtained by means of the scattering matrix method, exploiting the
five-cylinder approximation: as we did not deal with absorbing media, we
consider diffraction as D = 1 − R − T , where R and T are, respectively,
reflectance and transmittance. Nearly periodic oscillations can be noticed at
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5. Diffraction in opals

(a) (b)

Figure 5.1: (a) Diffraction and (b) transmission intensity in the high-energy region
for a polystyrene opal as a function of frequency and number of layers.

specific frequencies: they are an evidence of a mutual exchange of energy
between two or more beams inside the crystals. This effect is analogous to the
well known “Pendellösung” phenomenon, that has been extensively studied for
X-ray or neutron diffraction in ordinary crystals [134, 135, 136]. The same
phenomenon has been recently studied in 2D PhCs [137] as an effect related
to negative refraction. Figure 5.1(a) shows that the Pendellösung effect is also
present for 3D PhCs in the energy region above the diffraction cutoff, which,
for the sample under consideration grown on a glass substrate, takes place at
about 1.1ωa/(2πc)). As written in Chapt. 3, transmission measurements are
very sensitive to diffraction features, so in Fig. 5.1(b) we show a contour plot
of transmission intensity, reversing the color scale with respect to Fig. 5.1(a).
The behaviour is basically the same, apart from some differences that should
be present, as reflection does not vanish in this region.

From the two contour plots shown in Fig. 5.1 it can be noticed that the
oscillation period varies with respect to the frequency. In order to understand
this feature more clearly, we plot in Fig. 5.2(a) the diffracted intensity as a func-
tion of N for two specific reduced frequencies. Considering N as a continuous
variable, the period of oscillations is close to ∆N = 6.6 for ωa/(2πc) = 1.33
and ∆N = 8.7 for ωa/(2πc) = 1.30. Furthermore, it can be noticed that the
Pendellösung oscillations for ωa/(2πc) = 1.30 are damped. It is interesting
to relate these features to the photonic band structure. Figure 5.2(b) shows
the photonic bands that are allowed or forbidden for light coupling, due to
symmetry reasons [125]. Only coupled bands are responsible for light propa-
gation and for diffraction effects along this specific direction. In order to give
a quantitative description of the Pendellösung phenomenon, we notice that for
ωa/(2πc) = 1.33 and ωa/(2πc) = 1.30 only two photonic modes are allowed in
the crystal. In this case the period ΛPend of the oscillation of the diffraction
intensity is inversely proportional to the difference between the two relevant
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Figure 5.2: (a) Diffraction intensity as a function of the number of layers for two
different frequencies: ωa/(2πc) = 1.33 and ωa/(2πc) = 1.30, indicated in the inset.
(b) Photonic band structure along ΓL. Dots: bands that couple to incident light and
are responsible for periodicity of the diffracted intensity; thin solid lines: uncoupled
bands. The horizontal dashed-dotted lines indicate the frequencies indicated in the
left panel.

wavevectors:

ΛPend =
2π

∆k
, (5.1)

where ∆k = k2 − k1. For the case of ωa/(2πc) = 1.33, shown in the up-
per panel of Fig. 5.2(a), we get ∆k = 0.31 ·

√
3π/a = 0.97d111 which gives

ΛPend = 6.5d111, in agreement with the above value of ∆N . For the case il-
lustrated in the lower panel of Fig. 5.2(a), namely ωa/(2πc) = 1.30, we get
∆k = 0.24 ·

√
3π/a = 0.75d111, whence ΛPend = 8.4d111 which also agrees with

the period ∆N determined from the figure. Thus we conclude that the Pen-
dellösung oscillations originate from spatial beatings between the fundamental
propagating mode along the [111] direction and a diffracted mode.

It is interesting to notice that the frequency ωa/(2πc) = 1.30 is slightly
below a minimum of the allowed mode at k = 0.17

√
3π/a in Fig. 5.2(b).

Thus a single mode at k = 0.17
√

3π/a is excited, but with a small imaginary
part of the wavevector, leading to a damping of the Pendellösung oscillations
as observed in the bottom panel of Fig. 5.2(a). Moreover, when more than
two wavevectors are allowed for light coupling the situation is much more
complicated. In this case the exchange of energy is among three or more states
and it may not result in periodic oscillations when the beating periods are
incommensurate. Examples of this situation can also be recognized in Fig. 5.1.
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Figure 5.3: (a) Phase delay dependence on reduced frequency (from top panel to
bottom panel) measured for the 505nm sphere sample, for the 705nm sphere sample,
and calculated by means of scattering matrix method. The region wherein the phase
flip take place is highlighted with a grey box. (b) Transmission spectra: in blue line
those measured for sample B, in red line measured for sample A and in black line
the theoretical results. In both figures results for increasing layer number, indicated
by N are presented.

5.2 Slow to superluminal behaviour

The subject of slow and superluminal propagation of light in a medium ob-
tained a growing interest in the last century. After the theoretical prediction,
a number of experimental measurements of group velocity lying either below
or well above the causal limit of c, the light velocity in vacuum, have been
performed. An impressive issue of superluminal propagation occurs when the
group velocity of light in a medium is negative, appearing as if the pulse exits
the medium before even entering it. As a matter of fact, before the peak of the
incoming pulse enters the medium, the peak of the outgoing pulse is already
exiting it and a third pulse propagates effectively with a negative group ve-
locity inside the medium. All these features originate in a rephrasing process
caused by the negative refraction present inside the medium [138].

The two samples that have been measured for the present work and named
hereafter as sample A and B are made of polystyrene spheres with diameters
equal to, respectively, 705nm and 505 nm [139]. Samples have been grown on
a glass substrate and present (111) planes parallel to the surface with control
over the layer number [104]. The experimental set-up allows to retrieve the
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ωa/2πc

Figure 5.4: Difference between the absolute phase delay for two sample thickness,
before and after the phase flip has taken place.

intensity of both the phase delay and the transmitted beam, by means of white
light interferometry [122]. The absolute phase was obtained theoretically with
the method explained in Chapt. 3.

In Fig. 5.3(a) measured and calculated phase delay curves are shown with
respect to the reduced frequency ωa/(2πc), to point out the scalability of the
phenomenon. The two upper panels present results for samples A and B, mea-
sured for increasing thickness, going from 4 up to 9 layers. The calculated
spectra, shown in the bottom panel, are obtained by means of the scattering
matrix method, for the same thickness as in the experiment. In Fig. 5.3(b)
transmission spectra obtained with the same parameters of Fig. 5.3(a) are
shown. In order to better fit the experimental results, we introduced a disper-
sive dielectric function, derived from phenomenological data, and we took into
account a small relaxation. The model is similar to that used in Sect. 3.1: we
consider an in-plane lattice constant b = 730nm, while along the vertical direc-
tion the distance between two consecutive layer is still d111 = d

√

(2/3) where
d is the sphere diameter, as in the face centered cubic (fcc) case. As written
before, this is consistent with the polydispersity in sphere diameters. In nor-
malizing the results shown in Fig. 5.3(a) we take a equal to d

√
2, skipping the

difference of the in-plane lattice constant. The good correspondence between
theory and experiment further corroborates the approximation employed in
Chapt. 3 to fit the data in the low-energy region. Introducing an in-plane
relaxation strongly influences diffraction spectra as the onset of diffraction is
dictated by the 2D periodicity present in the (111) planes.

The theoretical results are in good agreement with experimental measure-
ments. From Fig. 5.4 it can be seen that the phase delay grows linearly, apart
from a jump at about 1.12ωa/(2πc). This jump becomes better defined with
increasing number of layers, it changes its sign and eventually becomes again
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ωa/2πc

Figure 5.5: Group index derived by phase delay according to Eq. (5.2). Results are
presented for samples A and B and for scattering matrix calculations assuming a
dispersive dielectric function for polystyrene and an in-plane relaxation.

less defined. Figure 5.4 shows the difference between the phase delay of the
two consecutive opal thickness for which the flip in sign takes place: the latter
is clearly equal to 2π.

Results for the group velocity are presented in Fig. 5.5. The group index
ng has been derived from measurements on sample A and B, from 4 up to 9
sphere layers and from the theoretical phase delay shown in Fig. 5.3(a), with in-
plane relaxation and dispersive dielectric function, according to the following
relationship:

ng =
c

vg
=

c

D

dϕ

dω
. (5.2)

The effect of the small jump in phase delay is now clearly visible. The group
index has a peak, corresponding to the phase jump at about 1.12ωa/(2πc). For
the smallest number of layers there is a small dip that assumes negative val-
ues. Increasing the layer number the peak becomes narrower, according to the
more defined jump in phase delay, and reaches a negative maximum. For the
specific number of layers at which the sign flip occurs in the phase, the group
index also changes its sign, becoming large and positive in the surroundings
of 1.12ωa/(2πc). Increasing once again the number of layer the peak remains
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Figure 5.6: Left panel: photonic band dispersion of a bulk opal made of polystyrene
spheres (refractive index n = 1.59), calculated along ΓL direction. Right panel
show the calculated phase delay for samples having from 1 up to 20 layers. Gray
boxes highlights the spectral region where only diffraction bands are present in band
structure.

positive, but becomes less defined, in accordance with phase delay curves. This
behaviour corresponds to a transition from negative values, indicating a strong
superluminal propagation, to small but positive values, i.e. the so-called slow-
light phenomenon (when the group velocity lies below c), and finally to large
and positive values, i.e. reaching superluminal values, only by varying sample
thickness. The superluminal and even negative propagation does not violate
causality principle because it occurs in a region of strong extinction where the
transmission is highly reduced in the sample, as can be seen in Fig. 5.3(b).
Moreover the fact that light is transmitted through the opal, due to the finite
size, ensures that the definition of phase delay and group index are fully valid.

A small discrepancy between theory and experiment is now evident: on the
one hand in the measured phase the flip occurs when passing from 7 and 8 lay-
ers in both samples; on the other hand in the theoretical results it takes place
between 6 and 7 layers. This can be ascribed partly to the five-cylinder ap-
proximation, that can miss some points in representing the actual symmetry of
the sample, but may be also due to the unavoidable degree of disorder present
in real samples. The latter may lead to a smoothening in the experimental
curves, but can also lead to a slight relaxation that can modify finite size ef-
fects. This hypothesis is supported by the fact that in calculating the phase
delay for the structure without relaxation and assuming a dielectric constant
for polystyrene εpoly = 2.4964, results shown in Fig. 5.6 together with band
dispersion for the infinite system, the flip is still present but it occurs between
4 and 5 layers and its energy is blue-shifted. In both experiments the flip
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Figure 5.7: In the left and right panels supercell calculations performed for samples
having 4 and 5 layers are shown. In the middle panel calculated phase delay for
samples of the same thickness.

shows a perfect scalability, hence one can guess that a systematic structural
modification of the fcc lattice, due to the growth process, occurs. Furthermore
in theoretical results many of these flips are observed. In particular, in Fig. 5.6
we highlighted in grey boxes two regions wherein the transmitted beam is ab-
sent in the bulk sample: the first one corresponds to the second order band,
while the second one to an anticrossing between the dispersive band associ-
ated to transmission and a flat band arising from out-of-plane diffraction. In
these frequency ranges there are several anomalous features in phase curves,
supporting the hypothesis that the superluminal or slow light behaviour of the
system is definitely due to higher order diffraction.

The phenomenon can be ascribed to the finite-size in the vertical direction
of the samples. To prove this we calculated the band structure of a finite
size system by implementing a supercell in plane-wave expansion method, as
described in Chapt. 4. It is well known that supercell calculations take into
account surface states, as proved in the previous chapter, so this method is the
most suitable to study the band structure of the finite systems. The supercell is
asymmetric, as the opal is surrounded by 4 equivalent layers of air on one side
and the same thickness of glass on the other side. Results for these calculations
are presented in the left and right panels of Fig. 5.7, while in the middle a close
view of the phase delay shown in Fig. 5.6 for 4 and 5 layer samples is shown. It
is now evident that phase anomalies, leading to superluminal values of group
velocity, are associated with region wherein only diffraction, indicated by the
flat bands in the frequency dispersion, is present and it is clearly ascribed to
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5.3. Optical properties along ΓX direction

the 3D periodicity. Besides the 2π flip between the two phase curves, other
phase jumps appear whenever an anticrossing or a stop band occurs in the
photonic band structure.

It is worth mentioning here that this anomalous propagation behaviour
with phase flips and the Pendellösung effect do not occur simultaneously. The
latter, in fact, is closely related to the presence of the transmitted beam inside
the sample, while the former is related only to out of plane diffraction and
it occurs in the region of the second order stop band or in correspondence to
anticrossings.

5.3 Optical properties along ΓX direction

We have hitherto analysed the optical properties along ΓL direction and its
surroundings, as these are the directions commonly investigated in experiments
such as reflectance and transmittance measurements. This is due to the fact
that opals grow preferably with (111) lattice planes parallel to the surface
and even at high-incidence angle it is impossible to probe directions such as
the 〈100〉. Studying the optical properties along directions other than those
commonly investigated may be interesting for basic knowledge, but it may also
be useful for practical purposes, such as optical device realization.

Samples oriented along different crystallographic directions may be difficult
or expensive to produce, nevertheless they can be obtained by a variety of
techniques. Firstly they can be grown on an suitably patterned substrate [69,
140, 141], resulting in high-quality but rather costly samples. Furthermore they
can be obtained by cleaving already grown opals [142] or employing spin coating
techniques [71]. Even when developing samples by vertical deposition method,
small regions presenting square faces parallel to the surface, and consequently
oriented along [100] direction, can be found.

This optical study has been done on a sample grown by vertical deposition
presenting a hundred of microns wide area where the [100] lattice planes are
parallel to the surface, as shown in Fig. 5.8. The region under study was
made by 7 layer of polystyrene spheres in air, lying on glass substrate, with a
diameter of about 505 nm. The optical measurements were collected by means
of a micro-reflectometer in a wide spectral range, from 0.4 up to 3.1eV.

Reflectance and transmission measurements have been done for two dif-
ferent sample orientations for an incidence angle going from nearly 0 to 70
degrees in steps of 5 degrees. As the [100] planes present a square lattice, the
two possible orientation are the one following a square diagonal and the one
parallel to a square edge. The main results are also presented in Ref. [143].

To better understand the experimental measurements, we performed pho-
tonic band dispersion calculations of a bulk opal made of polystyrene spheres
(εpoly = 2.53) in air.
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5. Diffraction in opals

Figure 5.8: Scanning electron microscope (SEM) image of the surface of an opal
whose horizontal layers are defined as (100) planes. (Courtesy of Dr. Galisteo-
López).

First of all we compare the band dispersion calculated along ΓX, that is
the direction described by a reciprocal vector perpendicular to (100) planes, to
reflectance and transmittance spectra, obtained for an finite incidence angle of
3 degrees, near to normal incidence. These results are presented in Fig. 5.9.

For reduced frequency below 0.9 the photonic band dispersion is analogous
to that of a transparent medium: it shows only the free-photon like bands
folded at the edge of the Brillouin zone, as we can see from Fig. 5.9. Contrarily
to other directions, such as the ΓL one, there is no pseudo gap at the X point.
It has been demonstrated [144] that this gap can be tuned in artificial opals by
varying the index contrast and we have seen in Sect. 2.4 that it opens up when
we break the spherical symmetry by substituting each spheres with one or three
cylinders. The absence of a Bragg peak, associated to a possible pseudo gap,
it is noticed also in transmittance and reflectance spectra. In this low-energy
region the former is quite high, while the latter shows the characteristic Fabry-
Pérot oscillation, due to interference between the beams reflected at the air
and substrate interfaces of the sample. The two spectra confirm the behaviour
of the sample as a transparent medium.

Above the energy of 0.9ωa/(2πc), where the wavelength of light is nearly
the same as the lattice constant, diffraction effects come into play. The band
structure presents a number of low-dispersion bands that can be ascribed to
diffraction from other crystallographic planes. In this region reflectance shows
peaks that are no more associated with Fabry-Pérot oscillations, while the
transmittance drops abruptly, presenting two strong dips in correspondence
of flat bands in the photonic frequency dispersion. Light is no more reflected
nor transmitted through the crystal, but it is diffracted in other directions,
according to the symmetry of the structure. Diffraction structures are more
visible in transmission spectra, as mentioned in Sect. 3.2, therefore the latter
is more suitable to characterize samples oriented along [100], where the optical
properties are strongly affected by diffraction bands.

74



5.3. Optical properties along ΓX direction

0.4

0.6

0.8

1.0

1.2

1.4
0.1 1

0.4

0.6

0.8

1.0

1.2

1.4

 

 

a/
2

c

X

K 0.05 0.10 0.15 0.20

Transmittance

  

 

Reflectance

Figure 5.9: Left panel: photonic band structure of a bulk opal, made of polystyrene
spheres in air along the ΓX direction in the first Brillouin zone. Right panel: re-
flectance (black line) and transmittance (red line) spectra of a 7-layer sample mea-
sured for an incidence angle of 3 degrees. The opal has the [100] planes parallel to
the surface.

Subsequently angle resolved transmission measurements for two different
sample orientations have been interpreted by means of band structure calcu-
lations performed along two proper lines in reciprocal space.

In Fig. 5.10 band dispersion calculated along the line XUU’ are presented.
The coordinates of points involved in calculations are the followings:

X = 2π
a (0, 0, 1) ,

U = 2π
a (1/4, 1/4, 1) ,

U′ = 2π
a (3/4, 3/4, 1) .

(5.3)

The U’ point is chosen in such a way that it lies on XU line and the distance
UU′ is double with respect to XU. In this way we can obtain results for all
the incidence angles probed experimentally even in the high-energy region.
A similar work has been done for the other orientation investigated in the
experiment, shown in Fig. 5.11. The broken line now is given by the following
points:

X = 2π
a (0, 0, 1) ,

W = 2π
a (1/2, 0, 1) ,

W′ = 2π
a (3/4, 3/4, 1) .

(5.4)
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Figure 5.10: Band structure calculation along the XUU’ direction in the first Bril-
louin zone, indicated in the drawing on the right, of an fcc lattice.
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Figure 5.11: Band structure calculation along the XWW’ direction in the first Bril-
louin zone, indicated in the drawing on the right, of an fcc lattice.
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(a) (b)

Figure 5.12: Contour plots of experimental transmittance spectra with respect to
incidence angle. Spectra are taken varying the incidence angle in a plane parallel
(a) to the edge of a square face and (b) to the square diagonal.

Experimental transmission spectra are presented in Fig. 5.12 in a contour
plot form to appreciate the dispersion with respect to the incidence angle.
The spectra have been taken for s-polarization and for an incidence angle
going from nearly normal incidence to 70 degrees in step of 5 degrees. Super-
imposed in the same figure, the photonic band structures with respect to the
incidence angle θin are plotted. Since the two planes ΓXU and ΓXW represent
symmetry planes for the fcc Brillouin zone and it is possible to define sym-
metric and antisymmetric modes for the bands along the direction previously
described, we represent on the countour plot only the modes with the right
parity with respect to light polarization. The incidence angle is retrieved from
the wavevector k in reciprocal space by the following relationship, remember-
ing that the in-plane momentum k‖ is preserved at the interface between air
and sample:

θin = arcsin
[ c

ω
|k − kΓX |

]

, (5.5)

where c is the speed of light in vacuum, ω the frequency of incident light and
kΓX the component of the wavevector k inside the crystal along the vertical
direction.

Starting from Fig. 5.12(a), the transmittance for s-polarization along XU
direction, i.e. parallel to square edge, is presented. There are features appearing
in the optical spectra that closely match the dispersion of the photonic bands.
In particular, in the spectral region below ωa/(2πc) = 1.0 pronounced dips
in transmission follow the dispersion of two set of bands. On the other hand,
the set of bands at higher frequencies have just a weak correspondence in
the contour plot and the experimental features do not match so accurately
the dispersion of the photonic bands. The same situation is highlighted in

77



5. Diffraction in opals

Fig. 5.12(b), where the optical measurements are taken along XW direction,
i.e. parallel to the square edge in the direct lattice. A possible reason for this
discrepancy may be the finite size of the samples. Furthermore, it is worth
noticing that the above comparison is not completely correct. As a matter
of fact, when measuring transmission the optical response of the sample is
dictated for every single frequency, by the light dispersion along a certain
vector in reciprocal space and not only by the bands on the surface of Brillouin
zone. Therefore some differences should be expected in the high-energy range.
Nevertheless the analysis presented in this Section gives useful information on
the nature of the transmission dips, that arise from flat bands and are related
to diffraction along other directions than the [100].
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Conclusions and future
perspectives

In this thesis work a theoretical approach to study the optical properties of
self-assembled colloidal crystals has been proposed. By means of this model
an extensive analysis of such photonic materials has been presented, besides
experimental measurements which demonstrate several phenomena of interest
and account for the validity of the method.

The theoretical approximation, together with a short overview on the nu-
merical methods employed in the work, has been presented in Chapt. 2. The
opal structure is a face centered cubic (fcc) lattice of dielectric spheres embed-
ded in air. The samples grown by self-assembly are usually oriented with the
[111] direction perpendicular to the substrate, hence they can be described as
a stacking of hexagonal planes properly shifted with respect to one another.

The scattering matrix has proven to be a reliable method to calculate zero
order transmission and reflection of a patterned multilayer. A staircase ap-
proximation, that consists in subdividing each spheres of the opal structure
by a set of cylindrical slices along the direction perpendicular to the sample
surface, allowed us to implement the crystal structure in the transfer matrix
code. Meanwhile the plane wave expansion is a well-established method to
derive photonic band dispersion of the actual opal structure, but also of the
approximate one, therefore it can be used to optimize the cylinder parameters.
Different degrees of approximation have been tested. Starting from a single
cylindrical slice, an approach which gives good results at normal incidence in
the region of the first pseudogap, we found surprisingly accurate results slic-
ing the sphere in five cylinders and, most of all, taking into consideration the
region wherein two consecutive planes overlap. By describing this interpene-
tration region of the real structure, our approach accounts well for out-of-plane
diffraction and thus it is suited to investigate optical properties even far from
normal incidence and even in the high-energy region, when the light wavelength
involved is of the order of the lattice constant.
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Exploiting our theoretical model we investigate the optical behaviour of
opal samples for light impinging at normal incidence and having a frequency
corresponding to the region of the first pseudogap in the L point of fcc Bril-
louin zone and its surroundings. In particular our attention was focused on
the evolution towards infinite crystal behaviour and to the dynamics of light
propagation inside the crystal considering samples of different thickness. From
the calculated transmittance and phase delay we derived the group velocity
and the effective refractive index of the opal film and we compared all these
quantities to experimental measurements. Finally we pointed out the presence
of a region of slow light at the band edges of the Bragg peak and a superlumi-
nal behaviour inside the gap, coexisting with strong extinction. An important
role is played by structural disorder that affects experimental measurements.

Moreover we investigated theoretically the transmission and reflection spec-
tra for light impinging on sample surface with a finite incidence angle in a plane
parallel to a hexagon face diagonal, i.e. LW direction in Brillouin zone. Here
we showed the existence of diffraction peaks related to low-dispersion modes in
the photonic band structure and the presence of a mixing between TE and TM
polarization. Since the ΓLW plane does not represent a symmetry plane for
the first Brillouin zone it is impossible to classify the photonic modes by par-
ity: when the incoming light couples with these modes, it loses its well-defined
polarization and the outgoing light results in a superposition of TE and TM
modes. On the other hand, the spectra obtained for an incidence plane that
is rotated by π/6 with respect to the previous one, i.e. probing ΓLU and ΓLK
plane in reciprocal lattice, evidence a threefold symmetry axis for the sam-
ple surface, corresponding to the symmetry point group at the L point. Only
transmittance point out the difference between the two orientation, that seems
to be equivalent in reflection.

In Chapt. 4 a supercell approach is employed to study finite-size effects or
defect states. The possibility of calculating the band structure of a bulk opal
presenting a planar defect may reveal itself as an effective manner to design
controlled imperfection and to understand the physics that lies beneath the
light localization by such defects.

By calculating the photonic band structure of a lattice whose primitive
cell is the finite system, embedded in air or in a dielectric medium, that we
want to study, we can identify those features which are typical of a structure
having a finite number of layers and which can be very different from those
of a bulk crystal. These features strongly affect the optical properties above
the diffraction threshold, as discussed in Chapt. 5. Firstly, we demonstrated a
periodic behaviour of diffraction and transmission with respect to the crystal
thickness. When two or more modes, one being that associated with transmit-
ted beam, are allowed for light propagation inside the opal there is a mutual
exchange of energy between the states; depending on the number of layers, the
outgoing light can be diffracted or transmitted, resulting in a periodic trend,
which is the optical analog of “Pendellösung” oscillations in the X-ray region.
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When there is no permitted mode in photonic band dispersion for the trans-
mitted beam, such as in the second pseudo gap or in some anticrossing with a
low-dispersion band, only diffraction states are allowed, resulting in a strong
extinction for light travelling through the crystal. In these region we observed
abrupt jumps both in theoretical and experimental phase delay, measured for
sample having an increasing number of layers. The group index, derived from
phase data, denoted a transition from slow to superluminal and even negative
group velocity depending on sample thickness. The latter does not represents
a violation of causality principle since we are in a region of low, but non-zero,
transmission.

Finally we studied the optical properties of a sample oriented with (100)
planes parallel to the substrate. Here we demonstrated that optical spectra
along ΓX direction and its surroundings are strongly influenced by diffraction
bands arising in the high-energy region. Moreover, the absence of a pseudogap
in X-point makes this region very different from those oriented along [111]
direction, from the point of view of optical measurements.

Albeit a lot of work has been done on self-assembled colloidal crystals
there are plenty of issues to be investigated and understood. Regarding bare
opals the high-energy region deserves a more extensive investigation, most
of all because of the improvements that have been made in sample quality.
Moreover the realization of structures embedding a line or planar defect must
be accurately characterized also from a theoretical point of view, at least as
they may be one of the basic building blocks for the foreseen optical circuits.

Our theoretical model can be further improved subdividing the sphere in a
higher number of slices and can be applied to inverse opals. The latter are very
interesting structures for physics research and even for technological implemen-
tations. The presence of a complete photonic band gap can be exploited to
study modification of spontaneous emission life time, but also to create an ideal
optical cavity, with full 3D confinement. In particular, the scattering matrix
method can be properly extended to study spontaneous emission processes,
hence our approach can be fully exploited to analyse this kind of experiments.
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Appendix A
Geometrical description of the
opal lattice

In this appendix we would like to recall some details about the sphere ar-
rangement in opals photonic crystals. The face centered cubic (fcc) and the
hexagonal close-packed (hcp) lattice are described by means of their primitive
vectors. The respective reciprocal lattice vectors are given, together with the
high-symmetry points of the first Brillouin zone. Finally a brief overview on
the two dimensional graphite lattice is presented, as it is needed when dealing
with the five cylinders approximation.

A.1 The face centered cubic lattice

The fcc lattice is obtained by repeating periodically in space a cubic cell of
edge a with spheres at the corners and at the center of the faces. The primitive
vectors of the fcc Bravais lattice, expressed in a Cartesian reference frame, are:

a1 =
a

2
(0, 1, 1) , a2 =

a

2
(1, 0, 1) , a3 =

a

2
(1, 1, 0) , (A.1)

and they are shown in Fig. A.1(a). The volume of the primitive cell is Ω = a1 ·
(a2×a3) = a3/4. The coordination number of the fcc structure, i.e. the number
of nearest neighbours, is twelve: choosing the origin in a lattice site, these
nearest neighbours are located in the positions (a/2)(0,±1,±1) and cyclic
permutations.

The primitive vectors of the reciprocal lattice can be found by means of
the following expressions:

g1 =
2π

Ω
a2 × a3 , g2 =

2π

Ω
a3 × a1 , g3 =

2π

Ω
a1 × a2 . (A.2)

In particular, for the fcc case, one obtains:

g1 =
2π

a
(−1, 1, 1) , g2 =

2π

a
(1,−1, 1) , g3 =

2π

a
(1, 1,−1) . (A.3)
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Figure A.1: (a) Fcc lattice and primitive translation vectors a1, a2 and a3 given in
Eqs. (A.1). (b) Brillouin zone of the fcc structure. The high-symmetry points are
also indicated.

Once the reciprocal lattice is known one can define the first Brillouin zone
(or simply the Brillouin zone), that has the property that any point of the
cell is closer to the chosen lattice point, taken as the origin (g ≡ 0), than to
any other. The Brillouin zone of the fcc lattice is the truncated octahedron
shown in Fig. A.1(b). Here we list the coordinates of the high-symmetry points
labelled in the figure:

Γ = 2π
a (0, 0, 0) , X = 2π

a (1, 0, 0) ,

L = 2π
a (1/2, 1/2, 1/2) , W = 2π

a (1, 1/2, 0) ,

U = 2π
a (1/4, 1/4, 1) , K = 2π

a (3/4, 0, 3/4) .

(A.4)

Γ indicates the center of Brillouin zone and, consequently, the origin of the
reciprocal lattice. The X point is the center of a square face, so there are six
degenerate X points. W point is a corner of the zone and there are 24 of them.
Points U and K are both placed at the center of the hexagon edge but they are
not equivalent, as demonstrated in Sect. 3.3, since the former is also the center
of a square edge. Usually the band dispersion is plotted along high-symmetry
lines, joining two of the previous listed points, of the first Brillouin zone.

Every reciprocal lattice vector Gm = m1g1 + m2g2 + m3g3, where m1, m2

and m3 are integer numbers having no common divisor, is normal to a family
of parallel and equidistant planes containing all the direct lattice points. This
bijective correspondence allows us to label each family of parallel planes in the
direct lattice by means of the tern of integers m1, m2 and m3, also known as
Miller indices, of the reciprocal lattice vectors perpendicular to them. Standard
notation indicates with round brackets a particular family of planes and with
square brackets the direction normal to them. As an example, for an fcc lattice
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Figure A.2: (a) Fcc lattice viewed as an hexagonal close-packed lattice. Primitive
translation vectors b1, b2 and b3 and basis vectors d1, d2 and d3 given in Eqs. (A.8)
are indicated. (b) Brillouin zone of the hcp structure. The main high-symmetry
points are labelled.

the (111) planes are perpendicular to the cube diagonal and to the reciprocal
lattice vectors that identifies ΓL line in Brillouin zone, while the [100] follows
ΓX line and in direct lattice is parallel to cube edge.

A.2 The hexagonal close packed structure

The hexagonal arrangement that is usually presented in text books is described
by the following primitive vectors, in Cartesian coordinates:

b1 = b (1, 0, 0) , b2 = b

(

1

2
,

√
3

2
, 0

)

, b3 = c (0, 0, 1) , (A.5)

with two basis vectors defining the stacking sequence in the z direction:

d1 = (0, 0, 0) , d2 =

(

0,
b√
3
,
c

2

)

. (A.6)

In the close packing situation, a particular case of hexagonal lattice wherein
each lattice site is occupied by hard spheres touching each other, the lattice
constant b is equal to sphere diameter and c =

√

8/3 b. The stacking of the
planes follows the sequence AB, AB, . . .
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The fcc structure is another case of a close-packed arrangement. The (111)
planes, i.e. those perpendicular to cube diagonal, have their sites arranged in
a triangular lattice and their stacking sequence along the [111] direction is
ABC, ABC . . . The lattice vectors describing the structure are the same as
Eq. (A.5), where the lattice constant in the vertical direction c is equal to√

6 b. This situation is depicted in Fig. A.2(a). It is worth noticing that the
sphere diameter b in the opal structure is equal to 1/

√
2 times the fcc lattice

constant a. It can be useful to describe the fcc lattice in terms of a stacking of
hexagonal planes, as the opals are commonly grown with (111) planes parallel
to the substrate. The unit cell volume of such a layout is

Ω =
3
√

3

2
b3 =

3

4
a3 , (A.7)

i.e. three times the volume of the fcc unit cell. The sphere arrangement is then
reproduced by means of three basis vectors, depicted in Fig. A.2(a):

d1 = (0, 0, 0) , d2 = b

(

0,
1√
3
,

√

2

3

)

, d3 = b

(

0,− 1√
3
, 2

√

2

3

)

, (A.8)

or, to preserve the inversion symmetry:

d1 = (0, 0, 0) , d2 = b

(

0,
1√
3
,

√

2

3

)

, d3 = b

(

0,− 1√
3
,−
√

2

3

)

. (A.9)

In other words, the three planes are shifted with respect to the previous ones
along the y direction by a quantity equal to 1/

√
3.

Eqs. (A.2) allow us to derive the reciprocal lattice vectors of this particular
hexagonal structure:

g1 =
2π

b

(

1,− 1√
3
, 0

)

, g2 =
2π

b

(

0,
2√
3
, 0

)

, g3 =
2π

b

(

0, 0,
1√
6

)

.

(A.10)
They still describe a hexagonal lattice, whose Brillouin zone is depicted in
Fig. A.2(b). The coordinates of the high-symmetry points are the followings:

Γ = 2π
b

(0, 0, 0) , A = 2π
b

(

0, 0, 1√
6

)

,

M = 2π
b

(

0, 1√
3
, 0

)

, L = 2π
b

(

0, 1√
3
, 1√

6

)

,

K = 2π
b

(

1
3 , 1√

3
, 0

)

, H = 2π
b

(

1
3 , 1√

3
, 1√

6

)

.

(A.11)

As in the previous case the Γ point is the center of the Brillouin zone, while
the A point is the center of the hexagonal face. The center of a lateral face of
the prism is labelled with the letter M. L is the midpoint of an hexagon edge,
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Figure A.3: Two dimensional graphite lattice. The primitive translation vectors t1

and t2 and the basis vectors d1 and d2, given in the text, are also indicated.

while K is the midpoint of a rectangle edge. Finally, H point indicates a vertex
of the prism.

It has to be mentioned here that the only way to introduce the relaxed
structure employed in Sect. 3.1 and in Sect. 5.2 in the plane wave expansion
code is to describe the sphere layout as an hexagonal stacking sequence, where
the distance between two consecutive planes is equal to a/

√
3 as in the fcc

lattice and the in-plane lattice constant assumes a proper value greater that
the sphere diameter.

A.3 The graphite lattice

As discussed in Sect. 2.1, within the interpenetration region between two con-
secutive (111) planes, the sphere caps of the opal structure are arranged in
a graphite lattice. Moreover, the outermost cylinders in the five-cylinder ap-
proximation are displaced following the same layout. Hereafter we will give
the geometrical parameters of this lattice.

The two dimensional graphite structure, illustrated in Fig. A.3, is a compo-
site one and consists of two identical triangular sublattices (plotted with closed
and open points for clarity). Therefore the primitive vectors are the same as
the hexagonal lattice:

t1 = b

(

1

2
,

√
3

2

)

t2 = b

(

−1

2
,

√
3

2

)

, (A.12)

with the choice of axes indicated in the figure. The two vectors describing the
basis are the followings:

d1 = 0 d2 = b

(

0,
1√
3

)

. (A.13)

It would be impossible to define this lattice, also known as honeycomb
structure, by means of a single basis vector. If so a translation vector joining
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A. Geometrical description of the opal lattice

an atom with any of its first neighbours would have his opposite pointing at
the center of an hexagon, where no atoms exists.

In our particular case, the two basis vectors identifies the sphere caps, or
the cylinders, belonging to the upper and lower interpenetrating layers. Notice
that in the sphere layout the inversion symmetry is broken by the fact that
the cap radii changes across the vertical direction and they are equal only
in the contact point. On the other hand the five-cylinder layout preserves
the inversion symmetry as the radii are always identical. This property is
essential in order to implement the structure in our scattering matrix code:
without the inversion symmetry the eigenvalue problem of Eq. (2.26) is no
more symmetric. Since the reciprocal lattice does not depend on the basis,
but only on the primitive translation vectors, it is defined by the same vectors
as the hexagonal one:

g1 =
2π

b

(

1,
1√
3

)

g2 =
2π

b

(

−1,
1√
3

)

. (A.14)

It should be remembered that this property is essential in order to implement
the interpenetration region in the scattering matrix code, as the condition of
having the same reciprocal lattice vectors G in all the structure is automatically
satisfied.

90



Appendix B
Fourier transforms of the
dielectric function

Both the plane-wave expansion and the scattering matrix method presented
in the text take advantage of the dielectric function periodicity by using the
Fourier transform coefficients. In this appendix we would like to present in
detail the analytical calculations that lead to the Fourier transform of the di-
electric function of the structures studied in this thesis.

B.1 Three-dimensional Fourier transforms

Consider a lattice made of N spheres of radius R and dielectric constant εa

embedded in a medium of dielectric constant εb and arranged in the primitive
cell according to the basis vectors dν (ν = 1, . . . , N). The spatial dependence
of the total dielectric function ε(r) can be expressed as follows:

ε(r) = εb +
∑

dν

(εa − εb)θν(R − r) , (B.1)

where θν(R−r) is a particular case of step function in spherical coordinates that
is equal to 1 inside each sphere and vanishes outside. The Fourier transform
of such a function is written as:

ε(G) =
1

Ω

∫

Ω

dr ε(r)e−iG·r

=
εb

Ω

∫

Ω

dr e−iG·r +
εa − εb

Ω

∑

dν

e−iG·dν

∫

Vsph

dr e−iG·r ;
(B.2)

where G is a reciprocal lattice vector, Ω the unit cell volume and Vsph the
sphere volume.

Firstly, the Fourier transform has to be evaluated for G = 0. In this case
the first integral is equal to the unit cell volume, while the second corresponds
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B. Fourier transforms of the dielectric function

to the sphere volume and the summation reduces to the sphere number N .
The Fourier transform is thus given by the following expression:

ε(G = 0) = εb + (εa − εb)
N Vsph

Ω
, (B.3)

i.e. it represents the mean value of the dielectric function over the whole unit
cell.

On the other hand, when G 6= 0, the first term of Eq. (B.2) vanishes
and does not contribute to the Fourier transform. The second addendum
can be rewritten as the product of a structure factor Sν(G) and a form factor
εsph(G), the former depending on basis vectors and the latter depending on the
geometrical parameters of the spheres constituting the lattice. These factors
are defined, respectively, as

Sν(G) =
∑

dν

e−iG·dν , (B.4)

εsph(G) =

∫

Vsph

dr e−iG·r . (B.5)

Therefore one obtains the following relationship for the Fourier transform:

ε(G 6= 0) =
εa − εb

Ω
Sν(G) εsph(G) . (B.6)

In this thesis work, with the exception of Chapt. 4 where a supercell has
been introduced, two different Bravais lattice have been employed, resulting
in two structure factors. The first one concerns the face centered cubic (fcc)
lattice: Sν(G) is equal to unity, as there is only one sphere per unit cell,
placed in the origin. On the other hand, when the fcc lattice is described as
a hexagonal one, three basis vectors have to be defined. In the latter case the
structure factor turns out to be:

SGν = 1 + e
−ib

“

Gy/
√

3+Gz

√
2/3

”

+ e
ib

“

Gy/
√

3+Gz

√
2/3

”

. (B.7)

Note that the above definition of the basis vectors correspond to the second
one given in App. A, i.e. the one that preserve inversion symmetry. This way,
the matrix whose elements are the Fourier components becomes real and it is
possible to apply standard diagonalization methods for real matrices, which
are less time-consuming than those for complex ones.

The definition of the form factor is easily extended to the instance of having
one or more cylinders substituting each sphere. In this case the sphere form
factor has to be replaced by a proper one:

εcyl(G) =

∫

Vcyl

dr e−iG·r . (B.8)

In the following paragraphs the analytical expression of the form factors
for the specific structures studied in the work will be derived.
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B.1. Three-dimensional Fourier transforms

One dielectric sphere. The form factor of a single dielectric sphere of radius
R is obtained by solving the integral in Eq. (B.5) in spherical coordinates:

εsph(G) =

∫ 2π

0

dϕ

∫ π

0

dϑ

∫ R

0

dr r2 sin ϑe−iGr cos ϑ

= 4π
sin GR − GR cos GR

G3 ,

(B.9)

where G = |G|.

One dielectric cylinder. Consider now the case of a single cylinder of ra-
dius and height R1 and H1, respectively. This is the case of the one-cylinder
approximation described in Sect. 2.4.

By solving Eq. (B.8) in cylindrical coordinates one gets:

εcyl =

∫ 2π

0

dϕ

∫ R1

0

dr re−iG‖·r‖
∫ H1/2

−H1/2

dz e−iGzz , (B.10)

where G‖ and r‖ are, respectively, the projection of G and r in the horizontal
plane.

Now it is necessary to study separately the cases of G‖ = 0 and G‖ 6= 0.
In the first case the form factor is written as:

εcyl = πR2
1H1

sin(GzH1/2)

GzH1/2
. (B.11)

On the other hand, when G‖ 6= 0, one obtains:

εcyl = 2π
R1

G‖
J1(G‖R1)H1

sin(GzH1/2)

GzH1/2
, (B.12)

where J1(x) is the Bessel function of the first kind and having order 1.

Three dielectric cylinders. Here in each lattice site the sphere has been
replaced by three cylinders touching each other and with their axis oriented
along the z-direction. The cylinder radii and heights are R1, R2, R3 and H1,
H2, H3 (the situation is depicted in Fig. 2.5 of in Chapt. 2), respectively.
Recalling that R1 = R3 and H1 = H3 the form factor is written:

εcyl =

∫ 2π

0

dϕ

∫ R1

0

dr re−iG‖·r‖
∫ H2/2+H1

H2/2

dz e−iGzz

+

∫ 2π

0

dϕ

∫ R2

0

dr re−iG‖·r‖
∫ H2/2

−H2/2

dz e−iGzz

+

∫ 2π

0

dϕ

∫ R1

0

dr re−iG‖·r‖
∫ −H2/2

−H2/2−H1

dz e−iGzz .

(B.13)
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Again if G‖ = 0, the form factor is given by:

εcyl = πR2
1H1

sin(Gz
H1

2
)

Gz
H1

2

cos

[

Gz

(

H2 +
H1

2

)]

+ πR2
2H2

sin(Gz
H2

2
)

Gz
H2

2

, (B.14)

while, if G‖ 6= 0, one gets:

εcyl =2π
R1

G‖
J1(G‖R1)H1

sin(Gz
H1

2
)

Gz
H1

2

cos

[

Gz

(

H2 +
H1

2

)]

+ 2π
R2

G‖
J1(G‖R2)H2

sin(Gz
H2

2
)

Gz
H2

2

,

(B.15)

where J1(x) is the Bessel function of first kind, as in the previous example.

Five dielectric cylinders. The last example we deal with is illustrated in
Fig. 2.6 of Chapt. 2: each sphere is now substituted by five cylinders of radii
R1 = R5, R2 = R3 and R3 and of heights H1 = H5, H2 = H3 and H3. The
form factor is the sum of five terms:

εcyl =

∫ 2π

0

dϕ

∫ R1

0

dr re−iG‖·r‖
∫ H3/2+H2+H1

H3/2+H2

dz e−iGzz

+

∫ 2π

0

dϕ

∫ R2

0

dr re−iG‖·r‖
∫ H3/2+H2

H3/2

dz e−iGzz

+

∫ 2π

0

dϕ

∫ R3

0

dr re−iG‖·r‖
∫ H3/2

−H3/2

dz e−iGzz

+

∫ 2π

0

dϕ

∫ R2

0

dr re−iG‖·r‖
∫ −H3/2

−H3/3−H2

dz e−iGzz

+

∫ 2π

0

dϕ

∫ R1

0

dr re−iG‖·r‖
∫ −H3/2−H2

−H3/2−H2−H1

dz e−iGzz .

(B.16)

Once again one needs to distinguish the case of G‖ = 0, that gives:

εcyl =πR2
1H1

sin(GzH1/2)

GzH1/2
cos [Gz(H3 + 2H2 + H1)/2]

+ πR2
2H2

sin(GzH2/2)

GzH2/2
cos [Gz(H3 + H2/2)] + πR2

3H3
sin(GzH3/2)

GzH3/2
,

(B.17)

while for G‖ 6= 0 the form factor is:

εcyl =2π
R1

G‖
J1(G‖R1)H1

sin(GzH1/2)

GzH1/2
cos [Gz(H3 + 2H2 + H1)/2]

+ 2π
R2

G‖
J1(G‖R2)H2

sin(GzH2/2)

GzH2/2
cos [Gz(H3 + H2/2)]

+ 2π
R3

G‖
J1(G‖R3)H3

sin(GzH3/2)

GzH3/2
,

(B.18)
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where, once again, J1(x) is the Bessel function of the first kind.

Eventually, the case of a supercell deserves a detailed description. Three
different examples of this particular unit cell have been introduced in the text.
Firstly the case, relatively simple, of a symmetric cell constituted by n1 dielec-
tric spheres embedded in air. Secondly, an asymmetric supercell, wherein the
sphere stacking lies on a homogeneous dielectric layer, has been employed to
analyse the finite-size effects taking place in a thin opal film grown on a sub-
strate. Finally, the particular case of an opal embedding a planar defect has
been taken into account. All these structures have been extensively described
in Chapt. 4.

The first instance can be easily traced back to the previous example by
defining a proper structure factor from the basis vectors definitions of Eqs. (4.4)
and (4.5) that we recall here for simplicity:

dν = b

(

0,
ν − 1/2√

3
, (ν − 1/2)

√

2

3

)

, (B.19)

where ν = ±1, ±2, . . . ,±n1/2, for an even number of spheres n1, and

dν = b

(

0,
ν√
3
, ν

√

2

3

)

, (B.20)

where ν assumes all the integer numbers in the range [−(n1−1)/2; (n1−1)/2],
for a odd number of spheres.

In the other two examples, when a homogeneous layer, characterized by a
thickness hlay and a dielectric function εc, is introduced in the unit cell, the
spatial dependence of the dielectric function can be expressed by the following
relationship:

ε(r) = εb +
∑

dν

(εa − εb)θν(R − r) + (εc − εb)θc(hlay/2 − |z|) , (B.21)

where θc is a step function that is equal to one inside the homogeneous layer,
and vanishes outside. The vectors describing the position of the layer are

dc =

(

0, 0,
a√
3

hsub + hop

2

)

, (B.22)

for the asymmetric supercell, where hsub and hop are the total heights of the
substrate and the opal defined in Chapt. 4, and

dc = (0, 0, 0) , (B.23)

when it represents a planar defect embedded in a bulk opals. The Fourier
transform of the dielectric function ε(r) of the supercell is given by the following
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relationship:

ε(G) =
εb

Ω

∫

Ω

dr e−iG·r +
εa − εb

Ω

∑

dν

e−iG·dν

∫

Vsph

dr e−iG·r

+
εc − εb

Ω
e−iG·dc

∫

Vc

dr e−iG·r .

(B.24)

where Ω is the supercell volume and Vc is the layer volume.
First of all, the Fourier component corresponding to G = 0 is equal to the

mean value of the dielectric function ε(r):

ε(G = 0) = εb +
n1

Ω
(εa − εb) +

hl

hSC

(εc − εb) . (B.25)

When the reciprocal lattice vectors differs from zero, the Fourier transform
can be written in terms of structure and form factors, remembering that the
first addendum of Eq. (B.24) vanishes:

ε(G 6= 0) =
εa − εb

Ω
Sν(G) εsph(G) +

εc − εb

Ω
e−iG·dc(G) εlay(G) . (B.26)

In particular, the homogeneous layer form factor εlay(G) is defined as follows:

εlay(G) =

∫

S

dr‖e
−iG‖·r‖

∫ hlay/2

hlay/2

dz e−iGz ·z , (B.27)

where S is the in-plane area of the supercell. It is now clear that εlay(G) is
always equal to zero unless G‖ = 0. In the latter case, it results in the following
expression:

εlay(G) =
hlay

hSC

sin Gzhlay/2

Gzhlay/2
, (B.28)

where hSC is the cell height. In other words, the Fourier transform ε(G) is
affected by the presence of the homogeneous layer only when the in-plane
reciprocal lattice vector is equal to zero.

Regarding the first term of Eq. (B.26), the structure factor Sν(G) of the
asymmetric supercell is the same of that of the symmetric cell, as sphere posi-
tions are left unchanged, while for the defect supercell it can be derived follow-
ing the proper definitions of the basis vectors given in Chapt. 4 by Eqs. (4.8).

Moreover these calculations can be easily extended to the cylinder approx-
imation case by replacing εsph by the relevant form factor.

B.2 Two dimensional Fourier transform

In the scattering matrix method the periodicity of the dielectric function is
restricted to the plane perpendicular to the stacking direction, so it is described
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by a two dimensional lattice and its Fourier transform is calculated over the
unit cell surface. Considering only the case of circular rods of radius R and
dielectric function εa in a medium of dielectric function εb, the total dielectric
function is given by the following expression:

ε(r) = εb +
∑

dν

(εa − εb)θν(R − r) , (B.29)

where θ(r) represents the Heaviside function in polar coordinates and dν are
the bidimensional vectors of lattice basis.

The Fourier components are determined according to a procedure similar to
the one employed in the previous section, bearing in mind that the integration
is now restricted to two dimensions:

ε(G) =
1

S

∫

S

dr e−iG·r , (B.30)

where S is the unit cell area.
As in the previous section, the Fourier transform becomes equal to the

mean value of the dielectric function when G = 0:

ε(G = 0) = εb + (εa − εb)
N Arod

S
, (B.31)

where Arod is the area of a single circle.
When G 6= 0 we can once again express the Fourier transforms in terms of

the form factor and the structure factor:

ε(G) =
εa − εb

S
Sν(G) εrod(G) . (B.32)

As specified before, we restrict ourselves to the case of cylindric rods of radius
R, hence the form factor is written as follows:

εrod(G) =

∫

Arod

dr e−iG·r =

∫ 2π

0

dϕ

∫ R

0

e−iGr cos ϕ = 2πR2J1(GR)

GR
. (B.33)

When dealing with the hexagonal lattice, that is the in-plane lattice of each
(111) plane of the opal structure, the structure factor is easily obtained: as
there is only one atom per unit cell, the factor is equal to unity. Otherwise, in
the case of the graphite lattice the basis is constituted by two vectors and the
structure factor results in:

SGν = 1 + e−ibGy/
√

3, (B.34)

according to the definition given in App. A.3.
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Leonard, C. López, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin,
O. Toader, and H. M. van Driel. Large-scale synthesis of a silicon pho-
tonic crystal with a complete three-dimensional bandgap near 1. 5 mi-
crometres. Nature, 405 (6785): 437 – 440, 2000.

[24] T. Ochiai and J. Sánchez-Dehesa. Superprism effect in opal-based pho-
tonic crystals. Phys. Rev. B, 64 (24): 245113, Dec 2001.

[25] A. Imhof, W. L. Vos, R. Sprik, and A. Lagendijk. Large Dispersive
Effects near the Band Edges of Photonic Crystals. Phys. Rev. Lett., 83
(15): 2942–2945, Oct 1999.

[26] Y. A. Vlasov, S. Petit, G. Klein, B. Hönerlage, and C. Hirlimann.
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[29] J. F. Galisteo-López, M. Galli, M. Patrini, A. Balestreri, L. C. Andreani,
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