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1 A reminder of statistical thermody-
namics

” Thermodynamics is quite different [from mechanics and electrody-
namics/. It neither claims a unique domain of systems over which
it asserts primacy, nor does it introduce a new fundamental law
analogous to Newton’s or Mazwell’s equations. In contrast to the
spectficity of mechanics and electromagnetism, the hallmark of ther-
modynamics 18 generality. Generality first in the sense that thermo-
dynamics applies to all types of systems in macroscopic aggregation,
and second in the sense that thermodynamics does not predict spe-
cific numerical values for observable quantities. Instead, thermody-
namics sets limits (in- equalities) on permissible physical processes,
and it establishes relationships among apparently unrelated prop-
erties.” (H.B. Callen: ”Thermodynamics and an introduction to
thermostatistics”)

These sharp features, so nicely outlined by Callen, are at the ba-
sis of the fundamental role that thermodynamics plays in approach-
ing the study of macroscopic systems in general, and in particular
of those which constitute the rather wide class of the so called Soft
Matter. Biological systems, polymers and associating liquids are
among the systems of interest in this context. Their complexity,
and with it the need of an interdisciplinary approach to the inves-
tigation of their properties, takes us away from the position where

”... [physicists] have the habit of taking the simplest example of
any phenomenon and calling it 'Physics’, leaving the more compli-
cated examples to become the concern of other fields.” (R. Feynman,
The Feynman Lectures on Physics).

It is in the spirit of keeping as close as possible to this ideal
situation that thermodynamics exerts its attractiveness; but it is
of course its force to establish its relevance in this field. Further,
coupling to the microscopic world through the statistical mechan-



ical foundation of thermodynamics, represents as a consequence a
particularly fruitful strategy of investigation.

In the following, the most important classical thermodynamical
concepts relevant to the main body of these lectures, namely, the
thermodynamic potentials, will be briefly recalled. The statistical
mechanical counterparts, i.e. the appropriate partition functions,
will be considered afterwards. There are a number of textbooks
which can be taken for a reference for these arguments; among the
others the reader may consult refs. [1].

1.1 Thermodynamic potentials
1.1.1 Survey of general principles

The equilibrium thermodynamic state of any macroscopic system
is completely described by an extensive function

S = S(E;X), (1)

the entropy, which depends on the energy E of the system and on
other extensive variables X (i.e. volume V, particle number N,
total electric moment M, etc.); the derivative

1= (ae), ®

is always positive, and defines the temperature of the system.

The first law of thermodynamics expresses the conservation of
the energy: the overall energy content U of a macroscopic system
whatsoever may change only as a consequence of either a work oW
performed by (or on) the system, or an inwards/outwars heat flux
0@ through the boundaries, or else because of a change 4V in the
number of particles of the system:

dU = 6Q — 6W + udN . (3)

The intensive parameter u is the ”chemical potential”’, and carries
with it not only interaction energy with other particles, but thermal
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energy as well (in the case of a perfect gas, in fact, only this compo-
nent is present). This quantity is very important for the description
of phase equilibria and flows of matter.

Work is a means by which energy can flow in or out of a system.
The heat is also a form of energy flux; it measures the entropy
change too, but only when the heat transfer process is performed
reversibly (see below); in this case

0Qrey
dS = T (4)
The second law of thermodynamics concerns the spontaneous
changes of S when internal constraints within an isolated system
are released. In general, by constraint is meant any means pre-
venting a spontaneous transition of a system towards a different
thermodynamic state. So, for instance, an adjustable piston sep-
arating two chambers into a cylinder filled by a gas, as well as a
means whatsoever able to set locally an arbitrary chain orientation
in a polymer melt, are both examples of internal constraints.
Now, consider a system initially in equilibrium, that is, with a
well established S(F, X). Then, suppose to apply an internal con-
straint in order to drive the system towards a different state with
entropy S'(F,X; constr.), the other extensive parameters remain-
ing fixed. After this new state has been reached, isolate the system
completely and release the constraint. The system will sponta-
neously return to the initial state, and the second law states that
the entropy change associated to this transformation is always pos-
itive, 1.e.
S—-5>0. (5)
This general relationship underlies also the transformations involv-
ing any non-isolated macroscopic system; indeed we shall always

consider the latter as a small part of a much larger, globally iso-

lated (”total”) system to which eq. 5 applies. The rest, will be
the ”environment” of the non-isolated (sub-) system. We take this

consideration as the route (among the others) to introduce the
thermodynamic potentials, i.e. those quantities whose variation
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Figure 1: A fixed piston P, separating two chambers a and b filled by a
gas at different pressures but same temperature, is an example of internal
constraint. If P is released, then the system will change spontaneously
towards a state of higher overall entropy (the environment included). A
mechanism whatsoever able to force the local chain orientation along a
given direction in a polymer melt represents an internal constraint too.

accompanies the thermodynamic transformations in analogy with
the mechanical behavior of a conservative system.
From the additivity property of the entropy we can always write

TdStot — TdS -+ TdSem, ) (6)

where from now on, quantities without the subscript refer to our
system, while the subscripts "tot” and "env” are put explicitly to
refer either to the total system, or to the part of it which is taken

as environment.

Let 0Q.n, be the heat to be transferred reversibly to the envi-
ronment in order to determine a change dS.,,, and let this heat be
supplied by the system, so that §Qen, = —6Q). We thus may write
eq. 6 in terms of quantities entirely relating to the system as

TdStot — TdS — (5@ . (7)

We assume that the environment behaves as a reservoir, and that
the only spontaneous processes take place within the system; then,
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eq. 7 holds in general for both reversible and irreversible trans-
formations occurring in the system. In particular, it relates any
entropy change of the fotal system to the degree of irreversibility
of the process occurring in the (sub-) system, i.e. to the difference
between dS and 6Q)/T. By resorting to the first principle we can
express eq. 7 in terms of the work as

TdSy; = TdS — dU + pdN — W . (8)

From eq. 5 we know that the r.h.s. of eq. 8 cannot be negative, and
it is zero only if the process is reversible, i.e. if the representative
point of the whole isolated system moves on a globally iso-entropic
hypersurface.

Equations 5 and 8 are the fundamental relations upon which the
concept of thermodynamic potential find its basis. Before develop-
ing this argument, however, we will first introduce some further
basic property relating to the functional dependence of the entropy
on the other relevant thermodynamic variables.

1.1.2 Euler’s equation and Gibbs—Duhem relation

In the fundamental relation of thermodynamics, eq. 1, both the
entropy S and its arguments are extensive variables, so the following
relation holds (Euler’ equation)

1
T
where £ = 05/0X are the intensive variables conjugated to X (for
instance, { = p/T if X =V, & = —u/T if X = N). Note that eq. 9
is a sharp equality.

If we take the total differential of last equation and recall the
first law, eq. 3, then we find the Gibbs-Duhem equation

SdT +X-dé¢ =0, (10)

S=_-U+¢-X, (9)

which establishes a relationship among the intensive variables of a
system in thermal equilibrium. This is a very useful tool to find the
actual values of an intensive variable once the others are known.



1.1.3 Helmholtz potential

We now turn back to the problem of finding the thermodynamic
functions which describe the direction of the spontaneous processes
in terms of the variables of the system.

Define the Helmholtz free energy for a system with given vol-
ume, number of particles and temperature as

F=U-TS,; (11)
then, for an isothermal process eq. 8 reads
W = —dF —TdS;, (12)

where 0W stands for the work done by the system. Since dS;,
cannot be negative, last equation means that the maximum work
can be performed only as a result of a reversible transformation
(i.e. when dS;; = 0), and in this case it equals the change of
the Helmholtz free energy (potential), much like in the case of a
conservative mechanical system.

If no work is allowed to be done, i.e. dW = 0, irreversibility (the
spontaneous settlement into an equilibrium state, i.e. with dS;,; >
0 sharp) implies that F' changes in order to reach a minimum.
Equation 12 generalizes the concept of a conservative mechanical
system in that, together with work, it includes also the flux of non-
organized energy, i.e. the heat.

1.1.4 Gibbs potential

Consider a system able to change its volume (but not matter) at
a constant pressure p during a transformation whatsoever, and let

Wy = 0W — pdV be the work other than pdV performed; then,
from eq. 8 this work is given by

5W(] — —dG — TdStOt y (13)
where the quantity
G=U+pV-TS =Ny (14)
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is the Gibbs free energy (last equality in eq. 14 is a consequence
of the Euler’s equation). As before, |6W;| is a maximum when the
process is reversible, and if no oW, is allowed, then any possible
spontaneous evolution of the system will drive it towards a state
of minimum G (we stress that this circumstance is a direct conse-

quence of eq. 5).

1.1.5 Enthalpy

From eqs. 6, 13 and 14 we derive immediately
OWy = —dH — TdSep, , (15)

where the quantity H = U + pdV is called the enthalpy of the
system (in the process described by eq. 15 no exchange of matter
is allowed). Then, in the case that no heat is exchanged with the
environment the enthalpy assumes the role of a potential for the
work W, other than pdV .

1.1.6 Grand potential

This case concerns with the situation where a flux of matter between
the system and the environment is possible, the volume remaining
a constant. This can be accounted for through the term in eq. 3
describing the energy change (i.e. including heat) associated to the
variation of the particle number. Then, by substitution into eq. 8

and by the same procedure leading to eq. 12, we find:
W = —d® — TdS;4 , (16)
where the Grand potential is defined by
b=U-TS5 — uN, (17)

and it shares with F' and G all the relevant features with regards
to spontaneous transitions and maximum work.



1.1.7 Summary

In conclusion, (minus) the entropy is a potential for an isolated
system, where all extensive variables are held fixed. The Helmholtz
free energy F' is a potential for a system where the volume is held
fixed together with particle number N and temperature 7', but
its energy U (i.e. the extensive variable conjugate of T') is free
to fluctuate. The Gibbs free energy G is a potential when N is
hixed together with T and p, but the extensive variables U and V,
conjugated to the latter are let free to change. Finally, the grand
potential describes the system when the volume V is fixed, together
with T and u, but the conjugated extensive variables U and NN are

let free to change.

1.2 Statistical thermodynamics and fluctuations

1.2.1 The Boltzmann relation

The central relationship connecting thermodynamics to the micro-
scopic states of a system made of a huge number of molecules is
represented by the Boltzmann formula

Stot = kpIn Qtot(Etota Xtot) : (18)

This equation links the entropy of an isolated system in thermal
equilibrium, with the total number {);,; of microstates compatible
with the given (constant) overall values F;,; and X, (a collection
of identical systems in these conditions is called a microcanonical
ensemble).

The additivity of the entropy for non-interacting (in fact weakly
interacting) systems is verified by eq. 18, since the total number
of microstates of the composite system equals the product of the
number of microstates of each component. The above formula is
also able to describe the eftect of internal constraints; the latter
reduce the number of microstates accessible to the system, and
when they are released then the entropy increases, in agreement
with the second law of thermodynamics (eq. 5).
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The reduction of €2;,; as an effect of the internal constraints
should be considered in some detail because it is connected with
the glass transition process. The idea underlying eq. 18 is about
a restlessly moving representative point in the phase space of the
system. When an internal constraint sets in, not necessarily all
microstates with the same overall F,, and X;, can be effectively
experienced by the system anymore. Thus for instance the energy
hypersurface may be partitioned in islands whose boundaries can-
not be traversed by the system within times of the order of the
laboratory scale. In a structural glass this situation is connected
with a diffuse, random, local (in ordinary space) freezing of the
configurational degrees of freedom. This aspect will be considered
in more detail below, but note that a very important aspect now
emerges: the role of time.

1.2.2 Partition functions and thermodynamic potentials

The main hypothesis underlying eq. 18 is that each microstate com-
patible with the given values of the extensive variables is equally
probable at equilibrium in the whole, isolated system (this has to
do with the ergodic hypothesis: the distribution of the representa-
tive points of an ensemble at a given time is the same which could
be ideally obtained by tracing the positions of the representative
point of just one system within a virtually infinite time interval).
Besides, the thermodynamic potential in this case is —S, because
it reaches a minimum at equilibrium.

On the other hand, the extensive variables of any (sub-) system
whatsoever undergo continuous fluctuations around the mean, due
to the interaction with the environment. So, states with different
values of some extensive variable of the (sub-) system do not have in
general the same probability, and it is important to find the connec-
tion between these probabilities and the ” classical” thermodynamic
functions characterizing the system (namely the appropriate ther-
modynamic potential). This is indeed an important point in linear
response theory, light scattering, phase transitions, glass transition.



Consider again our whole isolated system as partitioned in a
small part (”the system”) and the remainder (”the environment” ).
The total number of microstates €2;,; can be expressed as the sum
of the number of microstates Qeny( Fior — Ei; Xior — X;) of the envi-
ronment compatible with each single microstate ¢ ” of the system
[characterized by the values (E;, X;)|:

Qtot(E'tot) — Z Qenfu(ﬁjtot — Ez) . (19)

(the extensive variables X other than the energy will not be writ-
ten explicitly from now on for notational convenience; they will
be explicitly indicated when needed). For any given state ”i” of
the system, the number of microstates of the environment can be
expressed by eq. 18 because a fixed E; implies a constant (non-
fluctuating) Fe,,. However, we write the entropy in such a way as
to make explicit reference to the mean thermodynamic variables
(U, X) of the system, i.e. Qeny = exp{kz' Semv(Etor — U +U — E;)},
and then expand in a Taylor series about these values:

Qenv ~ e Senv (Etot‘““U)/kB e [U“Ei+T E(x_xz)]/kBT (20)

where & = 08S.,,/0X are the intensive variables of the environment.
Since Seny(Fior — U) = Siot(Eror) — S(U), substitution back into
eq. 19 yields:

Osor = etot/kB ¥/kBT = (21)
where
V=U-TS-TE&£-X (22)
is the thermodynamic potential appropriate for the system and
= = Z o—(Ei/kpT+&-Xi/kp) (23)

is the associated partition function.
If no extensive variable is allowed to fluctuate except U, then
we are in the so called canonical representation, and the general
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thermodynamic potential coincides with the Helmholtz potential,
ie. W =U-TS = F. If instead the only fluctuating extensive
variables are the number of particles NV and the energy, then W is the
Grand potential, and we call this representation macrocanonical.
Other representations different from these two are possible, and for
each one we can readily find the correspondence between the actual
potential and the corresponding partition function.

Since Q0 = exp{Sit/kp}, it follows immediately from eq. 21
that the thermodynamic potential of a system can be calculated
from its partition function as follows:

¥ = -—kBTlIlE, (24)

that is, the thermodynamic potential is related to a sum over single
("quantum”) states among which the system fluctuates.
Last equation can be used to express the entropy of the system
in terms of its state probability distribution p;. Indeed,
Yoo 1 ~(B+TEX)/R8T (25)

Di = a2
Qtot —

and with the help of eq. 22 we find

On the other hand, the average (--) of any quantity characterizing
the state "2” of the system can be expressed in terms of the prob-
ability distribution by (--) = ). p; (--). Since U and & - X are the
averages of E; and £ - X; respectively, we find from eq. 22

S = —kp Zpi Inp;. (27)

This is a very important formula not only from the practical point
of view, but also because of its philosophical implications. Indeed,
within ”classical” thermodynamics, we are used to think of the en-
tropy as a coordinate which, together with the others, contributes
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to define completely the thermodynamic state of a system. On the
other hand, differently from other cases such as for the energy, for
instance, eq. 27 expresses the entropy as an average ot a function
of the probability itself. Probability, however, is intrinsically as-
sociated to a lack of knowledge. This means that in attempting
to give a microscopic interpretation of the entropy we are led to
the apparent paradox that its microscopic foundation is the lack of
information. This contrasts the usual idea aiming to search in the
microscopic mechanisms a more firm basis upon which we seek to
construct a coherent picture of our macroscopic world. Probably for
this reason the entropy leaves that flavor of mystery which almost
everyone perceives, the same which can be felt when approaching
quantum mechanics.

We now leave aside these philosophical problems to turn back
to the calculation of the thermodynamic properties of macroscopic
systems. As shown above, the thermodynamic potential can be
obtained once the partition function is known. In practical situa-
tions one often seeks to find the equilibrium values of some param-
eter characterizing the system (the distribution of particles among
a set of allowed levels, for instance). In this case, a very pow-
erful method consists in the direct maximization of the total en-
tropy of the whole (microcanonical) system. In fact, it is assumed
that the environment is quasi-microcanonical, i.e. that the equa-
tion Seny = kpln{le,, holds to an extremely high degree of ac-
curacy (in other words this means that p; ~ Q_! independent
of i is assumed). Then, by direct integration of the equations
T-!' = (0Senv/OFeny)x,,, and & = (0Seny/0Xeny)E.,,... We find
the relation Qe = Kexp [Feny + T & - Xeny]/ksT, where K is an
integration constant. The total number of microstates accessible to
the whole system is thus

Quot = Qeny Q2 = K elFtorteXeot)[kpT o —[U+EX-kpTInQJ/ksT —(9g)

Since F;,; and Xy, are fixed, the maximum of €2,,; can be obtained

by minimizing the argument of last exponential in the r.h.s. of
eq. 28,1.e. U+ E&- X — kT In Q.
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1.2.3 Fluctuations

Boltzmann formula carries with it the fact that the extensive vari-
ables of a system in contact with an environment Huctuate around
mean values which are in fact the equilibrium values of these quan-
tities. So, for instance, the energy of the system changes randomly,
but always keeping more or less close to the energy U as defined
within classical thermodynamics. For the other extensive variables
it is the same. This is a direct consequence of relating the entropy
with the number of ”possible” microstates, and not with more de-
tailed features of the dynamics characterizing the whole isolated
system. We thus considered fluctuations already in eq. 18; this
equation was in fact the starting point from which we eventually
derived the expression of the thermodynamic potential in terms of
the partition function.

The fluctuations of the extensive parameters of the system can
be rather easily calculated directly from the knowledge of the par-
tition function. As an example, consider a system whose thermo-
dynamic potential is the Helmholtz free energy. Then, the mean
energy fluctuation can be readily found as

0°InZ

(0U%) = (1B~ UP) = S35,

(29)

where Z = . exp™P*# and 8 = 1/kpT.

Derivations like this are rather simple, and in general they al-
ways are wherever the parameter whose fluctuations we want to
calculate does appear explicitly in the expression of the partition
function. More generally, the fluctuations of a quantity w whatso-
ever associated to a (sub-) system can be approximately described
by resorting directly to eq. 18. The latter can be inverted to yield
it = exp{Sii/kp}; then, imposing a well defined value of w to
the (sub-) system, thus forcing it to fluctuate within a limited set
of states, is equivalent to impose an (average) internal constraint to
the whole isolated system. This reduces the number of microstates
available, and the total entropy too. Since the probability p(w) of
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observing the value w is proportional to the number of accessible
microstates compatible with this average internal constraint, then
the deviation from the mean (w) can be related to the correspond-
ing changes induced on S;,;. The problem is thus reduced to find
the functional dependence of S;,; on the actual value w assumed by
the variable of the system.

As an example, let GG be the average Gibbs potential of a system,
and let S;:(G) be the corresponding overall equilibrium entropy.
Now, among the whole number 2, of states at equilibrium, there
will be a fraction of them for which the Gibbs potential of the sys-
tem takes a new value G'. Their number is 2} , = exp{S;s:(G')/kB},
and the probability for this new value to occur as a result of a fluc-
tuation 1s

p(AG) X Qtot — eAStot/kB, (30)

where ASiot = Sior(G') — Sit(G) and AG = G’ —G. Now, assuming
that no work other than pdV is done by the system during the
fluctuation, from eq. 13 we find

p (AG) x e ~AC/ksT (31)

In the general case, we may use the following approximate pro-
cedure. The entropy of the whole isolated system, Sio; = Sior({w))
is indeed a maximum at equilibrium. Since the system is a much
smaller part of the whole, then a truncated Taylor expansion suf-
fices to describe the effect of the deviation w — (w), and we may

take

1 d*Spot

Stot(w) ~ Sear({w)) + 2 3 (w — (w))” (32)

(gaussian approximation). The average square fluctuation ampli-
tudes can then be readily obtained from the expression

p(w) X e—lsztot/dwz|(w—(w))2/2k3, (33)
i.e. explicitly,
A28, |
ow?) =k LA 34
(ow®) = kp T (34)
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2 Polymers

2.1 A brief introduction

Polymers are very special (macro-) molecules, characterized by a
huge number of internal conformational degrees of freedom. One
polymer molecule can thus be viewed as a macroscopic system to
which thermodynamics can be applied. Figure 2 shows part of a
polyethylene chain; the degrees of freedom are the rotations about
each C—C covalent bond. About calling these degrees of freedom
"internal”, however, things are not as simple as it may appear.
The shape of a macromolecule, depending on the actual values of
the set of its rotational coordinates, is indeed central with respect
to entanglements, which represent a relevant contribution to the
overall inter-molecular interaction mechanisms in polymer melts. In

Figure 2: The overall chain conformation is a function of the values of
the bond rotational degrees of freedom in a single polyethylene chain
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this respect the degrees of freedom of a single macromolecule cannot
be considered internal, and are means through which molecular
conformations mutually interfere.

This first introduction hints at the possibility that, with poly-
mers, things may be complicated (as we shall see indeed). These
systems are characterized by a very rich phenomenology (see for
instance refs. [2, 3|, and we shall limit ourselves to consider some
particular aspects of their complex behavior, namely, within the
context of their (pseudo -) phase transitions.

We start from a thermogram typical of polyethylene terephta-
late (PET), a widespread used crystallisable polymer (plastic bot-
tles for water are made of PET). By rapid temperature quenching
from above the melting point, this material can be rather easily
driven to a completely glassy state. The thermogram shown in
Fig. 3 has been obtained by re-heating PET from this glassy state.
The ordinates of this plot represent the heat flowing into the sample
dH/dt. This quantity is in fact proportional to the specific heat at
constant pressure C, because

_dH dH dt
- dT  dt dT

C, (35)
and the heating rate dT'/dt is a constant. On heating the sample,
a first endothermal process is detected in the temperature range
70 < T < 85 °C. The specific heat in the high-T side of the pro-
cess is significantly upward shifted with respect to its value at the
other side. In this temperature region, the system passes from a
quenched, frozen-in disorder typical of a glass, to a state where
still no molecular order sets in, but fluctuations start to be active
(thus causing an increase in the specific heat). If in these condi-
tions the system were cooled again, then the fluctuations would
freeze-in again. This temperature interval is referred to as the glass
transition region.

Upon heating the system further, we can observe a very sharp
exothermal process starting from about T' = 140 °C, which is as-
cribed to crystallization. It is worth to be mentioned that the peak
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—— un-oriented PET

Endo. .

dH/dT

Figure 3: Heat flux as a function of the temperature during the
heating of an initially glassy un-oriented PET sample (heating rate
dT/dt = 40°C/min. First the glass transition process takes place
(T, ~ 75°C), followed by a crystallization exotherm (7" ~ 120 °C). Upon
further heating, a rather wide endotherm, ending at about 71" ~ 285°C
reveals the melting of unstable crystals.

location does not have the same implications as in low molecular
weight substances. If one waits long enough, crystallization can be
observed also at lower temperatures (above the glass transition, of
course).

Beyond the high temperature side of the crystallization peak,
we find a rather wide endothermal peak. In this region unsta-
ble crystallites melt and re-crystallize, giving rise to a very com-
plex behavior. The overall process, however, is the melting of all
crystalline domains, which completely disappear at a temperature
T =~ 285°C.

Figure 4 reports the results of a Dynamical Mechanical Ther-
mal Analysis (DMTA) carried out on the same system, with the
same thermal history. With this technique it is possible to observe
some internal microscopic processes through the macroscopic me-
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chanical response to a force applied on the sample, as a function of
the frequency. For completeness, a very brief account of the basic
principles of this technique is given (see for instance ref. [2] for a
more extended treatment.

A sample acted upon by a force f will respond by changing
its shape by an amount s. Assume that in quasi-static conditions
(i.e. relative to the microscopic relaxation times characteristic of
the sample) these two quantities are linearly related to one another
by s = K, f, and take this condition as a reference state for some
actual non-zero force fy. Then, if the latter is suddenly varied by
an amount of, the shape s will also change to adjust to a new
equilibrium state. If 0 f is small enough, the transient variation of
s can be well approximated by the equation

d 1
.&_j = ——[s — Ku(fo + )], (36)

where 7 is the characteristic time over which the material changes
its shape, and is related to the dynamics of the (relevant) micro-
scopic modes within the material itself. If the system is in thermo-
dynamic equilibrium, this result can be proved by the fluctuation-
dissipation theorem, but we must skip this aspect.

If 6f ~ exp{iwt}, then ds = K[l — iwt|"'6f. The dynamic
compliance

_ 9
=57

then carries information on the molecular dynamic modes of the
system. The real and imaginary parts of the compliance give rise
to an in-phase and an out-of-phase responses of the system. The
latter is connected to the amount of mechanical work converted
into heat by the system. Indeed, the average dissipated power can
be found to be related to J by

(37)

(W) x S(J). (38)
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Figure 4: Storage modulus and tand for un-oriented PET at different
frequencies.

A very useful quantity for the analysis of the system is the ratio

I(J)
R(J)

tand = (39)

The glass transition region is revealed by a rather wide and pro-
nounced peak when tan ¢ is plotted against the excitation frequency.
The actual frequency interval where this so called a-process is ob-
servable, depends on the temperature of the sample. In practice,
since the relaxation processes giving rise to the a dispersion have
characteristic times which depend on the temperature, DMTA mea-
surements are carried out with temperature scans at fixed frequen-
cies, and the a dispersion is revealed by a wide tand vs. T peak,
with a position depending on the frequency of the mechanical ex-
citation. This dependence is the fingerprint of the glass transition
process and is connected with its kinetic character. Remind that we
gave a little hint about the increasingly important role of time when
describing the motion of the representative point of the system in a
partitioned phase space (see last comment before section 1.2.1). By
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varying the frequency of the excitation, we change the characteris-
tic laboratory time with which the internal relaxational processes of
the system compares; this is the physical reason of the dependence
of the peak location on the frequency. In the region where the loss
peak appears, the rigidity of the material drops significantly, as can
be seen from the storage (in phase) modulus reported in Fig. 4.

Upon further heating, crystallization starts. This causes the
storage modulus to increase sharply again. The step location does
not in this case depend on the frequency; this is indicative of a true
thermodynamic phase transition.

In this chapter we shall be concerned with some aspects of the
glass transition and the crystallization processes.

2.2 A short account of the Structural Glass Tran-
sition, the Adam-Gibbs model

When introducing the eftect of the internal constraints on the over-
all entropy in an isolated system, we digressed about the possibility
that some regions of the phase space may become inaccessible to
the representative point of the system, even if compatible with the
overall values of the extensive variables. This possibility is not just
academic, and actually represents a point of view by which the
widespread and yet not well understood process of the structural
glass transition is currently investigated. It is not the point here
to give a thorough picture of the complexity concerning the glass
transition; rather we shall define a small number of firm concepts
in the light of which some interesting experimental results can be
discussed.

Vitrification is a process by which a liquid transforms into a
solid without showing afterwards any structural regularity at the
atomic level, as would happen in the formation of an ordinary crys-
tal. As shown in Fig. 5, the formation of a glass by cooling is
monitored by a more or less rapid decrease of the specific heat C),
within a comparatively small interval around a temperature 7}, (the
so called dynamic glass transition temperature). Grossly speaking,
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Figure 5: Changes of enthalpy, H, and specific heat at constant pres-
sure, Cp, at the glass transition for fast and slow coolings of a liquid. The
dynamic glass transition temperature, Ty, is a function of the cooling
rate.

the drop in C, can be associated to the freezing-in of the large scale
(configurational) motions such as density fluctuations; instead, the
vibrational degrees of freedom contributing to C, as in an ordinary
crystal remain active. For this reason, the overall system is approx-
imately viewed as consisting of two intermingled subsystems: one
is associated to the vibrational degrees of freedom, the other to the
configurational ones.The total partition function is assumed to be
roughly given by the product of those of the vibrational and the
configurational subsystems.

Concerning the enthalpy, the final values down to which H
drops, are close to but slightly larger than those typical of the
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crystal phase of the same material at the same temperature (re-
mind that a system can always undergo a glass transition, even
in the case that its crystalline state does not exists, such as some
polymers). One problem is that for any given substance the tem-
perature region where this process takes place, as well as the H
values in the final glassy state, depend on how fast the liquid is
cooled. Larger cooling rates drive the transition at higher temper-
atures, with higher residual values of H below T, (compare with
Fig. 4, where the a-peak shifts to higher temperatures as the fre-
quency increases). These experimental facts suffice for us to point
out a significant difference from ordinary phase transitions, namely,
that Time now enters a class of phenomena whose description was
the domain of thermodynamics: a language where infinite lapses ot
time (e.g. in reversible processes) were the rule.

When observing a glass transition process, we must always keep
in mind that a confrontation between characteristic laboratory time
scales and natural speed of the process itself is underlying. This is
to point out the kinetic character of the observation. The following
problem now emerges naturally: If the trend of the enthalpy of
a supercooled (but crystallisable) liquid were to be extrapolated
towards the absolute zero (dashed line in Fig. 5), the entropy would
drop below that of a crystal and eventually become even negative
if the glass transition would not intervene. So, a kinetic process
would prevent the breakdown of thermodynamics ! This is known
as the Kauzman paradox, and is indeed a good reason to investigate
about the possibility that a true thermodynamic transition exists
at a temperature Tk (i.e. the ideal glass transition temperature),
which is hidden by the kinetic interference of the (dynamic) glass
transition observed about the higher T,. In fact the existence of
such a transition has been demonstrated for polymers [4], but not
in general for other low molecular weight substances.

Once this brief introduction has been given, we must now leave
these fundamental problems to consider, more pragmatically, the
observation of the glass transition within the limits which our em-
bedding world has established for us.
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Structural relaxation is a process whereby the (local) configura-
tion of a group of molecules changes. Its characteristic time scale
thus influences directly the viscosity n of a liquid, being the latter
a measure of the resistance to flow. In fact, the reduction of the
specific heat on approaching the dynamic glass transition at T is
always accompanied by a huge increase of the viscosity. In a num-
ber of systems, for instance, the way the viscosity increases with
decreasing T fits the law  ~ exp{A/(T — Tk )}. The measurement
of n cannot be performed down to temperatures even close to Tk
because the dynamic glass transition at T, > Tk intervenes. The
temperature Tk could in this case be associated to an ideal glass
transition temperature in the spirit of Kauzman arguments.

In the following we shall outline the theory developed by Adam
and Gibbs [5] to describe the divergence of 7. It represents a partic-
ularly interesting and fundamental attempt to describe in general
the approach to T;, from the liquid state, in terms of known ther-
modynamic concepts. Apart of this, its relevance in the present
exposition is in that it introduces some ideas which will be useful
for us in developing a theory for the vitrification process observed
in confined amorphous PET.

Central to the theory is the concept of Cooperatively Rearrang-
ing Region (CRR), that is, a group of molecules (or monomers)
able to rearrange into a different configuration independently of its
environment as a result of an energy and/or volume fluctuation.
Cooperativity means that the motion of a molecule whatsoever is
functional to the motion of the others, to circumvent steric hin-
drances and allow for a change of the overall configuration. We
consider the (sub-) system as consisting of M distinguishable CRR’s
(all made of n molecules), for any of which the partition function
associated to the Gibbs potential (i.e. the potential associated to
the possibility that both the volume and the energy of the system
fluctuate) is

Z(n,p,T) = Z w(n, E,V) e (E+pPV)/ksT (40)
E\V
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where w(n, E,V) is the degeneracy of the CRR state with given E
and V. Among the states accounted for in the calculation of Z,
consider the set of the £ and V values allowing for a structural re-
arrangement (i.e. those for which the configurational component of
w is larger than one) and construct the associated reduced partition
function Z’ by limiting the summation to just these values. Then,
the fraction m/M of CRR’s which are able to undergo an actual
configurational change is:

m _Z = ¢ (G -C)/ksT (41)

—
—— ——
S p———

M Z

The cooperative transition probability p(T,n) is proportional to
this number. Let A be this proportionality factor; then, accounting
for all possible sizes of the CRR’s, we find for the overall transition

probability

p(T) =) AeT Wl x Aemonlbol, (42)

n>n*

where n* is the minimum number of molecules for a group to be
a CRR, éu = (G’ — G)/n is the chemical potential change asso-
ciated to each molecule to overcome the energy barrier hindering
rearrangement, and we have assumed ou > kgT to approximate
the summation. Equation 42 implies that the overwhelming ma-
jority of transitions is performed by the smallest CRR’s. Note that
op > 0; this is consistent with the general fact that when some
constraint to the configurational motion (i.e. to the accessible mi-
crostates) appears or becomes effective in correspondence with the
E and V values which do not allow rearrangement, then the appro-
priate thermodynamic potential increases (in this respect, remind

Section 1.1.2 above and eqs. 18 and 24).

In eq. 40 all degrees of freedom are accounted for, those describ-
ing the vibrational motion of molecules around their local potential
energy minima, as well as those associated to the exploration of the
”configurational islands” in which the whole phase space is parti-
tioned. In an ideal crystal the latter coalesce in just one point.
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The basic idea is that in supercooled liquids the overall partition
function can be (approximately) considered to be the product of
a vibrational contribution, the same we would have in a crystal,
and a configurational one. In other words, the liquid is viewed as
a composite system consisting of one part collecting the totality of
the vibrational microstates, and another one whose only degrees ot
freedom are configurational. This idea is intrinsic to the hypothesis
that the drop of C, at the glass transition is a consequence of the
structural arrest, and that the main contribution to C), in a glass
comes from the same mechanisms as in a crystal (see above).

In the light of all this, the overall configurational entropy S,
results from the sum of the configurational entropies s’ of all min-
imum sized CRR’s (which we remind are distinguishable and inde-
pendent from one another), and considering an Avogadro number
N4 of molecules we find

« _ Nas;

n* o~ S (43)
las an estimate for an order of magnitude, s% ~ O(kgln2) since
the minimum number of configurations a CRR may have is two].
Note that n* diverges as S, — 0; this is in fact the mechanism to
which the divergence of the viscosity is ascribed when the system
cools down (du remaining fixed). Since the viscosity of a liquid is
proportional to the characteristic structural relaxation time, and
the latter is proportional to the inverse average probability of the
cooperative rearrangement, eq. 42, it turns out that the viscosity is

related to the configurational entropy by

" B
A d . 44
nop (T) x exp \TSC} (44)

The actual temperature dependence of the viscosity depends on the
properties of the liquid which is being considered, i.e. the actual
form of S,(T'); this aspect is of no concern for us presently. The
main significance of last equation is the relationship between a ther-
modynamic quantity (S.) and the relaxation kinetics of a system
(e.g. m), which is ultimately observed in real experiments.

25



We note that eq. 44 above (and its derivation) does not need
that the glass transition is approached by cooling the system. Other
mechanisms, such as chemical vitrification (polymerization) or the
confinement of an amorphous polymer into small regions, can be
responsible of the progressive decrease of configurational entropy,
also at a constant temperature. The latter mechanism will be ex-
plicitly considered in the sequel; however, since the confinement
mechanism to be considered in detail is strictly connected with the
presence of a crystalline phase, we must briefly outline the crystal-
lization process taking place in polymeric systems.

2.3 Crystallization of Polymers

Crystallization may occur in polymers; it is a very complex process,
and the details of the mechanisms involved are still matter of de-
bate. Here we shall only give a rather naive picture of it, moreover
focusing only on those aspects which will be useful for us.

Due to the (long) chain-like structure of the molecules, entan-
glement interactions affect crystallization considerably. The long
times required for chain disentanglement render the extended chain
crystallization impossible, unless the chains are short enough. For
the same reason, a polymer cannot crystallize completely. Kinetics
however plays a role, and finite time crystallization results in the
formation of stacked lamellar crystallites separated by amorphous
layers, as shown by Fig. 6. It is evident that the surface tension
associated to so many crystal/amorphous interfaces, increases the
overall final free energy significantly above the value which could be
reached if the system were to crystallize in an extended chain mode.
This circumstance is reminiscent of the structural glass transition
considered above: reaching the lowest free energy state would re-
quire an infinite time; paths towards different (less favorable) ther-
modynamic states, which can be reached within finite times, are
thus naturally preferred (are in fact what we are let to see) within
our time scales. Note that, like in glass formation, also in this case
the problem is connected with configurations.
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Figure 6: a) Crystalline lamellae arrange in stacks on an intermedi-
ate length scale (schematic); the interlamellar region is amorphous, it
contains a number of defects which prevent further crystallization (thick-
ening). To make the drawing simpler, all chains emerging from the basal
planes tight-fold to re-enter nearby in the same lamella. Actually, things
are more complicated: a number of chains leaving a basal plane can ei-
ther re-enter the same lamella (but not necessarily with a tight fold), or
enter into another one (tie chains). b) Side view of a lamella undergoing
lateral growth.

In general, a more or less deep undercooling must be necessarily
imposed to a polymer melt in order to drive crystallization within

finite times (provided the temperature is not too close to 7,). We
consider now the crystallization mechanism where phase separation

starts by nucleation from the metastable liquid [2, 6]. Free energy
fluctuations may induce the formation of crystalline nuclei at a rate
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short J’

Figure 7: Free energy G associated to the formation of a crystalline
nucleus. The functional dependence on the number of units n forming
the nucleus, is as follows: G = —an + bn?/3, with a and b positive

constants.

proportional to the probability

D~ e_G/kBT (45)

)

where G is the Gibbs free energy associated to the formation of
a nucleus. Since the latter is a small system, surface effects are
important. So, in addition to a term proportional to the number
of molecules of which the nucleus is made, G must also include a
(contrasting) contribution proportional to the overall energy needed
to form the interface area s:

G =nlAu+ so, (46)

with Ay = p.—p, < 0the chemical potential difference between the
crystalline and the amorphous phases, and ¢ the surface tension. If
the nuclei are large, then the further increase of their dimensions is
thermodynamically advantageous, if they are too small then they
will tend to disappear (see Fig. 7).
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Figure 8: A secondary, slightly supercritical nucleus at the growth front
of a lamella. Chain tight folds and /or entanglements (not shown) in the
amorphous phase adjoining the basal planes contribute to hinder growth
along a direction perpendicular to the basal planes themselves, so the
secondary nuclei grow along the directions indicated by the small arrows
eventually forming a new, extended layer. This latter process is much
faster than secondary nucleation, and the overall increase of the lamellar
extension (locally indicated with an arrow labelled by a g) takes place
with a speed controlled by the secondary nucleation rate.

We shall now focus on the growth process of the crystalline
lamellae, so to relate their morphology to the relevant thermody-
namic parameters. There are two main growth modes, namely,
lateral growth, which will be introduced just below, and lamellar
thickening, which will be our concern afterwards, when consider-
ing the glass transition induced by confinement in the interlamellar
regions of an oriented polymer.

Lateral growth consists in the increase of the basal interface
extension of the lamellae (see Fig. 6), their thickness remaining
substantially unaltered. At moderate undercoolings this process
is governed by secondary nucleation, consisting in that a nucleus
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forms (attaches) at some point of the lamellar front; then, if it is
large enough, it will grow very fast along the growth front of the
lamella as indicated schematically in Fig. 8. The Gibbs free energy
of a secondary nucleus consists again of a bulk term involving the
chemical potential change Apu, together with two basal and two
(not four) lateral interfacial contributions, i.e.

G=v,'VAu+2bao,+ 2blo, (47)

where v, is the molar volume in the crystalline phase, by is the
stem diameter, a is the lateral dimension of the nucleus, [ is the
stem length and V = abgl; o0 and o, are the lateral and basal
specific surface free energies (see Fig. 6). Critical nuclei (see Fig. 7)
are those for which both the following conditions hold:

oG

— =0 4
5 (48)
oG
— = 0; 4
the Gibbs free energy associated to their formation is thus
4v.bgoo,
Gp = 50
T Ayl (50

Nuclei which are slightly larger than critical will grow (laterally)
very fast compared to the secondary nucleation rate (that is, sec-
ondary nucleation is rate determining process for the overall in-
crease of the lamellar extension; but of course this is true only for
moderate undercoolings). Growth along the direction perpendic-
ular to the basal planes, however, is significantly hindered by the
entanglements in the adjoining amorphous regions, that is why the
supercritical nuclei will substantially tend to increase in dimension
laterally. This means that the final lamellar thickness will remain
very close to the value obtained from eq. 48:

20,0,

A (51)

lo’_\’_
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Since the difference between the chemical potentials in the crys-
talline and in the amorphous phases depends on the undercooling,
this equation relates the thickness of a lamella to the thermody-
namic conditions under which it has grown. Note that at the equi-
librium melting point, T'°°, the chemical potential difference van-
ishes and the lamellae would be infinitely thick (thus requiring an
infinite time to form).

The above expression can be made more clear and useful as
follows. At equilibrium, coexistence of the crystalline and amor-
phous phases is described by the condition Ay =0 i.e. by AH; =
T°ASy, where AHy and AS; are the molar melting enthalpy and
entropy at equilibrium (remind eq. 14). Then, if crystallization is
driven at a temperature T' < T°°, the chemical potential differ-
ence can be approximately obtained by direct integration of the
Gibbs-Duhem relation (remind eq. 10) d Ay = —AS;dT. Assum-
ing ASf ~ const. we find

o0
Auf_\:AHfT—Tm . (52)

oo
m

This relation can be readily inserted into eq. 51 to yield the well-
known Gibbs-Thomson equation

i V.0, |
T ~T>|1 — |, 53
m lO A Hf - ( )
establishing an approximately linear relationship between the tem-

perature T at which crystallization is driven, and the inverse (aver-
age) thickness of the lamellae. A test for this equation requires the
use of non-trivial techniques, such as Small Angle X-ray Scattering
(SAXS). In many investigations this relation is trusted at the out-
set (for instance because previous checks were performed elsewhere
on the same material), and used to infer [y or other quantities such
as the equilibrium melting temperature T°°. We shall see how the
Gibbs-Thomson equation will be important in the forthcoming.
Equation 51 is a consequence of a balance condition. If the
lamellae are growing at a given undercooling, it is possible to re-
melt them upon a slight increase of the temperature. In this case,
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recrystallization into (slightly) thicker structures may take place.
The opposite, however, does not occur. If a crystalline lamella
has grown at a given undercooling, then further decrease of the
temperature only renders it thermodynamically more stable, and
no thinning process takes place.

Still concerning eq. 51, we have to keep in mind that in principle
lamellar thickening would be favored by the corresponding decrease
of the overall free energy of the system. As mentioned above how-
ever, this process is largely hindered by entanglements trapped into
the interlamellar regions; moreover, chains leaving the basal surtace
often re-enter nearby into the same lamella, thus forming tight folds.
The only possible process occurring in the basal interphase is thus
a slow reduction of the surface roughness.

2.4 A digression about the basal surface tension

Both the lamellar thickness [y (eq. 51) and the crystal growth rate

(54)

4v.bgoo 17
vXp (GO) ~ €Xp kBTlApz,

depend linearly on .. So, if we are able to change o, somehow, we
should observe consistent variations in v and [y accordingly.

The value of o, can be varied by introducing small amounts of
a nucleating agent dispersed in the melt. The changes induced in
v and [y can be monitored by calorimetry [7] and by SAXS respec-
tively.

What should we expect? It is known that during crystal growth
the molecules of a non co-crystallizing nucleant leave the amorphous
regions (adjoining the lamellar front) which are about to crystallize.
This is shown schematically in Fig. 9. These nucleant molecules
remain close to the basal surfaces because they cause a slight local
decrease of o, (see below). Their final (basal) surface density is
directly proportional to the crystallizing volume, i.e. to the lamellar
thickness because the stem diameter is a constant.
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Figure 9: The molecules of a nucleating agent leaving the amorphous
region adjoining the growth front during lateral growth

If the concentration of the nucleant molecules is small enough,
we can approximately calculate their final surface density taking
lo in place of the actual lamellar thickness. Since [y is inversely
proportional to the undercooling AT (see egs. 51 and 52), the actual
basal surface tension o, in the presence of a nucleating agent is
dependent on the temperature:

Te ™ Tep (1 AaT) : (55)

where 0. is the basal surface tension in the absence of the nucleant,
and a is a phenomenological coefficient.
If in place of a constant o, we substitute eq. 55 into eq. 51, we

find )

VeT e a
lq ~ 1 :

T A ( AT) (56)

Figure 10 reports the data fitting of the linear growth velocity of
the lamellae in polyethylene oxide (PEQO) nucleated with a number
density of 2.6 x 101 cm™3 of indigo [8]. The data have been obtained
by calorimetry; the fitting procedure with eqs. 54 and 55 yields
a ~ 1.8 for the whole temperature range explored.
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Figure 10: Logarithm of the crystallization rate (approximately In v?)
as a function of 77! in nucleated PEO; the symbols are the experimental
data as obtained from a calorimetric analysis {7, 8|, the dashed line best
fits the data with a constant o, while the solid line is the best fitting
obtained by using eq. 55.
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Figure 11: Gibbs-Thomson plot for the same system of Fig. 10; the
data are worked out fron SAXS analysis.
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Figure 11 is a Gibbs-Thomson plot where the data relative to
PEO samples with and without indigo are compared [9]. The nu-
cleant concentration is the same as that of the calorimetric mea-
surements. The value of a for the four highest temperature data
ranges in the interval 1.6 < a < 2.

These data are in fairly good agreement, and demonstrate the
role of the basal surface tension in determining both growth kinetics
and lamellar morphology during lateral growth. We limit ourselves
to point out this consistency, although its physical basis has been
described in more detail by means of a lattice model of the basal
interfacial region |9, 10]. This model was able to explain the basic
mechanisms responsible of the decrease in 0., and to predict the

value of a at least for PEO and polyethylene.

2.5 Confinement-induced vitrification in PET

2.5.1 introduction

An important point which has been left aside in the Adam-Gibbs
theory is about the characteristic minimal dimension n* of a CRR
around T,. In the context of that theory, its determination relies
upon assuming how large the minimal configurational entropy s
of a CRR should be (see eq. 43). Although reasonable, the choice
s» = kpln2 is arbitrary and not without problems because it leads
to underestimates of n*. Besides, also the fact that the chemical
potential barrier ou can be assumed to be a constant, was not given
a thorough justification in the original paper. The experimental de-
termination of the CRR dimensions is thus of prominent importance
in the framework of the glass transition theories, though not at all
easy. A possibility is represented by studying the glass transition
process in confining geometries. Following the general idea drawn
by Adam and Gibbs, a progressive decrease of the temperature
would cause the extension of a CRR to increase until it becomes
so close to the confining volume that structural arrest occurs. This
would give a measure of the CRR volume at 7,,. The method, how-
ever, usually has several shortcomings, not last the unpredictable
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effects induced by the confining system on the sample through the
contact surface.

Some progress, however, can be made in the case of PET (and
possibly with other polymers as well) where the vitrification of the
interlamellar amorphous component caused by a progressive de-
crease of the confining volume is observable. This is in fact accom-
plished by driving crystallization in particular conditions.

2.5.2 Cold drawn PET and the crystal thickening mode

The crystallization mode we have considered in the previous sub-
section refers to the situation where the transition proceeds by
nucleation from a metastable undercooled melt. Phase separa-
tion, however, takes place by spinodal decomposition if the melt
is ”quenched” to a state where it is unstable (by quench we mean
either a true, fast and deep temperature drop from the condition of
an equilibrium melt, or an alternative procedure by which the final
state is unstable anyway).

Metastability is characterized by positive values of the second
derivative of the free energy G of a system with respect to the order
parameter o.

In the opposite case, the system is unstable with respect to
the development of periodic order parameter patterns, and a non-
activated (spontaneous) transition takes place. This mechanism of
phase separation is better explained at the end of this section.

Crystallization of PET driven at very deep undercoolings shows
characteristic features suggesting that a spinodal decomposition
process underlies the overall transition to the crystalline state. The
clearest evidence of this fact is that in these conditions, a peri-
odic density modulation is observed (by SAXS) before any WAXS
pattern is detected [11, 12].

From the practical point of view, PET is first quenched to a
glassy state (i.e. below 70 °C) from the equilibrium melt. From
this state of isotropic glass, PET is then re-heated to the annealing
temperature T, where crystallization is planned to be driven.
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The data relating to un-oriented PET crystallized at 7, = 80
and 120 °C, reported in the Gibbs-Thomson plot of Fig. 12 (refs. [11,
13]), are close to the line intercepting the ordinates at T.>°. Crys-
tal growth by thickening is active in the T, = 80°C crystallizing
sample, as shown explicitly in the figure. However, the entangle-
ments, or some other basal interfacial mechanism limiting the con-
figurational rearrangement of the chains, eventually hinder further
thickening, so that the Gibbs-Thomson behavior is followed at the
end.

On the other hand, a very interesting situation is encountered
when crystallization is driven in PET samples where the chains were
previously oriented along a given direction. Such a non-isotropic
chain configuration is not a natural condition in general, but it
can be easily obtained by mechanically drawing the isotropic glass
(cold-drawing).

In practice these samples are obtained from PET amorphous
sheets about 0.5 mm thick; after drawing, the final sample length
along the drawing direction increases naturally to about four times
the initial one. After chain orientation the material is still in a
glassy state.

As the temperature is raised above the glass transition tempera-
ture (which now sets in at about 60 °C, as shown in the thermogram
of Fig. 3), the chain configurational degrees of freedom de-freeze in
a highly non-equilibrium condition, and crystallization suddenly
takes place by spinodal decomposition. Most important is the fact
that the crystal thickening growth mode becomes now active. This
is explicitly reported in the figure for the T, = 80°C un-oriented
sample; for oriented PET, however, this is in fact strongly suggested
by the vitrification process of the interlamellar regions as explained
in the following. Figure 12 shows the Gibbs-Thomson plot for cold
drawn and unoriented PET samples annealed at different temper-
atures T,; the inset shows a schematic of the lamellar orientation
with respect to the average chain direction. We note the following;:

e The Gibbs-Thomson relation is fulfilled by cold drawn sam-
ples annealed at T, > 160 °C; the I;' — 0 ordinate intercept

37



—— ——— T
T }
\ \ m basal planes (siile view) .
\l.___/ ~
250 \‘ E J& .
\‘ s _\ﬁ j‘
A Y -
200 *® A drawing direction .
/PP ‘A I
- \ 1
™ T~ - - \ ‘ . d 7
150 - ~ A . onent.e " .

o T~ un-oricnte
T [OC] 3 O\\ A~ - jW
- A =~ - h
o A Y "'A..., -

100 - \ 2 hs anneal
: . - eemsrEumsme O j
- » \Initial value A
50 B ek L b i | I W S DAY T U i i i 7
0.02 0.04 0.06 0.08

Figure 12: Gibbs-Thomson plot for cold-drawn (triangles) and un-
oriented (open circles) PET samples. T,X° is the equilibrium melting
is an apparent equilibrium melting point.
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of the linear best fit to these points indicates an equilibrium
melting at T°° ~ 285 °C, which is in agreement with the value
of PET known from the literature.

The data of un-oriented samples annealed at temperatures
below T, = 140 °C (see refs. [11, 13] are very close to the
linear best fit to the high-T, cold-drawn PET data.

Below T, ~ 150 °C the lamellar thickness of the cold-drawn
samples is systematically smaller than expected from the ex-
trapolation to low T,’s of the above best fit behavior. These
data, on the other hand, approximately fit a straight line in-

tercepting the ordinate at an apparent equilibrium melting
point T2 ~ 180 °C.

From these observations we may already put forward some impor-
tant questions:

1. Why do the un-oriented and (high-7},) cold-drawn PET data
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both fit the same Gibbs-Thomson behavior and extrapolate to
the correct 7,°°7 Would it mean that the entanglement effects
are insensitive to chain orientation, or that some dominant
mechanism other than entanglements contributes to hinder
lamellar thickening?

2. Why lamellae formed in low-T, annealed oriented PET cannot
thicken to values which the un-oriented samples are able to

reach?

These questions cannot be given a conclusive answer at present,
and are still an open problem in this area of research. Some light
however can be shed upon by DMTA.

Figure 13 shows the relevant mechanical response of cold-drawn
PET samples previously annealed at different temperatures. In-
stead of varying the frequency, the temperature is increased con-
tinuously from room temperature up to well above the annealing
temperature. Consider the T, = 100 °C annealed sample first. This
sample is known by SAXS and WAXS to be partially crystalline,
with a lamellar stack periodicity of about 11 nm and a lamellar
thickness of about 1.4 nm [14).

Upon progressive heating the glass transition region is approached,
and the process which sets in first is the de-freezing of the configu-
rational degrees of freedom (at about 90 °C). The kinetic character
of this relaxational transition is pointed out by the frequency de-
pendence of the corresponding loss peak onset. Then, at about
T, ~ 120 °C the slope of the storage modulus undergoes a sud-
den change, which reveals that the progressive increase of the chain
mobility is contrasted by an increase in the rigidity of the mate-
rial as a whole. The latter is a consequence of a re-crystallization
process: once the temperature has raised enough above the anneal-
ing temperature, the crystallites become unstable and the polymer
naturally tends to re-crystallize into thicker lamellae. It is worth
noticing, however, that the storage modulus still depends signifi-
cantly on the frequency even after the thickening process set in,
which means that some glassy domain is still present. Note that
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Figure 13: DMTA scans at a heating rate of 2°C/min on cold-drawn
PET annealed at different temperatures 1,. Note that the a dispersion
region (highlighted by a double arrow just below the abscissas) is the
same for all of them, ranging between ~ 90 °C and ~ 160 °C. The
annealing temperatures are indicated by an arrow so to point out their
location with respect to the « dispersion. When heating the samples, a
pre-melting /recrystallization process is observable at 1, =~ T, + 20 °C,
independent of 71,, and thus, of whether the interlamellar regions are
glassy or not. For a comparison, the a dispersion region of an un-
oriented PET sample annealed at T, = 120 °C is also reported; note
that in this case T, falls outside the a dispersion (dashed double arrow).
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the original annealing temperature falls well within the o dispersion
region (i.e. the main loss peak).

All this means that after annealing, before rising the tempera-
ture for the DMTA scan, the sample was initially characterized by
the presence of glassy and crystalline domains, arranged in regular
stacks (otherwise they wouldn’t have been observable by SAXS).
However, regular lamellar stacks cannot form within a glassy ma-
terial, thus the crystalline domains must have formed before the
amorphous viscoelastic regions had turned to a glass. Thus, as the
annealing process starts, spinodal decomposition sets in and very
thin lamellae form initially, following the periodicity imposed by
the unstable order parameter modes (which define the stacks’ long
period). Afterwards the crystalline domains tend to thicken, but in
doing this the interlamellar regions become ever more constrained,
so that eventually structural arrest intervenes. The final result is
that the crystalline domains stop thickening due to the vitrification
of the interlamellar regions. The same holds for all samples whose
annealing temperature falls within the a dispersion region. (Note
however that the re-crystallization process is always observed at
about T, = T, + 20 °C, for any value of the annealing temperature,
i.e. independent of the fact that the interlamellar region is a glass
or not (see the DMTA results and the DSC scans of Fig. 14 as well).

We are now in a very advantageous condition with regards to
the study of the glass transition process in confined geometries.
Indeed there are three points which are worth considering:

e The vitrifying and the confining materials are of the same
nature.

e The transition to a glass likely takes place gradually; in this
case a sort of a crystal/glass coexistence condition sets in, so

the morphology of the crystal domains would possibly carry
indirect information about the embedded glass.

e The difference T, — T, is a constant, independent of the fact
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Figure 14: DSC scans at a heating rate of 40 °C/min on cold-drawn
PET samples annealed at different temperatures. Note that all samples
show an endothermal peak slightly above the corresponding annealing
temperature. This endothermal process corresponds to an increase of
the configurational motion of the chains as a precursor to further crys-
tallization. For the low-T, annealed samples, the crystallization process
is pointed out rather clearly by an exothermal component just following
the maximum of the precursor process. For T, > 160°C the crystalliza-
tion process is not visible anymore, but it actually takes place as can be
seen by DMTA (see the inset of the lowest panel in Fig. 13).

that the interlamellar regions are either in a glassy state or
not.

Now, two more questions arise:

1. Is it possible to formulate a balance condition tor the low-T,
annealed oriented PET?

2. Why do the oriented amorphous domains vitrify, whereas it
is not so for the un-oriented domains?
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Figure 15: Liquid and solid branches of the chemical potential u as
functions of the temperature (solid lines). The dashed line represents
an hypothetical ”liquid” branch which would mimic the effect of the

glass.

About question 1), one may in fact relate the linear intercept to
T, of the Gibbs-Thomson plot, to the temperature dependence
of a hypothetical chemical potential associated to the glass (as in
Fig 15). The gradual arrest of the thickening process would be
viewed as a consequence of an increase of the apparent chemical
potential of the amorphous phase (see eq. 51).

At first sight this may appear as a hasty speculation, but after
thinking a little about, this point of view seems to fit some of the
general ideas about the glass transition we saw above. Indeed, in
introducing the fundamentals about the trend of thermodynamic
processes in general, we saw that the establishing of an internal
constraint has the effect of rising some thermodynamic potential.
This has been already formalized by Adam and Gibbs who with the
aim of describing de-frozen units in the amorphous domain, simply
dropped from the partition function all the Boltzmann factors as-
sociated to frozen-in configurational states (i.e. those states from
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which a CRR cannot undergo any configurational transition). As
a consequence, the need to overcome a chemical potential barrier
op for structural rearrangement to occur, results as an effect of a
reduced number of "active” states. The representation suggested
above shows similar features: structural arrest is equivalent to the
appearance of internal constraints and the difference Apgp, — Ap
plays the role of the barrier oy introduced by Adam and Gibbs
(indeed, the chain segments at the basal boundary which would be
able to "enter” the crystalline phase, should already be around the
top of the barrier).

In order to give further support to this hypothesis, we are now
left with the problem of determining the partition function of the
amorphous phase, and see how this idea fits with the concepts of
statistical mechanics. In this respect there is one more point which
is worth considering, namely, question 2 above. Here again the
experiment comes for a help.

Consider the PET samples annealed at T, = 120°C; the un-
oriented sample follows the Gibbs-Thomson relation, while the ori-
ented one does not. On the other hand, SAXS analysis reveals that
the thickness of the interlamellar regions are practically the same in
both the cases, i.e. ~ 5.5 nm. Now, during the lamellar thickening
process, two opposing basal planes embedding a given amorphous
region cease to move one towards the other when the interlamellar
defects ”pushed away” from one side impinge onto the other. In
other words, when some correlation length starts being comparable
with the interlamellar thickness.

Since defect-free regions are more dense than defect-rich ones,
we should check whether, and to what extent, the density-density
correlation length is affected by chain orientation. Moreover, it a
difference is found (as it will be), then it is important to write down
the partition function as an expansion in normal modes of the den-
sity fluctuations, because this will allow to address the connection
between chemical potential and fluctuating modes more directly:.

To this aim we shall resort to the gaussian chain model of a
polymeric chain, because it is able to catch a number of character-
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Figure 16: Crystalline/Interfacial/ Amorphous layers in a stack. L is
the long period and lp is the lamellar thickness; the cutoff length is
roughly ~ (L — lp). Vitrification should occur when the ”cutoff length”
becomes comparable with the density-density correlation length.

istic features of polymer statistics, still remaining simple enough to
allow for some analytical calculation. This model will be introduced
in next subsection; some similarity with the formalism of quantum
mechanics will be also pointed out.

2.5.3 The gaussian chain model

The simplest way to describe the conformation of polymers is to
discretise the space into a lattice. We shall consider the chains to
be made of units (usually called segments) which are thought to
be accommodated at the sites of a cubic lattice; these segments are
then connected by bonds to form chains (see Fig. 17). A segment
does not in general coincide with just one monomeric unit, but may
often be larger. The main features of the chain conformation statis-
tics can be catched by assuming that the directions of subsequent
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Figure 17: A chain made of segments into a cubic lattice.

bonds are not mutually correlated (freely jointed chain), and that
multiple occupation of any lattice site is allowed (ideal or phantom
chain).

Having fixed one of the two chain ends to a given site (the
origin), we seek for the probability P(r;n) that the other end of a
chain made of n segments is at point r. Due to connectivity, the
(n—1)th segment can only be in one of the nearest neighboring sites
about r with equal probability 2! (freely jointed approximation),
2z = 6 being the coordination number in a cubic lattice:

P(r,n) = —i—ZP(r-——ai,n-—l), (57)

where the {a;} are the principal lattice vectors. For very long
chains, i.e. |r| > |a;| and n > 1, the r.h.s. of eq. 57 can be
expanded to yield:

P 1
0 a-VP+ —a;a;: VVP. (58)

P(r —a;,n—1) ~ P(r;n) 5 5
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Since Y. a; =0 and 271 ). a;,a;, = 8,,0%/6, with a = |a;|, we find

immediately

OP a*
5 = EV2P. (59)

Last one is a very well known equation in the theory of the
random walk, and is also of the same form an imaginary time
Schrodinger equation for a free particle. The solution is the gaus-
sian distribution:

3/2 w12
P(r,n;ro,O)——"( ° ) exp{ 3ir — xol } (60)

2wan 2a2n

which describes an ideal polymer chain in isotropic conditions (the
initial coordinates of the chain have been explicitly indicated). A
fundamental property of the solution expresses the composition of
probabilities:

P(r,n;rg,0) = /d3wP(r, n;w,T) P(w,7;19,0); VT <mn. (61)

We will generalize this result to the continuum, so we allow for this
fractionation to be repeated at will; dividing the contour length in
intervals of equal length 47, we find

3 rz+1 rz)
[27ra26’r/ 3]3n/2 / H d’r; exp { 2 a2 Z }

i=1 1=0
(62)
which in the limit of an infinite partition is in fact the functional
integral with respect to all possible paths r(7):

P(r,n; ro,O)——/ Dr(T exp{ 2i2f d'ri'2}, (63)
0

the dot standing for the derivative with respect to 7: ¥ = ér/d7.
Equation 61 says that the probability that a chain starts at rq

and ends at r after n steps, can be obtained from the combined

probability that the chain starts at ry, passes through w at step T,

P(r,n;ry,0) =
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and ends at r; for the overall probability to be obtained, however,
we have to sum over all possible intermediate points w. If a field
is also present, so that an energy U(w) is associated to a chain
segment placed at w, then the possible contributions to the inte-
gral must be weighted by a Boltzmann factor exp{—U(w)/kgT'}.
A straightforward generalization for an infinite partitioning of the
path thus leads to

3 Ulr) ]
P(r,n;ro, 0) /’Dr T)exp{ / dr -2—-&—2—r + kBT_}' (64)

This form of the probability suggests that in fact it may be inter-
preted as the partition function of a single chain with the end points
fixed at r and rg, the functional integral accounting for all confor-
mational fluctuations. A well defined chain configuration {r(7)} is
thus assigned a Boltzmann factor, customarily called the segment
distribution,

\Il{r(fr)}:Aexp{—/OndT 2?121" +qu} (65)

with A a suitable normalization factor (do not confuse this ¥ with
the general thermodynamic potential in eq. 22).

2.5.4 Density fluctuation mode representation of an ori-
ented melt

In order to describe a polymer melt, we introduce an excluded vol-
ume mean field interaction with an energy term

— g—zz fon dr /: dr'é[r; (1) — r;(7)], (66)

with 7 and j labelling the different chains; v is the excluded vol-
ume interaction parameter [15]. Concerning the ”elastic” (entropic)
component of the energy, i.e. the term involving r in W, the chains
are treated as ideal. Since we also want to generalize the theory to
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the case where the chains have a mean orientation along a preferred
direction, the overall elastic energy will be taken in the form

Up = kBTQa,? Z/ dT rlj—l— n"lrngj] , (67)

where k = 1 for an isotropic melt, and ¥ > 1 for chains oriented
(stretched) along the "parallel” (||) direction.
From the overall chain distribution

U {r;(7)} x exp{—(Up + U.)/kgT'} (68)

the partition function might be obtained by a functional integration
over all possible conformations r;(7), thus allowing for all configura-
tional fluctuations to be accounted for. However, we are interested
to a density mode expansion of the partition function, because we
saw above that the density-density Huctuations should be relevant
in characterizing the behavior of the system when the structural
arrest is approached through confinement. We then first project
U, {r;(7)} onto the space of the density mode amplitudes.

To this aim, consider the overall density ¢(r) together with the
associated Fourier transform cy:

- fo " dr o[x — (7] (69)
o = i‘lf"Z/O dr et rit (70)

[note that c_x = ¢ for ¢(r) to be real]. Then the segment dis-
tribution with respect to the possible sets {cx} can be obtained
o |

\Ilt{ck} X H/Hdrﬂlt{r, Ck — %ZATL dT e’ r;(7) ,

k>0 () _ i
(71)
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where k > 0 means that each mode must be accounted for only
once (remind that c¢x = c*,). From the expansion of the delta
function, 6(r) = V1Y, e¥* we immediately see that the excluded
volume interaction can be expressed as a quadratic form in the

mode amplitude:
Uk} = k-BT—-—- Z CkCok - (72)

But with the entropic contribution U thmgs are not as simple; by
the way, we seek for a quadratic approximation as well:

U(){Ck} ~ kBT z Uk CkC_k , (73)
k

which is expected to be reliable in the case of small density fluctu-
ations.

The coefficients uy are directly related to the structure factor of
the ideal chain and are easily calculated below. Due to the indepen-
dence of the modes with different k, the chain distribution ¥;{cy}
reduces to the product of single mode gaussian distributions. In
the case that U, = 0, the coefficients uy, are thus related to the
average amplitude of the mode by

1
2(CkC__k>0

where the subscript "0” indicates that the average is calculated for
tdeal chains. Because of the statistical independence of different
chains in the absence of excluded volume interactions,

(CkC..._k V2Z/ de dr’ (e"k(rr—wJ))

dT/ dr’ /d3rd3wP(r mw, ) et =W (75)

Uk =

M

~ V2
where M 1s the number of chains in the volume V. This gaussian
integral can be readily calculated and we finally get

CSk
<CkC_k>0 = 7 ; (76)
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with ¢ = Mn/V the average segment (number) concentration, and

2n _ na*
-6

(kI + K ki) (77)

the ideal chain structure factor.

For our scopes, the large x limit of the structure factor is rel-
evant, so we approximate Sy ~ 12[a?(k{ + & kuz)]"‘l and the final
expression of the segment distribution takes the form

2
W {c} ox exp { ‘;462 Z( k? + nklf +£72) ckc_k} ,  (78)

k

where the parameter £ = (8acv)™Y/? is called the correlation length.

So, the excluded volume interaction tends to depress the average
density fluctuation mode amplitude, since

(ee—x) = 12¢/[V a®(k? + nk”2 + €] < {exe—x)o - (79)

The knowledge of ¥;{cy} in this form is the basis for the forthcom-
ing discussion.

Before concluding this subsection, it may be instructive to show
why £ has been called ” correlation length”. Suppose that the den-
sity at some point (the origin) deviates with respect to the mean
value ¢, and ask how far from the origin this perturbation decays
completely. To this aim one is led to calculate the quantity

V .
(6c%) = (c(r) ¢(0)) — ¢* = = 23k (cxc_y) ek T, (80)
The calculation of this integral will be outlined afterwards for ar-
bitrary k. Here it suffices to report the result for k = 1 (isotropic
melt), which reads: (6c?) = (3c/ma?|r|) exp(—|r|/£), and points out
clearly the role of &.

2.5.5 Vitrification of an oriented amorphous phase

We are almost done. Once the segment distribution in the appro-
priate representation is available, we can find the partition function

ol



and then see why an oriented melt should turn to a glass with better
chances than the un-oriented one.

So, consider the volume V' of an amorphous interlamellar region,
and assume it is practically a constant; the appropriate thermody-
namic potential is then the Helmholtz free energy. Taking the un-
oriented state as a reference, the free energy of the oriented system
1S

Z

AF = For — Fy = —kpTn 2~ (81)

where Z,. and Z, are the partition functions for the oriented and
un-oriented amorphous systems respectively. These quantities can
be expressed as integrals over the modes’ amplitudes of the segment
distributions: Z o [ [[, dexVe{ck}, with [dex = [ dRex [ dSex.
It is important to stress that the free energies in eq. 81 are associ-
ated to just the the configurational (density) fluctuations. No static
contribution associated with the mean density (i.e. at |k| = 0) is
included.

Because of the approximation on the energy, we are led to the
calculation of ordinary gaussian integrals, and the argument of the
logarithm in the r.h.s. of eq. 81 finally takes the form

Zor lk|2 + 6——2

Zor _ , 82
Ly, lgki‘i'ﬁk”z"'f_z ( )

Since k > 1, the r.h.s. of last equation is an infinite product of
terms all < 1, and the larger ones are roughly those for which |k|
is small (i.e. the mode wavelength is large).

We now consider the effect of the embedding crystalline regions.
The latter in fact represent a constraint for the density fluctuations
of wavelength comparable or larger than the thickness of the in-
terlamellar region. These frozen modes cannot contribute to the
fluctuation free energy and must be excluded from the product (see
egs. 81 and 82).

This crude model carries with it some fundamental questions.
As explained above, when the glass transition process takes place
some constraints are progressively established. We can resort to
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thermodynamics either before these constraints set in, or after-
wards, when their characteristic relaxation times (i.e. of the con-
straints) become much longer than the laboratory time scale. In
between, no statistical thermodynamic argument seems to be rigor-
ously applicable in principle, and one is led to consider alternative
formulations related to non-equilibrium formalisms.

Let Z,,. and Z, stand for the partition functions calculated ac-
counting only for the un-constrained density modes; then for the
new free energy difference AF’ we find

kc k2
AF — AF =kgTy  In 1+(n—-—-1)|k|2_:’_ —|, (83)
k>0 _ £ -

where the "interval” 0 < k < k. is meant to include the wave

vectors of all constrained (frozen) modes. The corresponding dif-
ference between the chemical potentials can be estimated from the
relationship u = (OF/ON )yr, with N = n M the total number
of segments. Note that as the interval of "excluded” modes in-
creases, the difference between the free energies of the oriented and
un-oriented regions increases too.

Now, assuming that in the case of an oriented system the chains
are mainly directed perpendicular to the embedding basal planes,
we make things simple without going far from the experimental
evidence (see the inset of Fig. 12; for experimental data see [14]).
So, the direction which we labelled with the symbol ”||” is in fact
perpendicular to the basal planes, and the thickness [, of the in-
terlamellar region establishes a cutoff for all those wave vectors for

which

]C” < l = k.. (84)

In order to estimate the change of the chemical potential difference
caused by the ”quenching” of long wave ” parallel” fluctuations, we
turn to the continuous with the substitution Y, — (V/8#%) [ d°k,
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and find after straightforward calculation

k‘BT ﬁ:k‘2§2+1
Ap _A“+87r2c§2 {kcln( k€21 1 ) |

2 -ar§tan(kcf\/’€) arctan(kcﬁ)-} _ (85)

&L VK

Note that Ay’ is larger than Ap except when k = 1.

The point of view put forward so far, i.e. the argument based
on the quenching of the modes in the partition function, is rather
intuitive. The starting idea, however, involved the density-density
correlation length, so it is desirable to have a glance at this quantity.
As explained just at the end of previous subsection, the correlation
length establishes the spatial decay rate of the density perturbations
(6c?). By expressing the latter as a Fourier integral of the mode
amplitudes (see eq. 80) and performing the integration over d?k,,
we are left with:

+00
6) =735 | dkie Ko (el ok +67), (86)

m2a?

where K is a Bessel function of imaginary argument. Using the in-
tegral representation K, (ab) = 1/2(b/a)” f0+°° dt t*~! exp{—[a?/t +
b%t]/2}, for k. = 0 we find:

. 3cC 1 9 1
(6c?) = a2 |ry |2 +Tﬁ/r~t]1/2 €Xp {—E\/Irﬂ T ETﬁ} (87)

(the same result could be obtained by performing the calculation
as for an isotropic system, after a suitable length rescaling along
the parallel direction). The above expression says that the effective
correlation length along the parallel direction is x'/2¢, i.e. larger
than in the isotropic case.

Figure 18 shows the space dependence of (6¢?) for different val-
ues of k. (see eq. 86).

The quantity £ is in fact a microscopic parameter defined just
below eq. 78. It is only after the integration of (cxc_j) in the k space
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Figure 18: Density-density correlation {(6c?) as a function of the distance
along the drawing direction; /,,q4, is the cutoft length, i.e. the maximum
wavelength value for the corresponding mode to be able to fluctuate.

that we see that it has the meaning of a correlation length. In other
words, the correlation length naturally tends to assume the value
of the microscopic parameter £ (or £/k'/?) if all modes are allowed
to fluctuate. On, the other hand, when the modes with small k are
quenched, the effective correlation length is kept smaller than the
value ¢ (or k/2€) it would assume, and we are in a condition of a
constrained amorphous system, i.e. a glass.

There is a difference of course, between a glass obtained by
confinement and an ordinary glass. In the latter the constraints
on the long wavelength modes are established by the homogeneous
phase itself, whereas in the former the constraints are a consequence
of the presence of a phase heterogeneity. In this respect we also
have to point out that in the scheme set forth above, all segments
are treated in the same way, much as in the Adam-Gibbs theory,
where the same chemical potential barrier ou is assigned to each of
the segments (or units) of a CRR, independent of its position with
respect to the CRR boundary. Strictly speaking, we should have
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carried out the calculation of the partition function for a system

made of chains which are effectively anchored to the basal surfaces
of the interlamellar volume. Thus the above calculation has only
the value of an estimate.

But what did we really calculate? It is important at this point
to make an explicit comparison with the Adam-Gibbs theory. Our
main idea was to ascribe the reduced thickness of the crystalline
lamellae to a change of the apparent bulk amorphous chemical po-
tential as shown in Fig. 15. This way we can still describe the re-
lationship between thermodynamic parameters and lamellar thick-
ness, eq. bl, as the result of a balance condition involving the crys-
talline bulk, the interface and, now, the segments of the amorphous
phase which are at the top of the chemical potential barrier éu
introduced by Adam and Gibbs.

It remains to discuss the dependence of du on the size of the
confining region. In the Adam-Gibbs theory, the divergence of the
viscosity of a glass forming liquid is ascribed to the increase of the
linear dimensions [~ (n*)}/3] of a CRR:

n ~ e ou/ksT (88)(

(from eqgs. 42 and 44). In a sense, a CRR (i.e. n*) is viewed as
growing indefinitely at constant ou as T approaches the ideal glass
transition. On the other hand, when vitrification is progressively
induced by confinement, then initially 6y = 0 and the number n*
of units involved in any cooperative structural rearrangement fills
a volume smaller than the confining one. As the latter decreases
further, then the region occupied by the n* units starts to be con-
strained: the group of units involved in a structural rearrangement
then turn to a CRR and oy increases. So, du must depend on the
linear dimensions of the confining region at the temperature where
the glass transition is induced. If the condition for the liquid to be-
come a glass is expressed through a certain threshold value Kgjuss
that the exponent in eq. 88 has to reach, then we may write the

proportionality

1
Sp ox — .
po< — (89)
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This relationship is in fact described in eq. 85 by the coefficient &,
of the logarithm.

We now want to see how our calculations match the experiment,
otherwise they would be useless. To this aim we consider the data
of both un-oriented and cold-drawn PET samples annealed at a
temperature of, say, T, = 120°C. |

From Fig. 12 and eq. 53 we see that the basal surface tension o,
is almost independent of the average chain orientation in the amor-
phous phase (and in the interphase too). This is because i) the
quantities v, = 140 cm®/mol, H; ~ 2.5 kJ/mol and T ~ 285°C
are parameters characterizing the crystalline phase, and i) the data
of un-oriented PET follow the Gibbs-Thomson line fitting the ori-
ented samples’ data. (In fact, o, should depend on the change in
the average chain orientation when crossing the interphase from the
crystalline to the amorphous region. Since however the interfacial
thickness depends linearly on the density-density correlation length,
the oriented PET is characterized by thicker basal interphases than
the un-oriented PET. Thus, mean chain orientation change through
the interphase, and thickness of the latter, seem to almost balance
to yield a practically constant o.. This at least as it appears from
the Gibbs-Thomson plot of Fig. 12. This conjecture, however, is
anopen problem as yet.)

On the other hand, eq. 51 allows for the estimate of the excess
chemical potential du = Au'—Apu (see eq. 85) from the difference 6l
between the lamellar thicknesses of the samples, i.e., [ ~ 2.7 nm
for the un-oriented sample and [y — dly ~ 2 nm for the oriented

sample:

20V, lo
op| = :
bl = 255 () (90

From the Gibbs-Thomson plot and from eq. 90, a straightfor-

ward calculation yields |Ap| =~ 0.74 kJ/mol at T = 120°C, and a
value |du| =~ 0.26 kJ/mol to justify dlp = 0.7 nm. By inserting these
values into eq. 85, assuming € ~ 1 nm (i.e. of order the monomer

length), and considering that k = 4, we find a cutoff wave vector
of k, = 2.9 x 107 cm™!. The corresponding (parallel) wavelength is
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27/k. =~ 2 nm, i.e. twice as much the ordinary correlation length,
as it should be (see eq. 87 and the comments just following it).

Of course there is a number of simplifying assumptions in the
whole calculation developed above, and the agreement with the
experiment should be considered satistactory just because our es-
timates are not orders of magnitudes far from the data. In con-
clusion, we may take our reasoning as a possible basis upon which
more detailed calculations (e.g. simulations) can be performed.

2.5.6 Appendix: Spinodal decomposition

We can illustrate the difference between nucleation and spinodal
decomposition by resorting to the ideas of Ginzburg and Landau
6].

We describe phase transitions through an expansion of a phe-
nomenological tree energy F' in terms of a suitable order parameter
¢. To make things simple, let us consider a system able to undergo
a phase transition, and whose local properties can be described by a
conserved order parameter ¢ which is a function of just one spatial
coordinate, say it x. The overall free energy F is a functional of
¢(x) given by

pove -

F[¢]=jdﬂ? f(¢)+6(-?£—)i , (91)

b

- where the square gradient accounts for the energy contribution as-
sociated to the formation of an interface. Suppose that the free
energy density f(¢) has the profile depicted in Fig. 19, and that
the disordered phase is characterized by a value of ¢ larger than in
the ordered one.

At high temperatures T}, above the melting point, f has only
one minimum, say at ¢ = ¢@g, corresponding to the equilibrium melt.
As the temperature decreases down to 1}, below the melting point,
f assumes a two-well shape and the system tends to phase-separate
into two states characterized, say, by ¢, > ¢ and ¢o_ < ¢g. If
in these conditions (0°f/0 ¢*)4=4, < 0, the undercooled liquid is
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Figure 19: The free energy density f as a function of the order pa-
rameter ¢ for high and low temperatures, 1y and 7; respectively. The
temperature quenching drives the system form a condition of stable equi-
librium at T}, to a state of instability 8°f/8¢3 < 0. From the Gibbs
construction we see that phase separation into ¢, and ¢.. regions is
accompanied by an average decrease of f.

unstable: the transition towards the ordered state takes place via
spinodal decomposition, a spontaneous process which, differently
from nucleation, is not activated.

We consider the case where the order parameter is conserved
(for instance it may describe a concentration of defects, i.e. entan-
glements or whatever else), so that its evolution must be compatible
with the constraint [ dz(¢ — ¢p) = const. We won’t go into the de-
tails, and limit ourselves to show that a periodic modulation of the
order parameter may lead to a decrease of the overall free energy,
provided the gradient of ¢ is not too large, i.e. the period of the
modulation is sufficiently long. So, let d¢p = ¢ — ¢g ~ cos(gz) be
a small perturbation of the (unstable) equilibrium order parameter
¢o; then, by expanding f to lowest significant order in a Taylor

99



series about ¢q, we find:

- -

AF[4) = Fl4] - Flgo] o (gg)w ve?| . (92

L §

From this expression it is evident that AF'[¢| < 0 provided

2 (0?
g < \/—Z (ngz—) o : (93)

Figure 20: The free energy density f as a function of the order pa-
rameter ¢ for high and low temperatures, 7} and 7; respectively. The
temperature quenching drives the system form a condition of stable equi-

librium at T}, to a state of meta-stability 8% f/0¢3 > 0. From the Gibbs
construction we see that phase separation into ¢, and ¢@_ regions is
accompanied by an average increase of f.

On the other hand, nucleation is the mechanism of phase sepa-
ration when the T-quench drives the system into a region of meta-

stability, where (0% f/0¢*)4=4, > 0. As shown in Fig.20, in this
case the separation in regions characterized by different values of
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the order parameter, ¢, > ¢¢ and ¢_ < ¢, is accompanied by
an increase of the average free energy f, as the Gibbs construction
points out.
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3 Monohydric alcohols

3.1 Introduction

Monohydric alcohols are substances whose molecules are able to
assoctate by means of a mechanism known as hydrogen bonding.
This kind of binding interaction is responsible of the formation of
supramolecular aggregates whose properties affects rather drasti-
cally their macroscopic behavior.

4

1:'
r
4

hydrogen bonds

Figure 21: Water molecules bonded together via an hydrogen bond.

Water is also made of molecules undergoing mutual interaction
via hydrogen bonding; for this reason this substance can be found
in the liquid phase within so a wide temperature range at atmo-
spheric pressure, and its boiling point is so high. Consider two water
molecules coming close together. The 04 hydrogen is so strongly
attracted to the lone pair that it is almost as if you were beginning
to form a co-ordinate (dative covalent) bond. It doesn’t go that
far, but the attraction is significantly stronger than an ordinary

dipole-dipole interaction. Hydrogen bonds have about a tenth of
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CH3— OH ------ Methanol

CH— CH,—OH ------ Ethanol
CH— CH,— CH,— OH ------ 1-Propancl
CH—CH, —CH,— CH,— OH ~----- 1-Butanol

Figure 22: Linear monohydric alcohols with varying length of the alkyl
tail.

the strength of an average covalent bond, and are being constantly
broken and reformed in the liquid phase.

The interesting feature of monohydric alcohols is that in the
liquid phase they form mainly chain-like aggregates, which offer
the advantage of being rather easy to describe from the statistical
mechanical point of view, even though their shape and dimension
change restlessly.

In the present chapter we shall mainly consider the quasi-static
dielectric properties of these liquids (and of their mixtures with a
non polar solvent), and see how these properties can be interpreted
in terms of the statistics of the aggregates.

Our starting point will be the experiment of course, but we
shall see that the theoretical construction hinted by the need of a
coherent interpretation of the data will go beyond the observations,
in the spirit of the best traditions of the Physical Science.
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3.2 Dielectrics and Calorimetry
3.2.1 The experiments

Calorimetry has been used to estimate the strength ot the hydrogen
bond in monohydric alcohols through the measurements of the en-
thalpy of mixing AH,,;, in diluted alcohol-in-carbon tetrachloride
mixtures [16]. Although carbon tetrachloride (CCly) is a non polar
molecule (its structure is analogous to methane, but with chlorine
put in place of the hydrogen atoms), it is a good solvent for alcohol
molecules such as those shown in Fig. 22.

The procedure consists first in measuring the enthalpy H of
formation of an alcohol/CCly; mixture as a function of the alcohol
mole fraction z, and then in calculating the difference

AH,,.=H —xH, — (1 —x)H;, (94)

where H, and H, are the enthalpies of the alcohol and the solvent
respectively, and z is the mole fraction of the alcohol. By extrapo-
lating AH,,;,(x) for vanishing z, the partial molar mixing enthalpy
of the alcohol component can be obtained. Indeed, the effect of
an increasing dilution is the rupture of a progressively increasing
fraction of hydrogen bonds binding the alcohol molecules together,
and the amount of energy needed to break these bonds is connected
with the heat to be supplied in the calorimeter.

This procedure was followed for solutions of methanol, 1-propanol,
1-butanol and 1-octanol in CCly; the resulting AH2° was invariably
found to fall within the interval 4-6 kcal/mol. Now, the final vol-
ume of each mixture did not differ more than 0.1 % from the sum
of the volumes of the components before mixing, so that AH2° was
in fact a measure of the binding energy. The independence of this
result on the length of the alkyl tail suggested that the partial heat

of mixing AH° was in fact to be related to some process involving
the hydroxyl group of the molecules: the only feature shared by the

whole variety of alcohol species analyzed.
So, calorimetry first pointed out a sort of general behavior char-

acterizing a moderately wide class of molecules, namely, the strength
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of the hydrogen bonds they may form.

We now leave calorimetry and consider the quasi-static dielec-
tric response of these liquid mixtures (quasi-static means that the
dielectric response is not really measured in steady conditions, but
rather at a frequency of 100 kHz; the period of the field, however,
may be considered virtually infinite as compared to the relevant
characteristic time scales of the molecular processes occurring in
the temperature intervals we are interested in).

Figure 23 reports the relative dielectric constant ¢ as a func-
tion of the alcohol volume fraction ¢ = V,/(V, + V;), being V,
and V, the volumes of the alcohol and the solvent used to make the
solution. The measurements have been carried out at room temper-
ature in mixtures of methanol, ethanol, 1-propanol and 1-pentanol
in CCly [17]. We cannot reproduce here the general derivation, but
for a mixture of a polar liquid and a non-polar solvent the dielectric
constant ¢ is related to the dielectric parameters of the components

by [18]
9T | € — €xoya E — €co,3
y { ) 1 . —
4re { 26 + €x0,a 26 + €00 s ( QB)}
NA Eoo,a, + 2 2 9
(5 (26 + 800,0) Hei s ¢ (95)

where €., , and £, ; are the relative dielectric constants at optical
frequencies of the alcohol and the solvent respectively, N4 is the
Avogadro number, v, is the molar volume of the alcohol and ey
is an effective electric dipole to be associated to each molecule of
the polar component. This latter quantity is known to depend by
a number of conditions, such as solvation and association. By ideal
behavior we shall mean the case where the effective dipole pess is
a constant in the whole ¢-range.

The ideal behaviors predicted for the mixtures are reported in
Fig. 23. In all cases the actual dielectric constant of each mixture
is lower than ideal in the low-¢ region. In the high-¢ region the
discrepancy between the actual and the ideal values of ¢ depends
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Figure 23: Room temperature relative dielectric constant in the
alcohol/CCly mixtures as a function of the alcohol volume fraction ¢.
The lines are ideal behaviors describing a polar non-associating liquid
in a non-polar solvent.

on the alcohol; we shall discuss in detail the case of methanol af-
terwards.

It is worth noticing that in all cases, if the low-¢ data are fit-
ted by ideal behaviors, then the extrapolations to ¢ = 1 intercept
the ordinates at values £, of the dielectric constant which are sys-
tematically lower by about one half with respect to the value g,
expected for the pure alcohol. The results are summarized in the
following table [the values of p.rs have been obtained by imposing
8(¢ — 1) = €a]:

If we look at both the data and the ideal extrapolations, we see
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Ua/NA Ea ga €o00,a Hef f

(A%) (D)

methanol 67.3 32.5 17.2 1.766 2.98
ethanol 97 24.3 9.7 1.852 3

lI-propanol 124 196 9 1.918 2.98

l-pentanol 180 14.2 5.5 1.988 2.96

Table 1: Molecular volume v, /N4, bulk dielectric constant ,, ideal ex-
trapolation ,, optical dielectric constant and effective (apparent) molec-
ular dipole p.ss for methanol, ethanol, 1-propanol and 1-pentanol at
room temperature. For CCly, £; >~ 2.2. The dipole moment is expressed
in debyes (1 debye= 10718 e.s.u. = 3.3356 x 1073 Cm). All considered
alcohol species are characterized by almost the same dipole moment in
VACUUN [hyge = 1.7 D.

that in the low-¢ region, each alcohol behaves as if it had a reduced
molecular dipole. On the other hand, it is known that the alcohols
are able to associate so to form cyclic aggregates (or clusters). The
latter have no net dipole moment, so the whole fraction of molecules
involved in the formation of these closed aggregates represents in
fact a further non polar component in the mixture.

It is hard not to imagine that the impressive regularity of the
data reported in the table has to do with what observed in calorime-
try, so we assume that this behavior is also a manifestation of the
association mechanism.

Thus it is important to see how the number of cyclic clusters
depends on the hydrogen bonding energy and on the alcohol vol-
ume fraction. Since both the calorimetric and dielectric behaviors
appear to be independent of the length of the alkyl tail, we seek
for a simplified model where the shape of the alcohol molecules is
disregarded. Moreover, since our concern is the influence of the
binding energy on the shape of the cluster, we shall not consider
degrees of freedom other than configurational.
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3.2.2 A simple lattice model

Given a volume V, let ¢ be the fraction of it which is occupied
by the alcohol molecules; the rest is supposed to be filled by the
non-polar solvent. Hydrogen bonds among alcohol molecules con-
tinuously break and reform, so that each cluster changes its shape

and aggregation number restlessly.

Let ny; be the number of clusters made of k molecules (k-
cluster) in either cyclic (¢ = 1) or open (¢ = 2) configuration.
The problem is to find the equilibrium distribution of these clus-
ters, given an energy Ej, characterizing the strength of the hydrogen
bonding.

We do this by resorting to the method outlined at the end of
Section 1.2.2: we calculate the number of distinguishable ways a
given cluster distribution can be realized, and extremize it under
the constraints that the average energy is a constant and that the
total number of alcohol molecules is fixed (this is equivalent to
find the extremum of the appropriate thermodynamic potential:
the Lagrange multiplier associated to the constraint on the average
energy will eventually assume the appropriate value).

Let Ej, be the energy needed to separate two mutually bonded
alcohol molecules in the presence of the solvent, i.e. roughly the
difference between the hydrogen binding, E}g, and the solvation
energies; then, a k-cluster must be assigned an overall formation

energy

—kE}, i =1 (cyclic)
Eyi = k> 2
—(k—1)E, i=2 (open) (96)
Ek = -—Ehék,Q k <2

i.e. simply —E}, times the number of bonds. We exclude at the out-
set the possibility that dimers can form with two hydrogen bonds;
these configurations are possible, but very unstable.

In order to estimate the number of distinguishable configura-
tions which can be realized by a given distribution, we use the trick
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to discretize positions and moiecular orientations by means of a
cubic lattice. This is a widespread used technique which simplifies
the calculations considerably, and has been used already when we
introduced the gaussian polymeric chain.

We imagine that the alcohol molecules can occupy only the ver-
tices of the cells of a cubic lattice (coordination z = 6), and that
their electric dipoles are allowed to be oriented only along the prin-
cipal directions defined by the lattice. (We allow dimers to configure
cyclic-like in the discretization of the lattice, still excluding how-
ever the possibility of more than one bond.) The volume of each
cell equals the volume of a molecule.

Let N; denote the total number of cells in which the whole
volume V occupied by the mixture can be divided, and consider a
chain made of k¥ molecules. Then, the number of ways the cluster
can be accommodated in the lattice is

Wk = Ntzk’ (97)

because there are N; possibilities to place the first molecule of the
cluster, and the position of each other molecule depends on the
dipole orientation of the preceding one. Note that if the k distin-
guishable molecules were not connected, the much larger number
(N;z)* would have been found for Wy. Of course, both the open
configurations and the cyclic ones are included in Wy, the latter, as
we saw, are expected to be relevant in determining the the deviation
from ideality of the dielectric response of our liquid mixtures, so it
is important to find how many configurations out of W, correspond
to closed chains.

A simple calculation yields the following expression for the frac-
tion P of cyclic configurations out of Wy (see appendix):

P, = [l 5! (-—-——j—-—l)! ; (98)

2k . 2
§l=0 " k even

Strictly speaking, cyclic clusters cannot form in a cubic lattice if
k is odd; however, the constraint imposed by the lattice geometry
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is fictitious, since it only serves as a convenient way to discretize
configurations and estimate entropy differences easily. Thus we
shall use eq. 98 for k even, and use a suitable interpolation for &
odd. Figure 24 shows how fast P, decays with increasing k.
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Figure 24: Fraction Py of cyclic configurations out of Wj. The full
symbols are obtained from eq. 98, the open ones have been obtained
from an interpolating sum of two exponential decays.

We can now calculate the number Wy ; of distinguishable con-
figurations that a k-cluster may take:

W, Pe(k —02)~" i=1 (cyclic)
Wi = == x (99)
1 — Py i =2 (open)

where the factor 1/2 accounts for the two possible molecular or-
dering along the same path, and (k — dx2)™" is to get rid of the
redundancy arising from the equivalence of choosing any of the
molecules as the first one in a cyclic configuration.

Apart of irrelevant factors, the total number of distinguishable
configurations that the whole cluster distribution {ny;} may as-
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Figure 25: Open and cyclic clusters in a two-dimensional lattice.

sume is given by

we= [T (100)

The entropy of the system is then S = kg lnW,, and the equilib-
rium condition requires that S be a maximum under the following

constraints:

1. the total number N of alcohol molecules is fixed:

m=N-— )  kng (101)

k=2,N;i=1,2

(n, is the number of non-bonded molecules, or 1-clusters; the
combination k£ = 2 and ¢ = 1 is excluded from the summa-
tion).

2. Both the total volume V' and the alcohol volume fraction ¢
are fixed, so that all terms in the relationship
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are fixed.

3. The average overall energy

U=-En Y, ngi{dea+ (k—082)(1—dk2)} (103)

k=2, N;i=1, 2
must be a constant.

We obtain the equilibrium distribution by simply finding the
maximum of S + alU with respect to the arbitrary variations of all
nk; with £ > 2 (remind eq. 101), being o a Lagrange multiplier
which eventually must be assigned the value —1/T". The resulting
distribution is

Ngs = nf% exp {iﬁf (02 + (K — 852)(1 — 6k,2)]} . (104)
This is just a "formal” solution of our problem; to find the actual
one we must substitute eq. 104 back into eq. 101 and solve a poly-
nomial of degree N in the unknown n;. Of course this can only
be done numerically; however, we don’t actually need to really find
the exact solution. It is enough to truncate the sum in eq. 101 up
to a value N which is significantly larger than the resulting average
aggregation number

Mt Zk‘:.:2, N:i=1,2 k N,

n) = : 105
" n1.+>:k=2,'ﬁ;i:1,2nk,i (105)

In practice, one increases N progressively until a rather stable value
of (n) is found.

Although eq. 104 is only a formal expression, it is neverthe-
less indicative of a very important fact, namely, that ng; does not
depend explicitly on z, i.e. on the discretization imposed by the
lattice. This is because the factors z* in W}, and in W cancel out.
There is in fact an implicit dependence on z through P, but it is
effective only for small values of k£, and also in this case, the agree-
ment of the results with numerical simulations is excellent also in
these conditions [19].
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There are a few more things which deserve being pointed out.
The first one is that it is implicit in our calculations that there is no
correlation between the direction of a dipole whatsoever and those
of the preceding or of the subsequent one along the chain. In other
words there is no energy assigned to the angle that two successive
dipoles in a chain may form, thus all possible relative orientations
are equiprobable. This has been implicitly assumed while assigning
equal probability and equal energy to all possible configurations W,
(for a fixed {n;}) when writing the expression of the entropy. This
is of course an approximation, but it does its job very well as we
shall see; from now on it will be referred to as the " freely jointed
chain approximation”.

Another point is worth be noticed, namely, that in writing
down the number of distinguishable configurations, we have in fact
treated our clusters as ”ideal” chains, allowing for multiple occu-
pation of any lattice site whatsoever. This is in fact not a problem,
because the constraint that both V and ¢, and not their averages,
are fixed, prevents multiple occupation at the time when the en-
tropy is extremized.

Once the solution of our problem has been found, we have the
possibility to calculate a number of quantities of relevance as func-
tions of just two parameters, namely ¢ and the ratio r = E,/kgT.
Figure 26 reports the average aggregation number (n), as given by
eq. 105, for varying ¢ and for three different values of r. The av-
erage numbers (n.) and (n,) of the cyclic and open clusters can
be found from the same equation by restricting the sums to either
i = 1 or ¢« = 2 respectively (in the case i = 1 the term n, is ruled
out, of course).

Another very important quantity which can be calculated rather
easily is the fraction of molecules involved in the formation of cyclic
clusters:

n = Zkzs,ﬁ k 11
n + Zkzz,ﬁ; i=1, 2 k Nk,i

Figure 27 reports 1 as a function of ¢ for varying r. Note the
tendency of n to increase up to a maximum, and then to decrease

(106)
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Figure 26: Overall average aggregation number (n), eq. 105, as a
function of the alcohol volume fraction ¢, for three different values of
r = Ep/kpT (see main text). The sum has been truncated at N = 1000.
In the other panels the average aggregation numbers (n.) and (n,) of the
cyclic and open clusters respectively are reported for the same values of

the parameters.

towards zero for decreasing ¢, as opposed to the behavior of the
average aggregation number shown in Fig. 27. The physical reason
for this effect is that the probability of a k-cluster to be in a closed
or open configuration, results from a competition between the en-
ergy decrease (FEp) due to the mutual binding of the chain ends
of the cluster, and the corresponding configurational entropy loss.
The latter overwhelms the former for large k, but the two become
comparable as the clusters decrease their length, until at extremely
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low ¢ any binding is accompanied by too a large entropy decrease.
It is important to note that in the low-¢ region, it is possible that
the majority of the alcohol molecules is involved in cyclic clusters.
It is also worth noticing that a non-negligible population of cyclic
clusters is present even in the case that the alcohol is pure, and it
increases significantly with decreasing the temperature. We shall
see afterwards that this is an important point to consider for a more
detailed analysis of the dielectric behavior of the alcohols.
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Figure 27: The fraction of alcohol molecules associated to form cyclic
clusters is a function of ¢ and of the binding energy normalized to kgT'.

3.2.3 Comparison with the experiment

We see from Fig. 27 that the fraction of molecules forming cyclic
clusters can really be large. If this is the main mechanism responsi-
ble of the systematic deviations from ideality of the actual dielectric
constant, then we are facing with two main issues:

1. Eq. 95 is wrong, because the volume fraction of the component
which "really” contributes as polar is not ¢ anymore (i.e. the

79



nominal alcohol volume fraction), but roughly ¢ (1 — n), so
we must make some correction.

2. Since the actual values of  depend on the ratio E,/kgT, we
must check whether the energies implied by the matching of
the corrected equation with the data are close enough to the
results of calorimetry.

About the first point we just put ¢ (1 — n) in place of ¢ in the
r.h.s. of eq. 95; moreover, since the optical dielectric constants e, ,
of the alcohols are very close to that of CCl,, we just consider them
to be the same. So we are led to the equation

(€ = €oo,s)(26 +€x0,s) 4Ny
e(eos +2)2 9kpTu,

b2 (1), (107)

where we chose to put €4 s in the left hand side in order to match
the dielectric constant of CCly in the limit ¢ — 0.

We now have to answer the following question:

”Which value of Ey/kgT, within our model, would be able to justify
the apparent &, values of Table 17”

It is of no use to make rigorously correct calculations in this con-
text, so we assume just for now, that at ¢ = 1 there are no cyclic
clusters, i.e. that all alcohol molecules behave as polar (accounting
tor the presence of the non polar component inherent to the associ-
ation mechanism would certainly be more correct, but since we are
seeking for a loose agreement presently, we leave this complication
out of our thoughts). In this case we can estimate

1—-npo~ =2, (108)

and from Table 1 we find 0.39 < (1 — n) < 0.53, that is, 0.47 <n <
0.61. About the actual ¢ at which 7 is expected to be in this range,
we take the highest possible value common to all considered alcohol
species, for which the data follow the ideal behavior connecting
Eco,s tO the respective £,. The maximum common value is that of
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methanol, i.e. ¢ ~ 0.1. Now, from Fig. 27 we see that for this value
of ¢, r must be about 5 for n to fall within the correct interval.
Since at room temperature kg1 corresponds to 0.6 kcal/mol, we
find E;, =~ 3 kcal/mol (by accounting for the presence of cyclic
clusters also at ¢ = 1 we would have found a slightly higher energy
value). This estimate must be considered to really be very close to
the results of the calorimetric investigations.

In conclusion, we found that the model developed above rep-
resents a means to point out the consistency between calorimetric
and dielectric observations. The model is very simple, but it seems
to catch the relevant features of association with regards to the
phenomenologies considered so far.

Most important, all this story points out the central role of the
clusters’ configurational statistics in determining the dielectric re-
sponse of the alcohol species which we considered above. Of course,
we analyzed just the low-¢ region, but our results hint at the pos-
sibility that the role of the configuration of clusters might be im-
portant also in pure alcohols, as in fact we shall see.

3.2.4 Appendix

In this subsection we outline the calculation procedure to obtain
the analytical expression of P;. As explained in the text, this can
only be done for k£ even, since we have chosen to discretize in a
cubic lattice.

Let x, ¥ and z be the principal unit vectors of the lattice, and let
7+, I+ and m4 be the number of chain dipoles in a k-cluster oriented
along =X, +y and +z respectively. We count the succession of the
dipoles following the natural order and, if the k-cluster is closed,
we chose the first dipole at will.

If the k-cluster has a closed configuration, then the number of
dipoles along an arbitrary direction whatsoever must be equal to
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the number of dipoles oriented in the opposite sense:

+=1-=1
L =l_=1 (109)
m+—-—-m__-—--—’25--j——l

In order to find the number of possible configurations satisfying the
above condition, we first calculate the total number of configura-
tions with assigned j., 7, ... m_. To do this, we take our ordered
sequence of dipoles and think about the direction of the n-th dipole
as one among z possible outcomes of a completely random variable.
We are thus led to consider a binomial distribution of events; so,
the number Wy;, of configurations with assigned j, out of Wj is
given by
k!

Jel(k — 74!
where p, is the a priort probability for the orientation of a dipole
to be along the positive x direction. Since there are z equally prob-
able available orientations, p, = 1/z (note that ”equally probable
orientations” means freely jointed chain, without steric hindrance).

Among the number W;.;, of configurations just obtained, those
with given j_ can be enumerated similarly:

Wi.j, = [Pt (1 — p,)" 7+ | W, (110)

_ (k—74)! A k—jy—j
W%“*“’LJM-J+—1J!@L*“‘“*) ]M%ﬁil)
1

where p,_; = 1/(z — 1) is the a priori probability that the dipole
is directed along —X (remind the positive X direction is not left
available anymore after the calculation of Wy, ).

The procedure goes along the same lines to obtain at the end

the number of configurations with assigned j,, j_, ... m_; then, by
applying the conditions eq. 109, we find:
k! Wi
Wiijitlga = T . ) (112)
A (3 -5 -]
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The overall fraction of cyclic configurations out of Wy, is then

| 2 jHI< %
sz-u——/— ZWk;j’[ ; (113)
k j1=0 k even

which is eq. 98.

3.3 Pure alcohols and chain stiffness
3.3.1 Introduction

In the freely jointed chain model the relative orientations of dif-
ferent dipoles are completely uncorrelated, even if the dipoles are
mutually bonded. This oversimplification has its advantages in that
it allows for a rapid estimate of the cluster distribution, without the
need to resort to more complicated numerical procedures (such as
simulations). However, we know already that an important role in
dielectrics is played by dipole-dipole correlations, as we shall see
shortly. Moreover, may be that we could find something interest-
ing if we improve the model, where ”interesting” means something
which goes beyond the mere reduction of the error in the estimates
from data fitting.

If we apply an electric field E to a homogeneous isotropic lig-
uid, we shall induce an average polarization p |E|. The relationship
between p and the dielectric constant is

Ny

| 114
,Uliqp (114)

e—1=4n

where vy;, is the molar volume of the liquid.

In polar liquids, the permanent molecular dipole p tends to
align along the direction e = E/|E| of the applied electric field,
and this mechanism contributes significantly to p . If M is the
total dipole moment induced on a specimen in the (homogeneous)
field generated by a fized charge distribution, and if Eq is the field
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generated by the same charge distribution in the absence of the
specimen, then the average component of p along e is:

Tr{p - e exp [—(Uins — M - Ey)/kpT]}
(M . e) - Tr {exp [—'(Uint —-— M- Eo)/k)BT]} ’

where U;,; is a many-body energy, comprising all molecular inter-
actions, to be added to the contribution —M - Eg, determined by
the field; Tr{--} stands for integration over the coordinates of the
molecules in the specimen [20].

We can expand eq. 115 to lowest order in the field intensity to
get:

(115)

(- ) =~ -,;;13:-(# - M)oEo, (116)

where (--)o stands for the statistical average in the absence of the
field, ;¢ is now the dipole moment of a given fized molecule and M
is the moment determined by g in the whole specimen through the
intermolecular forces associated to U, [20].

Thus we see that in considering the component of p along the
field, we have to account also for the interaction of each molecule
with the others, and it is evident that this point should be of great
relevance in the case of associating systems like alcohols.

Again, we cannot develop the theory here, but if the mechanism
of correlations is accounted for properly, then the dielectric constant
for a pure liquid satisfies the following equation

(€ — €x0.a)(26 + Exva) AwNy
’ 2 = 1 — 11

where the factor (1 — n) in the r.h.s. has been included to account
for cyclic clusters (a term which can be found in a very limited
number of papers at present [21]), up is the molecular dipole in the
liguid phase, and the Kirkwood correlation factor is defined by:

_ (g - M) ‘ (118)

It is our aim to derive gk through a suitable improvement of our
lattice model.
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3.3.2 Chain stiffness

Dipole-dipole correlations are the result of complicated interaction
mechanisms. The first we can mention is the short-range inter-
action between mutually bonded dipoles; but this is not the only
one, because we don’t have to forget the whole of the electrostatic
interactions, which are very complicated to describe at molecular
level.

We take a shortcut and make the following assumptions:

1. Dipoles belonging to different clusters are uncorrelated.

2. The probability distribution of the orientational correlations
of adjoining dipoles (along the chain) are described by a local
energy parameter associated to the hydrogen bond connecting
the dipoles themselves.

About point (1), remind that gk is a functions of averages calcu-
lated in the absence of the external field; in this situation we admit
as reasonable to assume that the clusters are randomly conformed.
Point (2) translates the idea of a mean field phenomenological ap-
proach which we shall briefly comment afterwards.

If we were able to recast the model accounting for the energies
associated to the relative orientations of mutually bonded dipoles,
we would have obtained at least a formal solution for the cluster
distribution in a closed form. Instead we are not; so we consider
a single cluster made of a suitably large number of dipoles, and
assume it to be a stable subsystem for which statistical thermody-
namics can be applied. Of course, gk = 0 for the dipoles of a cyclic
cluster (see eq. 117), so we consider an open k-cluster.

As shown in Fig. 28, the space discretization imposed by the
lattice, limits the mutual orientations (bond states) of two bonded
dipoles to just three possible kinds, labelled with s ”, "6 ” and
"f ” (to mean straight, bend and fold configurations respectively).
States ”s ” and ”f ” have multiplicity one for a given orientation of
one of the dipoles; on the other hand, states of the type b ” have
multiplicity four because fixing the orientation of one of the dipoles
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Figure 28: The three possible bond states in a cubic lattice.

leaves the possibility to the other to point towards the remaining
four directions still available.

We take the energy E associated to the ”s ” bond state as the
reference and put E; = 0; £, and E; are the energies associated
to the b ” and ”f ” states respectively. Now, point (2) above
means that the bonds of a k-cluster constitute a set of independent
subsystems of the k-cluster itself; in other words, there is no steric
hindrance, the state of each bond is independent of the state of the
others. We shall refer to this condition as to the Markov assump-
tion. So, we are in the condition to write down the (canonical)
partition function for a single bond:

Ze=Y [1+(z—3),ple ®/*T  v=sb, f, (119)

in terms of which the bond state probabilities are
p, = Z te Ev/ksT (120)

We can now calculate the orientational probability distribution
of a chain dipole whatsoever once the orientation of another one
(not necessarily adjoining) in the same chain is given. Let the
labels 7 = 1, 2, ... 6 be assigned to the possible orientations +x,
—X, ... , —7 respectively, allowed by the lattice. Then, let q be
a probability 6-vector associated to a dipole, whose components
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g; are the probabilities that the dipole itself is oriented along +x,
—X, ..., —Z. Now, assume that the j-th dipole of the k-cluster is
oriented along, say, the +X direction, which means that its 6-vector
is q(j) = (1, 0, ..., 0). Then, the orientation probabilities of the
(7 + n)-th dipole of the same chain are the components of

q(j +n)=A"-q(y), (121)

resulting from the n-fold iteration of the transformation defined by

the matrix
Yy W W

A=|w y w (122)
W WYy

whose elements are

Dy DPs Db Db
(Note that since ) . A;; = 1, the transformation eq. 121 conserves
the norm ||q|| = ) _.¢.) In the preceding calculation, k has been
assumed to be suitably large; considering it virtually infinite, the

Kirkwood correlation factor associated to the dipole oriented along
X can be expressed in the language of eq. 121 as follows:

gx = lim gk , (124)

n—00

where the n-th element of the sequence,

Jin =14 22 [(Af-q), — (A*-q),] (125)

is the correlation factor for the (n+1)-th dipole of an open (2n+1)-
cluster (in the hypotheses that all dipoles in the chain are equal
and that polarization mechanisms other than those accounted for
through E, are negligible).

For the general i-th term in the series, eq. 125, we have the
following identity: (A'-q), — (A’ -q), = (ps — py)?, which can be
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proved by mathematical induction. Then, the Kirkwood factor can
be found from the summation of a geometric series:

_ 1+ps""pf
1""ps+pf

JK (126)

emp—
—rap—

Note that gx = 1 if p; = py, i.e. like in the freely jointed chain
case; moreover, eq. 126 does not carry information anymore about
the orientation of the fixed dipole with respect to which gk itselt
has been calculated.
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Figure 29: Convergence to the limit of Agk ,,, eq. 127, and of the nor-
malized quantity gk (j) = gk (j)/gk, which is the correlation factor of the
j-th dipole of a semi-infinite chain. The energy values are appropriate
to realistic situations at room temperature.

Figure 29 reports the convergence to the limit of the normalized
deviation

JK,n

gk
The dependence of the normalized correlation factor of the j-th
dipole of a semi-infinite chain, as a function of its position with

respect to the end, is shown in the same figure. Note the fast
convergence in both cases; this suggests that assigning the same

Agin =1 (127)
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gk to any of the dipoles is often a good approximation. This is in
fact the case for long chains, but for diluted alcohols things may be
different although not trivial for a quantitative assessment.

3.3.3 Fitting the data

Once the expression of the correlation factor gx has been derived
in terms of the phenomenological energies E,, we can turn back
to eq. 117 and use it to analyze the results of dielectric constant
measurements carried out at different temperatures. It is evident
that not only chain stiffness (i.e. gx) plays a role, but also our
first approximate model, because we need it to estimate 1. One
more important point has to be looked at, namely that the fitting
to the data should not lead to values of E, close to, or larger than
the hydrogen bonding energy FEj. Should this happen, it would
mean that the model doesn’t hold. The freely jointed chain ap-
proximation assumes indeed that the energy associated to a bond
is roughly Ej, independent of the bond state. An exception is for
the fold state, but this is already known to be practically ruled out
by the condition that no multiple occupancy of any lattice site is
allowed.

Besides, we must be aware of the fact that in our theory the
alcohol molecules are structureless, so we may expect that some
difficulty could arise when applying the model to molecules with
alkyl tails which are long or of complicated shape.

In order to estimate n as a function of the temperature, we use
the value Ej = 3.5 kcal/mol obtained independently by means of
the dielectric analysis of diluted alcohol-in-CCly solutions.

If vy, € and €, are known as functions of the temperature, we
can fit the data using o and gk as variable parameters.

It is not the case to reproduce the whole procedure here (see
ref. [21] for the details and also for the data), however the results
of the analysis carried out on different alcohol species are reported
in Table 2.

The complete form of gk, eq. 126, led to values of E; rather
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Ho Ly gk AT

(D) (kcal/mol) (T = 298 K) (K)
methanol  2.19 0.58 2.34 230-398
ethanol 2.16 0.62 2.42 195-303
l-propanol 2.12 0.68 2.08 184-298
1-butanol  1.96 0.85 3.1 290-320
l-pentanol 1.81 0.94 3.47 290-320
1-hexanol 1.66 1.09 4.17 290-320

Table 2: Molecular dipole ug and bending energy E, fitting the data
of the different alcohol species.

larger than Fj; so, all the data could be suitably analyzed with the
following approximate and more compact expression:

Z.+1

~ . 12
9K ~ 5 (128)

The temperature dependencies of u2gk for methanol and 1-pentanol
are reported in Fig. 30.

From the data reported in the table we can see a systematic
increase of the bending energy Ej, with the length of the alkyl tail.
This would seem to be reasonable, since longer tails would imply
a better efficiency of hindering mechanisms (thus F, would include
some entropy contribution implicitly). However, we cannot trust
this interpretation at the outset, because we didn’t envisage any
role of the alkyl tail in our model. Also the fact that the fitting
value of the molecular dipole correspondingly decreases is a sign
that maybe something is being missed, also because it is difficult
to interpret. By the way, the I values are reasonably lower than
Eh and, apart of the heavier molecules, witness for some reliability
of the model.

Most important are the fitting results for ug, because they are a
measure of the dipole moment of these alcohols in the liquid phase.
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Figure 30: The factor u2gkx (in D?) for methanol and 1-pentanol as
a function of the temperature. The case of 2-methyl-2-butanol is also
shown for a comparison, but since the freely jointed chain model does not
work, the quantity p2gi (1—n) is reported instead. Note the exceedingly
high value of Ej.

Since now (to the knowledge of the author), the dipole moment of
these molecules was indeed measured only in their gas phase, with
a resulting value of ~ 1.7 D for all of them. Our only support to
the reliability of this result is represented by numerical simulations
(on methanol and ethanol), with which our numbers agree quite
well [22].

Figure 30 also shows the experimental data for the quantity
pigk (1 — n) for 2-methyl-2-butanol. The resulting fitting value of
E, points out a serious inadequacy of the model in this case. The
reason is that 2-methyl-2-butanol has a more complicated shape
than its linear counterpart (1-pentanol).
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3.3.4 Heterogeneous association

If we examine Fig. 23 with a bit more attention, we see that in the
case of methanol the dielectric constant is larger than ideal in the
high-¢ region. This experimental behavior is interesting, because if
we extrapolate to the intercept at ¢ = 0 the ideal behavior fitting
the high-¢ data, we find that things are as if CCly has an apparent
(ideal) bulk dielectric constant of ¢, ~ 20 (see Fig.31). This value
can’t be realistic for a non polar molecule such as CCly; on the
other hand, in the high-¢ region it is unlikely that there is any bulk
CCly at all. We envisage the possibility that there are two possibly

40_ v ] v R v 1 v v
4

| apparent bulk dielectric
constant of CCl,
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-
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-
-
-
-
-
-
-

apparent bulk dielectric

constant of CHBOH
0 2 2 ] Y 1 — I " 7
0,0 0,2 0,4 0,6 0,8 1,0

Figure 31: Dielectric constant at room temperature as a function of
the alcohol volume fraction for the methanol/CCly mixtures. The lines
represent ideal behaviors.

concurring reasons for this peculiar behavior, namely:

1. CCly associates with the chain end methanol (this has been
also monitored by calorimetry through the enthalpy of mixing
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at high ¢ [16]); this process causes a significant decrease of the
average number of cyclic clusters in the alcohol component.

2. associated CCl, acquires a quasi-permanent dipole moment
ps, the lifetime of which is the same as that of the associating
bond.

We shall refer to association between CCly and methanol as to the
heterogeneous assoctation. The above points are just a suggestion,
thus susceptible of confutation. Keeping this in mind, we have to
assess whether these hypotheses are a reasonable basis for further
developments, or a nonsense at the outset.

To this aim we first have to change eq. 95 properly. Our two
issues imply the following:

kT | € — €x0g E — €oo.5
? ]| ) 1__ —
dmre {26+soo,a¢ 26+€oo,s( ¢)}
NA Eoo,a+2 2
A (g2 2 ) (- g +
Ny 800,34—2 2
(5222 ueMp-9) (29

where the first term refers to methanol and accounts for cyclic
clusters through the factor (1 — n), while the reminder describes
the presence of a new polar component, namely, the associated
CCly with its induced dipole p,; v, is the molar volume of CCly.
(To make things simple, we assume that all CCly associates with
methanol at high enough ¢.)

Point (1) relates to the change of 1 caused by the fact that the
presence of the associating (solvating) CCl, affects the overall av-
erage hydrogen bonding energy Ej}. Indeed, let Ejg be the energy
needed to separate two hydrogen bonded molecules in the absence
of any solvent. When the bond rupture takes place in the neigh-
borhood of an isolated, non-associated CCly; molecule, a subsequent
association process with an end-methanol would be accompanied by
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Figure 32: Rupture of a chain and heterogeneous association. The
CCly molecule acquires a quasi-permanent dipole moment due to asso-

cilation.

an energy gain 6 F/, and the final overall energy involved in the bond
rupture would be Epg — 0 F (see Fig. 32).

If the number of CCly molecules increases, the average bonding
energy F, decreases from Ejy down to a saturation value Fpg—20F,
when both the ends of each chain are associated with the solvent.

The number of chain-end moles is

Nend i , (130)

where N = ¢V /v, is the total number of alcohol moles. On the
other hand, the number of moles of CCly is Ny, = (1 — ¢)V/vs, so
that at the end we find, before saturation is reached,

NS (1 T ¢)’Ua (no}
E, ~ FErqg— 20F — Fyq — OF . 131
h hO N RO bv.  1—n (131)



For a consistent calculation, the values of (n,) and 1 entering eq. 131
must coincide with those resulting from the equilibrium distribution
obtained by taking the energy Fj itself for the calculation of the
distribution. An iteration procedure allows for the calculation of
these quantities as functions of the " parameters” Ejg, 0F and ¢.
About point (2), we have the great advantage that the mag-
nitudes of the methanol dipole and of the correlation factors are
known (see Table 2). We estimate the average (u, - M) by assum-
ing that the induced dipole of a CCl; molecule is oriented along
the same direction of the chain-end methanol dipole to which it
is associated. Only a semi-infinite methanol chain contributes to
the correlation factor, and considering that gk refers to an ”in-
ner” dipole (see egs. 124 and 125), the following approximation is

adopted:

2

With reference to a practical situation, the actual value of the di-
electric constant for the methanol/CCl, mixture is € = 31.9 at ¢ =
0.95. On the other hand, assuming for example Eyo = 3.5 kcal/mol
and 6F ~ kgT at room temperature [23], a fixed point in the cal-
culation of (n,) and 7 is found with Ej; =~ 3.3 kcal/mol (in working
out this number, it has also been taken into account that only the
appropriate Boltzmann fraction of solvent molecules undergoes het-
erogeneous association even if N.,g > N, : a detail not mentioned
above for the sake of simplicity).

By imposing that € as calculated from eq. 129 must be equal
to the actual experimental value, we find that the dipole induced
by heterogeneous association on CCl, must have an approximate
magnitude of u, ~ 1.7 D.

+ 1
(I‘l’s ) M>0 ~ Us (P's + P'OgK ) : (132)

3.3.5 Outlook

So, at the end we developed a mean field theory for the analysis
of complicated systems. We contracted all long range interactions
to merge together with the short range ones characterizing a single
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bond. This way we have hidden a lot of problems behind a phe-
nomenological fitting parameter, i.e. Ep. The latter carries with it
some information on the long range interactions, because when we
fit the data we take also them altogether.

With regards to the Markov assumption, this is an important
issue which deserves further investigations. because there is some
intrinsic contradiction into our model which could be solved. To be
more explicit, this hypothesis enters also our freely jointed chain
model (for us the chains are ideal), and conflicts with the con-
straint that V and ¢ are held fixed when the equilibrium cluster
distribution is to be found; in other words, on the one hand we
allow multiple occupancy and calculate the configurational entropy
consequently, on the other we put a constraint relating to the im-
possibility of multiple occupancy while keeping the same expression
for W,.

Moreover, the Markov assumption again, together with the fact
we take structureless molecules, does not allow for the role of steric
hindrance to be pointed out by our analysis, and consequently to
disentangle the entropy contribution from E,. We can understand
that this last point has to do with the fact that ideality in the low-¢
region persists up to ¢ ~ 0.3 in the case of 1-pentanol, while just up
to ¢ ~ 0.1 in the case of methanol (see Figs. 23 and 31). Probably,
in the case of 1-pentanol we really are in the presence of an almost
ideal mixture made of CCl, on the one hand, and of small alcohol
clusters on the other. Thus, in the case where the tail is longer,
there seems to be a tendency to form many small clusters instead
of few larger ones. Since the preference of a group of molecules to
associate in large or small clusters depends on the configurational
entropy, it is clear that the problem of describing with more detail
the structure of the alcohol molecules deserves being considered in
further investigations.

92



References

[1] H. B. Callen, Thermodynamics and an introduction to thermo-
statistics, 2nd ed. Wiley

L. D. Landau and E. M. LifSits, Fisica Statistica 1a parte,
Editori Riuniti

W. Greiner, L. Neise and H. Stocker, Thermodynamics and
Statistical Mechanics, Springer

R. Bowley and M. Sanchez, Introductory Statistical Mechanics,
Oxford

D. Chandler, Introduction to Modern Statistical Mechanics,
Oxford

2] G. Strobl, The Physics of Polymers Springer

[3] M. Doi, Introduction to Polymer Physics, Oxford

[4] J. H. Gibbs and E. A. DiMarzio, J. Chem. Phys. 28(3), 373
(1958).

5] G. Adam and J. H. Gibbs, J. Chem. Phys. 43(1), 139 (1965).

6] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics Cambridge

[7] M. Pieruccini, G. Di Marco and M. Lanza, J. Appl. Phys.
80(3), 1851 (1996)

[8] F. Aliotta, G. Di Marco and M. Pieruccini, Physica A 298,
266 (2001)

[9] F. Aliotta, G. Di Marco, R. Ober and M. Pieruccini, J. Appl.
Phys. 93(9), 5839 (2003)

[10] G. Di Marco and M. Pieruccini, Polymer Crystallization; Ob-
servations, Concepts and Interpretations, J. U. Sommer and
G. Reiter (Eds.), Springer Lecture Notes in Physics 2003

93



[11] M. Imai, K. Kaji and T. Kanaya, Macromolecules 27, 7103
(1994)

[12] P. D. Olmsted, W. C. K. Poon, T. C. B. McLeish, N. J. Terrill
and A. J. Ryan, Phys. Rev. Lett. 81, 373 (1998)

13] Santa Cruz et al. J. Polym. Sci. (B), 29, 819 (1991)

14] T. Asano, F. J. Balta Calleja, A. Flores, M. Tanigaki, M. F.
Mina, C. Sawatari, H. Itagaki, H. Takahashi and I. Hatta,
Polymer 40, 6475 (1999)

[15] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics
Oxford

[16] J.-E. A. Otterstedt and R. W. Missen, Trans. Faraday Soc. 57,
879 (1962)

[17] M. Pieruccini, F. Saija, R. Ponterio and C. Vasi, J. Chem.
Phys. 119, 10771 (2003)

(18] H. Frohlich, Theory of Dielectrics - Dielectric Constant and
Dielectric Loss 2nd ed. Oxford 1987

[19] R. Veldhuizen and S. W. de Leeuw, J. Chem. Phys. 105, 2828
(1996).

20] J. G. Kirkwood, J. Chem. Phys. 7, 911 (1939).
21] M. Pieruccini and F. Saija, J. Chem. Phys. 121, 3191 (2004).

22| M. Haughney, M. Ferrario, and I. R. McDonald, J. Phys.
Chem. 91, 4934 (1987); T. Fonseca and B. M. Ladanyi, J.
Chem. Phys. 93, 8148 (1990); J. Gao, D. Habibollazadeh, and
L. Shao, J. Phys. Chem. 99, 16460 (1995); M. E. Martin, M. L.
Sanchez, F. J. Olivares del Valle, and M. A. Aguilar, J. Chem.
Phys. 116, 1613 (2002); M. Pagliai, G. Cardini, R. Righini,
and V. Schettino, J. Chem. Phys. 119, 6655 (2003).

23] H. Torii, Chem. Phys. Lett. 393, 153 (2004).

94



Positron Emission Tomography: status of
the art and future perspectives

Monica M. Necchi*
Department of Nuclear and Theoretical Physics
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1 P.E.T.: present features

Positron Emission Tomography (PET) is among the most sensitive
methods to trace amounts of molecules in vivo. PET provides a kind
of metabolic information that other imaging methods are unable to
provide; therefore this technique is used to measure in man or in living
animals biochemical and physiological processes in any organ with 3-
D resolution. The last 25 years have seen a rapid and still ongoing
development in the production of positron emitters, radiochemical
labelling techniques, tomograph technology and image reconstruction
algorithms.

2 The method

The use of positron emitters for radioactive labelling offers important
advantages compared to single photon emitters[l]. Some of the
physiologically most interesting chemical elements like Carbon,
Nitrogen and Oxygen have only positron emitting short-lived isotopes.
This makes a detector sensitive to positron decay highly desirable.

*Research contract PRIN no. 2003-02-9728 - MIUR
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Positrons travel only a short distance in tissue!, then annihilate with
an electron into two 511 keV ~ emitted back-to-back. When these
two photons are detected by two opposite detectors the decay event
can be located along the line connecting the two detectors. The two
511 keV gamma rays are detected by a coincidence circuit with a
narrow time window, usually about 15 ns. These detectors capture
the photons emitted by the isotope from within the system under
study at a total rate of up to hundreds of millions per second, while
the transducers (such as PMTs) convert them to electrical signals
sending them to proper electronics. A proper mathematical algorithm
corrects the raw data for scatter, attenuation, accidental coincidence;
1t normalizes for differences in detector efficiencies and reconstructs
the spatial distribution of the radioactivity density inside the organ
or the system under study.

Since both photons have the same energy the detection probability is
almost independent from the point between the two detectors where
the annihilation occured. Therefore the corrections for attenuation in
tissue, which are generally huge in these measurements, can be done
very accurately.

Commercial tomographs consist of thousands of detectors, which
are arranged in several parallel rings surrounding the object to be
investigated. Pairs of opposite detectors are connected in coincidence.
Originally this was restricted to opposing detectors in the same ring or
in neighbouring rings with septa shields in between them to get rid of
unwanted scattered radiation. More recently, to increase sensitivity
and acceptance the septa were removed and coincidences between
many rings were registered. Now the most advanced systems have
no shielding at all between the detectors. The accepted solid angle is
increased by extending the axial Field Of View (FOV) with more rings
and tightly packed detectors with a high stopping power arranged in
a compact geometry. This 3D or volume data aquisition, where all
possible coincidence lines inside the detector volume are registered,
induces, besides higher counting rates of true coincidences, a large
increase of scatter and random coincidences. A scatter coincidence
is a detected event where one or both photons were deflected by
Compton scattering and are therefore assigned to wrong coincidence

1The Bt emitted by radioactive fluorine annihilates with a nearby electron after
a path of about 1.4 mm to over 13 mm depending on the radioisotope emploied.
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lines. Scattered coincidences may reach the same amount as the
true events and very elaborate correction algorithms have become
necessary to subtract scatter contributions for accurate quantitative
results. A random coincidence is an event where two photons
from different decays are detected during the short coincidence time
window. Random coincidences can be subtracted online using a second
delayed coincidence window.

3 New developments

The improvements of the PET tomographs spatial resolution was a
primary goal since the beginning [1]. Early tomographs used Tallium
doped Nal (Nal(T1)) crystals as scintillation detectors®. Nal(TI)
crystals were soon substituted by BGO (Bismuth Germanate) crystals
which have higher detection efficiency and are not hygroscopic.
Commercial tomographs using BGO reached a spatial resolution of
approximately 4 mm. PET detectors require that the detector
material be of high enough 7Z to maximize the photoelectric cross
sections for 511 keV, be fast enough to handle the high counting
rates involved, and be able to separate genuine coincident events.
Furthermore, detectors for PET should show a reasonable pulse height
resolution for 511 keV photons so that scattered events in the material
under study can be rejected.

Presently? the first tomographs with a new scintillator material LSO
(Lutetium Oxyorthosilicate) are being built. LSO has similar high
detection efficiency as BGO, but with a five fold higher light output
and an eight times faster light decay time. This allows to push spatial
resolution close to its physical limit of 1-2 mm, which is determined
by the positron range in tissue and the small noncollinearity of the
annihilation photons. Increasing spatial resolution requires smaller
scintillation crystals. When the size of the PMT became the resolution
limiting element, the one-to-one coupling between crystal and PMT

2Brownell and Sweet at Massachusetts General Hospital made the first positron
medical image in 1951. The imaging device emploied two simple Nal(T1) crystals,
moved manually to scan brain tumors. In the 1960’s and 1970’s positron imaging
devices used detector’s arrays.

3New improvements in PET tomographs deal with crystals with better energy
resolution (LSO) and shorter decay time (Gadolinium Oxyorthosilicate). |
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was given up and an Anger camera principle was applied in the
block detector concept. For example, 8x8 crystals were cut 1nto
a single scintillator block forming a light guide to 4 PMTs. By
comparing the signals of the 4 PMTs the individual crystals are
uniquely identified. An even more cost effective scheme, a quadrant
sharing arrangement of PMTs allows to further increase the number
of crystals per PMT. This was recently achieved in the first PET
tomograph for neurological studies in humans with LSO scintillators,
the High Resolution Research Tomograph (HRRT), manufactured by
SIEMENS/CTI, Knoxville, TN, USA and installed at the Max-Planck-
Institute for Neurological Research in Koln. It consists of 120,000
single crystal elements, 2.1 mm x 2.1 mm each, arranged in 104 rings
giving a reconstructed spatial resolution of less than 2.5 mm in a 20
cm diameter volume. This made it also necessary to measure the
depth of interaction (DOI) of the incident photons in the 15 mm
deep detectors to avoid ambiguities when photons penetrate several
crystals by oblique incidence. From several ideas how to obtain DOI
information, a scintillation phoswich with two crystal layers with
different light decay times was chosen. Pulse shape discrimination
allows then to separate scintillation events in the two layers.

After correction for scatter and random events, attenuation and dead
time an image of the activity distribution can be reconstructed.
Originally this was done with standard 2D filtered backprojection
algorithms giving a stack of transverse image slices. With 3D data
aquisition this was extended to volume reconstruction, which required
hours of computing time. Therefore the algorithms were parallelized
and run on multiple processors. Only recently, with the rapid
developments in computer hardware, iterative 3D reconstruction is
becoming routinely feasible.

Most recent trend in industrialized countries is the use of hybrid
PET/CT systems|9], which combines a dedicated PET with an X-
ray computerized tomography (CT) scanner in the same instrument.
The CT images provide a map for PET attenuation correction and an
anatomic framework for the PET metabolic information.
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4 Future trends for PET tomographs

PET detector development progressed significantly since the first
PET tomographs. The number of elements increased from a few
ten elements in the first tomograph at St. Louis Hospital to more
than 100,000 in the new HRRT that has been delivered to Max-
Planck-Institute in Koln on February 1999[2]. The HRRT is the first
commercial LSO tomograph and it represents a major change in the
detector technology for PET. The ECAT HR+ at that time was the
highest resolution commercial PET tomograph, using BGO detector
crystals. Commercial tomograph with the same detector as the ECAT
HR+ but having six rows of detectors rather than four is the ECAT
HR++, delivered to the MRC Hammersmith Hospital in London in
1997. The ECAT HR++ has 27,648 detector elements. These BGO
tomographs have the highest feasible density detector elements and use
large numbers of expensive photomultipliers (1728 for the HR++).
Since BGO has limited light output and relatively slow decay the
pratical limit in image resolution is reached for these tomographs.

LSO allows the use of fewer PMTs for the PET detectors and at the
same time increases the perfomance in counting rate, sensitivity and
image resolution. As is evident from data in Table 1, LSO has allowed

PET/ ECAT HR+ ECAT

SPECT HRRT
Sensitivity (-10°%) 850 1200 4000
Image resolution 4.5 mm 4.5 mm 2.5 mm
Peak true count rate 100,000 200,000 900,000
number of PMTs 198 1152 1120

Table 1: Performance comparisons of three tomographs

an improvement of the HRRT over the HR+ of more than a factor
three in sensitivity, almost a factor of two in space resolution, a factor
of 4.5 in count rate and still the HRRT has fewer PMTs. This is a
breakthrough in detector technology not only for research tomographs,
but also for clinical tomographs.
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4.1 Scintillator choice

Nal detectors operated in Anger logic mode have served the gamma
camera market well in the past, although the hygroscopic nature of
the detecor material does not favour the development of such desirable
features as crystal segmentation. This feature is indeed valuable when
the detector is operated without a collimator and thus requires high
count rate and good linearity performances. The nuclear market trend
toward Fluorine Deoxy Glucose (FDG) imaging creates the need to
acquire images at 511 keV in a reasonable time, which is very inefficent
with current Nal detectors. On the other hand, the current BGO
detector for PET has insufficient light output to provide adequate
energy resolution for the 140 keV currently used in SPECT. Both
BGO and Nal have relatively long light decay time (300 ns and 230
ns, respectively), which may limit their counting rate capability. The
technology breakthrough in positron imaging is the discovery of LSO
crystal which has a number of advantages over the other scintillators
used for nuclear medicine instrumentation|[4|. Table 2 compares the

main parameters of Nal, BGO, BaF,;, LSO crystals. For 511 keV

Parameter Nal BGO BakF, LSO
Density (g/cm?) 3.7 7.1 4.9 7.4
Mean free path (cm at 511 keV) 2.9 1.1 2.2 1.2
Index of refraction 1.85 2.15 1.50-1.54 1.82
Hygroscopic? yes 1o no no
Decay time (ns) 230 300 0.8-630 40
Light output [NalI(Tl) = 100] 100 15 5-21 75

Table 2: Properties of Nal(T1), BGO, BaF5 and LSO for 511 keV photons

photons, LSO has a mean free path almost equal to that of BGO
and is thus an as efficient scintillator with the same potential for
high resolution imaging. The light output of LSO is three-fourths
of Nal, thus much larger than that of BGO or BaF,, resulting in
a much better energy resolution. The LSO crystal is very rugged
and is non-hygroscopic. The scintillation light decay time for LSO is
40 ns compared to 230 ns for Nal, 300 ns for BGO and 0.8 (630)
ns for the fast (slow) scintillation process of BaF,. It provides a
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~ rapid time response and may give a time resolution of 750 ps FWHM.
Thus a coincidence time window of about 4 to 6 ns is feasible, which
should significantly reduce random coincidences relative to current
PET cameras, and improves the signal-to-noise ratio. Moreover the
event processing time for LSO can be almost six times shorter than
that achievable with BGO or Nal, allowing better counting rate
capabilities.

5 Tracer production

The commonly used positron emitting nuclides in PET are
HNCB NSO and BF. The first three isotopes are the most
abundant elements in organic compounds(1]. This allows the labelling
of naturally occuring biomolecules or drugs without altering the
compounds defined courses in living systems. The 8F isotope can
be used to substitute hydrogen or hydroxyl groups. Because of their
short half-life, ranging from 2 min for °O to 109 min for 3F, they
have to be produced close to their application. Various small, compact
cyclotrons specially built for the production of short lived isotopes in a
hospital environment are commercially available. There are cyclotrons
with external proton and deuteron beams, self-shielding machines
with internal targets down to 3 MeV beam energy for the exclusive
generation of O and negative ion machines allowing simultaneous
irradiations on separate target ports. Computer controlled automated
robot systems synthetize in heavely shielded hot cells radiolabelled
compounds in optimized short times of few minutes, including purity
controls. |

The most commonly used PET radiotracer is FDG, a glucose analog,
metabolic imaging agent giving precise and regional information of
energy metabolism in brain, heart, other organs and tumors[9]: its
uptake in tissue can be easily quantified as glucose metabolic rate.
Biochemical processes of the body’s tissue, such as metabolism of
glucose, are altered in virtually all diseases and PET detects these
changes by identifying areas of abnormal metabolism, which are
indicated by high photon emission. Cancer cells, for instance, typically
have a much higher metabolic rate, because they are growing faster
than normal cells, thus they absorb 60 to 70 times more sugar than
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normal cells and consequently emit more photons.

The production of *F used for PET is based on the nuclear reaction
B¥0(p,n)'®F, where water with 98% of H,°0 as target material is
employed; the reaction produces 800 mCi, corresponding to 32 GBq|3].
The relatively high half-life (109 minutes)[9] of *F allows the
radiotracer distribution to local hospitals after its production in
a regional center. The half-life of 109 minutes also provides an
appropriate decay time for searching tumors and metastases by patient
whole body scans.

The high uptake of FDG by the tumor produces very high-localized
intensity PET images in which is very difficult to see other organs
and structures. To evaluate the exact location of a tumor for staging
a patient, for treatment or follow-up planning, it is necessary to
setup an anatomic framework for the metabolic information provided
by PET. In addition, for better and more exact quantification of
FDG uptake, an anatomical map of the structures imaged by PET is
needed. These two reasons lead to the development of hybrid PET/CT
systems in which both are combined in one instrument. By combining
PET and CT in the same instrument, images of both approaches are
automatically registered. PET images have an anatomical reference
and photon attenuation can be corrected with higher accuracyl9].

6 Complete Body Screening (3D-CBS)

Dario Crosetto is the inventor of the 3D-CBS system and founder
of 3D-Computing[6]. Crosetto studied how to improve, by over
400 times, the efficiency of the current PET machine for whole-
body examination. These efficiency improvements are made possible
because of the novel electronics and detector assembly of the 3D-CBS
machine, which is integrated with a CT scan. The 3D-CBS allows the
use of a larger area of economical crystal detectors thereby exposing
the patients to approximately 4% of the radiation they currently
recelve.

Before the advent of this invention, screening of the entire body was
not advisable because current PET machines expose the patients
to over 10 times the radiation recommended by the International
Commission of Radiation Protection. This high dose is required,
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because most of current PET tomographs detect with less accurate
measurements only one out of 10,000 photons emitted from the
patients body. In addition, current PET examinations are slow and
cost prohibitive.

Crosetto’s improvements stem from an innovative way to detect more
accurately a larger number of photons emitted by the tracer medium
than current designs can do. The patent-pending device will allow for
detection of more photons, more accurately, thus reducing radiation
doses to the patient, and improving the image quality. Furthermore, it
allows the examination of more patients per hour, therefore reducing
costs. |

The key features of his invention are supported by simulations and
hardware implementations. Crosetto’s radical improvements in PET
efficiency are supported by the new architecture of his electronics
using a set of DSP (Digital Signal Processor) on each electronic
channel providing the capability to exchange information received
from neighboring detector elements and to execute complex algorithms
that can measure more accurately the total energy and the spatial
resolution of the incident photon. It eliminates also the parallax error
of the oblique photons, allowing reduction of false positives, false
negatives and an increase in image sharpness. Another supporting
feature is the way the signals from the detectors are connected to the
set of DSPs on each electronic channel and the new way the detector is
assembled as a single (or few) camera(s) made of hundreds of sensors,
each capable of finding a photon candidate, versus current PET, which
is an assembly of hundreds of small cameras, each with lower energy
and spatial resolution at the edges and corners with respect to the
center.

The innovations described above allow increasing the length of the
PET detector, using economical crystals or different kinds of cheaper
detectors, from the current 16 cm to over one meter (when the actual
length of the detector is doubled, the number of photons captured is
increased by a factor of four).

Untill a few years ago there was the belief that the only way to
improve PET efficiency was to improve the efficiency of the crystal
detector and not to improve the electronics. During the past 25
years, improvements in PET design have achieved higher efficiency
by a factor of only 2 to 3 times every 5 years.
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Crosetto’s novel technique shows that PET efficiency can be improved
by using a special massively parallel-processing system with digital
signal processing on each electronic channel. None of the new PET
components (crystals, PMT, Avalanche Photo Diode or the new Flat
Panel Sensors that replace the PMT) can improve PET efficiency by
more than a factor two or so.

The 3D-CBS higher sensitivity will more effectively show abnormal
biological processes at the molecular level, before the cancer exhibits
sympthoms and before an anatomical change occurs in the body tissue,
which is normally detected by CT. Past experience suggests that
earlier detection achieved with regular screening using very sensitive
devices can dramatically improve survival rates.

7 Current PET limitations

The electronics of the current PET limits its performance; it is
not fully capable of extracting the complete characteristics of the
interaction between the photon and the detector from signals arriving
at high data input rates from thousands of sensors[5]. The electronics
has been the main impediment to extending the axial FOV; the
increases in efficiency that would justify extending the axial FOV are
not possible with the electronics of the current PET. The current PET
electronics inefficiencies in detecting photons occur because there is
no independent digital signal processing at each electronic channel
and there is no communication between adjacent electronic channels.
This limitation affects sensitivity and spatial resolution. Sensitivity
is lowered when photons striking a crystal coupled to the border of
two sensors, causing them to release half (or less) of their energy
in two (or more) adjacent electronic channels, are not recognized as
photons because each channel receives less than the nominal energy
to be considered as a 511 keV photon of a PET emission event.
Spatial resolution suffers at the edge of each 2x2 PMT block because
the centroid algorithm cannot weight the PMT signals from both sides
of the PMT closest to the point at which the photon struck the crystal.
This causes a reduction of the overall sensivity, which translates into
greater patient exposure to radiation, poorer image quality and longer
scanning time.
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The image quality of the current PET is poor because it has:

1.

a short FOV, limited by an inefficient electronics that does not
offset the cost of the detector if the FOV were increased;

. no accurate time-stamp assigned to each photon limiting the

detection of neighboring photons emitted within a short time
interval, causing long dead-time of the electronics and increasing
randoms (i. e. photons in time coincidence belonging to two
different events), most PETs do not have any photon time-stamp
assignment;

analog signal processing on the front-end electronics limiting
photon identification because of poor extraction of the
characteristics of the incident photon and no capability to
improve the signal-to-noise (S/N) ratio;

. detector boundary limitations to 2x2 PMT blocks, no correlation

between signals from neighboring detector blocks, no full energy
reconstruction of the photons that hit the detector; most of the
current PET do not attempt to make any energy reconstruction
of the event, but make decisions in accepting or rejecting a
photon first and later an event based on the threshold of a single
signal.

dead-time of the electronics. Dead-time of the electronics is due
to any bottleneck (e.g. data multiplexing from many lines to
a single line, input saturation, processing, output saturation)
present at any stage of the electronics;

. saturation of the electronics at the input stage due to its inability

to detect and process two nearby photons that hit the detector
within a short time interval.

saturation of the electronics at the output stage due to the
limiting architecture of the coincidence detection circuit.

. a high number of randoms due to the non accurate measurement

of the photon arrival time and to the long (about 12 ns) time
window used when determining if two photons belong to the
same event.
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9. poor measurement of the attenuation by different tissues at
different locations in a patient’s body. These measurements are
necessary to calculate the attenuation correction coethcients ior

PET scans.

Furthermore, high radiation dose delivered to the patient is required
by the current PET because each examination needs to capture the
amount of photons which provide a sufficient statistics to yield a
good image. The short FOV and the inefficient electronics allow
accumulation of fewer than 2 photons in coincidence for every 10,000
emitted. This inefficiency requires one to administer a necessarily high
radiation dose to the patient in order to keep the examination time
within an hour.

8 How to improve current PET efficiency

Before attempting to improve any system, it is necessary to determine
where the inefficiencies are, how large they are, how they can be
reduced and by how much.

Crosetto considered a total body PET scan where the radiotracer used
is water with *OI8].

The initial number of photon pairs emitted per second by the
tracer in the patient body (1424 million) and the number of photon
pairs per second captured by current PET (0.2 million) are not in
question, because those quantities have been measured by hospitals
and universities and are in agreement with measurements done by
PET manufacturers.

Of the initial quantity of photon pairs emitted from within the body,
some 1210 million pairs per second are scattered or are absorbed by
the body. This quantity of capturable photons leads to 15% efficiency
for the first stage.

Due to the short FOV (length of the detector), another 196 million
photon pairs per second, which emanate from the part of the body
not covered by the detector, are lost in the second stage. This leaves
only 18 million photon pairs per second remaining to be captured.
This quantity is estimated by dividing the length of the FOV of the
detector (16 cm) by the average length of the human body (180 cm),
yielding an efficiency figure equivalent to 8.5% for this stage applying
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this percentage to the 214 million capturable pairs per second leaving
the body.

Some photons from within the detector area are also lost. Some others
emanating from the part of the body covered by the detector leave the
body at angles that escape the detector through the openings between
the detector segments. This number can be calculated as a percentage
of the perimeter of a circle drawn around the lengthwise cross section
of the entire detector not covered by the two 16 cm segments. Thus,
(178-32)/178 = 0.82, i. e. 82% of the 18 million photons pair per
second remain to be captured after the third stage, which is equivalent
to a total 18% efficiency for this stage.

Detector crystals do not have perfect stopping power and do not
capture every photon in range. Crystals have efliciency ranging
between 80% and 95%. Therefore, applying such rate to the remaining
3.2 million pairs per second still capturable after the third stage in
some low cost crystal detectors, 20% are lost, or 0.65 million, and
80% remain potentially capturable, i. e. 2.5 million pairs per second.
Current PET capture only 0.2 million pairs per second of the original
1424 million photon pairs per second emitted by tracer within the
patient’s body. Of the 2.5 million photon pair per second remaining
after the fourth stage, the loss of 2.4 million pairs per second is
accounted for by deficiencies in the electronics and the detector design.
The efficiency of stage 5 and 6 can be calculated as equivalent to 8%,
as derived by subtraction from the total inefliciency and the sum of
all other inefficiencies.

It is obvious from this analysis that the section needing serious study
and improvements is the last one, which provides only 8% efficiency.
the first stage has the efliciency related to a natural phenomenon that
cannot be changed. The second and third stage can be increased in
length and solid angle only if the electronics of stage 5 and 6 are not
overwhelmed by the increasing of the data acquisition rate. Stage 4,
although the one in which much effort and money has been invested
during the past decades, can only be improved from about 80% to
something over 95% (among the so called ideal crystals, that is LSO).
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9 The 3D-Flow

Crosetto’s key innovation on the electronics {on which the 3D-Flow!™

is based) consists in a parallel-processing architecture enabling
execution of a complex real-time algorithm, calculating different types
of depth of interaction with zero dead time and with data exchange
with neighboring processors for a time interval longer than the time
interval between two consecutive input signals|7].

This provides better energy measurement, helps to reject scatter
events more efficiently and provides a way to improve spatial resolution
by measuring more accurately the location where the incident photon
hits the detector. It also increases sensitivity in accepting oblique
photons by eliminating the parallax error accurately measuring the
interaction depth.

Another aspect of the invention is the way these concepts are
implemented in hardware.

The 3D-Flow!™ parallel-processing architecture allows the execution
of complex algorithms with neighboring signals correlation in real time
and provides the capability to extract more accurate information from
the signal generated by the interaction between the incident photon
and any type of crystal detector[8]. This allows a more efficient use
of economical crystals. The coupling of the detector to the electronics
is made in such a way that there are no boundaries or fixed detector
segmentations; rather, each sensor of the detector (PMT, Avalanche
Photo Diodes, etc.) is an element of a large array with the capability
to act as the center of a cluster of elements, all providing information.
Finally, the one-to-one mapping of the detector array with a single
array of electronic processing channels remedies the inefficiency of
current PET in capturing fewer photons, less accurately at the edge
and corner of each of the hundreds (or thousands) of small cameras or
at the edge of detectors with fixed segmentation.

A data aquisition and processing board has been developed for high
efficiency photon detection in PET/CT. The board includes 68 3D-
Flow?™ processors, each capable of executing up to 26 operations in a
single cycle. The 3D-Flow!™ DAQ IBM PC photon-detection board
has the capability to execute different real time algorithms for photon
detection and can be interfaced to different types ot daughter analog-
to-digital boards. The daughter boards provide signals carrying the
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amplitude information from an Analog to Digital Converter and
the time information from an analog or digital Constant Fraction
Discriminator (CFD) for 16 detector channels, coupled to different
types of crystals (e.g. slow: Nal(Tl), BGO, or fast: LSO, Gadolinium
Oxyorthosilicate (GSQO), etc.).

9.1 3D-Flow!™ parallel-processing architecture

This architecture takes the parallelization process one step further
than DSP and its software tools allow creation, in only a few hours,
of a new application with different algorithms executed on thousands
of processors. Each of the 3D-Flow?™ processors of one layer of the
3D-Flow’™ stack® executes in parallel the real time algorithm, from
beginning to end, on data received from the PET detector, while
processors at different layers of the 3D-Flow™ stack operate from
beginning to end on different sets of data received from the PET
detector.

The extension by the 3D-Flow?™ architecture of the execution time
in a pipeline stage beyond the time interval between two consecutive
input data is illustrated by the following example: an identical circuit
(a 3D-Flow™ processor) is copied four times: A, B, C, D; the
number of times the circuit is copied corresponds to the ratio between
the algorithm execution time and the time interval between two
consecutive input data. A bypass switch coupled to each processor
in each 3D-Flow’™ in layer A sends one data raw to its processor
and passes along to the next layer three input data packets and one
output result from its processor. The bypass switches on the 3D-
Flow™ processors at layer B send two input data packets along to
the next layer, one output result received from layer A and one result
from its processor, and so on. Only the processors at layer A are
connected to the PET detector and these receive only input data.
The processors at layer D send out only results. This architecture
simplifies the connection in a parallel processing system and does not
require a high fan-out from the detector electronics to send data to
different processors of a parallel-processing system. All connections

4A stack is a set of several layers, assembled one adjacent to another to make
a system.
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are point-to-point with several advantages in low power consumption
and signal integrity.

10 Conclusions

In conclusion, major developments in PET technology have already
played a major part in defining and establishing the role of this imaging
modality in oncology. The introduction of PET/CT is the process
of refining this role. New software developments combined with the
introduction of new scintillators and PET detector designs hold the
potential to improve the throughput ot this technique and open the
way to new clinical applications.

In the present project we plan to tackle the issue of the cost of
the electron detectors substituting the expensive small crystals with
Multigap Resistive Plate Chambers (MRPCs) which are cheaper gas
detectors and can be built and assembled in large dimensions.
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1 Introduction

Gas avalanche detectors, conceived and heavily employed in parti-
cle physics, have numerous applications in life sciences. In medical
diagnostics, gaseous detectors are currently employed in digital X-
ray radiography [1] and angiography [2|. High-pressure gas ioniza-
tion chambers have been used, e.g., X ray sensors in Computerized
Tomography (CT). Since they have a rather limited sensitivity to
energetic photons, methods were found to couple position-sensitive
gas avalanche detectors to solid gamma converters. This is the case
in gamma cameras equipped with thick metal-grid converter|3]a.
Such devices were routinely applied to medical inspection and, more
recently, to a Positron Emission Tomography (PET) mode, for a
high-resolution 3D small-animal imaging [3|b. Small-animal PET
cameras were also developed, where UV photons from BaF; crys-
tals are detected in wire chambers operated with a photosensitive
(TMAE) gas[4].

There are several other applications of gaseous detectors as diag-
nostic tools in biomedicine, e.g., beam monitoring in radiotherapy|[5],
radiation dosimetry, etc. One of the most interesting new fields
where their unique characteristic could be exploited is the Positron
Emission Tomography (PET).

PET is a radiotracer imaging technique in which tracer com-
pounds labelled with positron emitting radionuclides are injected
into the object under investigation. After a short path length[6]
the positron annihilates with an electron of the medium emitting
simultaneously two 511 KeV photons (almost) back to back. The
detection of both photons (whose coupling is made through a check
on their time of flight) identifies the occurrence of an annihila-
tion along the chord connecting the detection points. Since the
BT emitters are linked to some physiologic substrate such as glu-
cose or oxygen, mapping the density of the positron sources after a
while gives a measure of the rate of activity inside the human body.
These tracer compounds can thus be used to track biomedical and
physiological processes, with applications ranging from the early
detection of cancer to neurophysiology studies (see Tab. 1).
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Agent Used to Monitor

LiSF fluorodeoxyglucose Regional glucose metabolism
SF sodium fluoride Bone tumors

" IIC methionine Amino acid uptake/protein synthesis
| 11C choline Cell membrane proliferation

HC deoxyglucose Regional brain metabolism
150 oxygen Metabolic rate of oxygen utilization/OEF
' 11C carbon monoxide Cerebral blood volume
' 150 carbon monoxide Cerebral blood volume
- 150 water Cerebral blood flow
' 150 carbon dioxide (Inhaled) | Cerebral blood flow

1C butanol Cerebral blood flow
" 11C N-methylspiperone Dopamine D2 and Serotonin S2 receptors
" I3F N-methylspiperone D2 and S2 receptors
- 11C raclopride D2 receptors
- I8F gpiperone D2 receptors

‘Br bromospiperone D2 receptors

11C carfentanil Opiate mu receptors
" IIC flumazenil Benzodiazepine (GABA) receptors

Table 1: PET agents and their uses.

The development of image reconstruction techniques for the de-
tection of very small fluctuations in density (e.g., cancerous tu-
mors at the early stage of their formation) requires both high-
resolution, high-rate detectors and advanced imaging techniques.
During the past 30 years many efforts have been made to develop
scintillator-based PET detectors and, short of a great technological
breakthrough, it seems that their limits have almost been reached.
Researche in this field focuses mainly on the growth of crystals with
a high light output, a good space and time resolution. However,
the possible outcome of this research seems to be limited, while the
introduction of gas-based detectors seems to be a more promising
alternative path to follow.

In this paper we show a novel feasability study to build a Resis-
tive Plate Chamber (RPC)[7] PET detector with high efficiency,
high space resolution and high time resolution. All the results
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shown were produced with the Geant simulation toolkit (version
4.7.0), the CLHEP libraries (version 1.8.1.0) and compiled with
gee 3.3.3 under Slackware Linux.

2 Scintillator vs RPC: comparison for
a PET detector

2.1 Efficiency

2.1.1 Geometrical efficiency

The PET diagnostic technique offers a unique capability of acquir-
ing methabolic images and has been proven to yield valuable infor-
mation, in oncology and in vivo studies. The major limitation of
PET imaging scanners is largely due to the high price of scintillator-
based detectors.

One of the most expensive components of such detectors are the
scintillator crystals. This is due to the very strict requirements on
their characteristics, because they must be blessed with a very high
detection efficiency, high light output and good time and energy
resolutions. Thus, the major limit in the design of a scintillator-
based PET detector is given by the strong dependance of its working
parameters on the physical features of every single piece of them.
Usually crystals are no more than 25 mm thick in order to have
a good spatial resolution (otherwise their parallax and deepness of
interaction uncertainties would be too large). They must have also
both a good light output to reduce data losses on the coupling to
the photomultipliers and a good time and energy resolution to cut
noise. Growing such highly specific crystals is still a very expensive
process: BGO (BiyGez0s3) crystals 25 mm thick (”commonly” used
for PET detectors) cost 100 $/cm? odd, while other more exotic
crystals can have a much higher price.

Even with such expensive crystals, the resolution of the detector
is limited by the parallax effect. To reduce the probability of having
photons far from the normal to the crystal surface, PET detectors
are commonly built with a cylindrical setup (90 cm diameter for
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Figure 1: PET detector sketch (elements are to scale): (A) sensible
region (B) where the patient lays (C) detector ring.

a total-body detector) where the patient is to lay still along the
axial line (see fig. 1). To further reduce the parallax incidence the
crystals are separated by thin metal layers usually made of lead
or tungsten (inter-plane septa) whose depth along the crystals can
be modified to tune the rejection efficency of non-perpendicular
photons.

The septa can improve image contrast reducing the amount of
scattered gammas up to 10-15% of the total counts acquired [9] but,
obviously, even on a small detector, 30 cm along thee axis, called
Field Of View (FOV) the cut on the maximum acceptance angle
reduces greatly the geometrical efficiency ¢, of the detector. This
cut is fundamental since random coincidence events provide incor-
rect information which degrades the final image. According to the
septa depth the scans are commonly said to be either 3D-scans (no
septa between crystals) or 2D-scans (fully separated crystal planes).
As shown in fig. 2a the signal to noise ratio greatly improves with
a harsh cut(< 45°) on the angle, but soon it drops when the cut
strongly reduces the data. The maximum and the rise in the gra-
dient depend heavily on the FOV.

This detector design has clearly two drawbacks: the limited
acceptance angle (a flaw made even harsher by the presence of the
inter-plane septa) and the increased cost to cover a wider sensible
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Figure 2: a- Signal to noise ratio vs maximum acceptance angle of the
incoming photons; b- Geometrical efficiency vs. the FOV.

surface (since the number of crystals needed to cover a cylinder is
very high).

The limited acceptance angle, the parallax effect and the hlgh
cost to cover large sensible areas strongly limit the geometrical effi-
ciency of total-body PET detectors: they are commonly built with
30 cm FOV. Thus only a very small fraction of the emitted photons
can be collected as data while all the others are completely lost or,
even worse, contribute to the noise. Building a longer scintillator-
based detector is unfeasible since the limited improvement in reso-
lution, due to the limited acceptance angle given by the inter-plane
septa and the parallax eftect, would not justify the increased cost.
Thus it has become common practice to move the detector along
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the patient’s body to scan it. In order to ensure that there will
be no "holes” in the reconstructed image the scans overlap slightly
every time. The ratio of the overlap in the lenght is a function
of the patient’s height. As shown in fig. 2b, while ¢, is smooth,
the overlap function shows abrupt steps due to the change in the
number of scans needed to cover the patient’s body. Thus to scan
the whole body of a patient with such a limited FOV the data ac-
quisition time is multiplied (on average) a sevenfold, since the data
have to juxtapose a bit to ensure that no "holes” are left. A longer
FOV would greatly improve the geometrical efficiency, increase the
signal to noise ratio, shrink the acquisition time, and reduce the
tracer dose that has to be injected.

For a source in the middle of the detector the geometrical ac-
captance (Ygg) of a cylindrical sensitive region is:

2 FOV

Yo = - arctan 5 (1)

where D is the detector diameter (FOV is simply the detector axial
lenght).

For a source not in the middle of the detector the geometical
acceptance is given by the above formula where the FOV is to
be replaced by the minimum distance between the source and the
detector’s edge. The total geometrical acceptance (¢¢g) is given by
the product of the probability of having a source inside the patient’s
body and the FOV times the probability of having both the photons
inside the detector geometry, as shown in fig. 3a, i.e.:

Ve = / ” P(x € body) - P(z € FOV) - P(~ys € sensitive surface)

rolo/h if hy <z < hy
- i 0 otherwise
1/FOV if FOV; < x < FOV,
- { 0 otherwise
;’g“,f -12; arctan 2mint-F OdVI’F OVa—t) d¢ if hy <z < hy
) 0 otherwise
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min(hz,FOV2) 9 2min(t — FOV;, FOV, — ¢t

_ 1/7T/- 2 oretan mln( 1y 2 )dt
max(hy, FOVA) T d
max(h,FFOVy) 9 mln(:c — FO‘/l, FOV’? T .’L')

~ 1 — / — arctan dz
min(hs, FOVR) T D

where hy — hy is the patient’s height, FOV = FOV, — FOV; and d
is the radial distance of the source from the detector surface.

In an RPC,increasing the solid angle coverage would have almost
no drawback on the resolution; in fact the ”effective thickness” of
the converter plate in an RPC is about 300 um, a value that depends
upon the converter material, while the efficiency depends on the
applied high voltage (HV), see fig. 3b). The parallax distortion
of the signal can be handled at least partially by the electronic
readout system. The low cost of RPCs (near 100 $/m?: about
10000 times less than a BGO crystal detector) makes it affordable to
build a RPC-PET detector with much longer FOV; the use of RPC
detectors may allow the assembly of full-body-long FOV scanners.
Since the detector response is a function of several parameters it
is convenient to study its behaviour through simulations by Monte
Carlo techniques. This has been done temporarily assuming that:

1- no photons undergo scattering between the source point and
the detector surface;

2- there are as many detectors as needed to scan the whole of
the patient’s body and to overlap the FOV of every such scan in
order to ensure a good efficiency along its full lenght;
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Figure 4: a- Signal rate vs maximum acceptance angle; b- Signal rate
vs FOV.

3- no time cut is used since it would simply reduce the noise
occurrency (thus the signal to noise ratio would accordingly rise).

The results of these simulations are shown in fig.s 2, 4 and 5.

A FOV as long as the patient’s body would greatly increase the
data set and reduce the noise since photons emitted outside the
detector length may enter the sensible area and become spurious
data. The required data acquisition time would be shorter, greatly
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reducing the minimum dose to be injected in the patient’s body:.

2.1.2 Scattering amplitude

As long as only the detection of photons is of interest, an RPC can
be modeled as a converter plate plus an electron selector plus a
signal amplifier.

190 % -

Signal to Noise

FOV (cm)
a)

Signal to Noise Ratio
g
¥

ox L T L L T T

rs 3% 104 1% 20% 5% 0% 5% 40% 45%
b) Detection efficiency

Figure 5: a- Signal to noise ratio vs FOV; b- Signal to noise ratio vs
detector efficiency:.
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The detection efficiency is ruled mainly by the conversion eth-
ciency given by the (photoelectric emissions and) Compton scatter-
ing cross section shown in fig. 6.

High 7Z materials have a rather large gamma conversion proba-
bility (see App. 4.2) thus it would be favourable to employ high Z
target layers. Multiple electron scattering inside the converter plate
could lead to electron capture, thus the probability of recording a
signal depends on the distance the electron has to cross to reach
the gas gap where the signal amplification starts (see fig. 3b).

SIGNAL FERQUENCY vs. DETECTION EFFICIENCY

{Patient's Height=1.20m, FOV=30uim, Revel Radius= 43cm, MuxAnyle=90°, 1000¢ Events}
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Figure 6: Total (Compton + Photoelectic) scattering probability inside
a silicon target.

A strong electric field between the electrodes increases the emis-
sion probability as the electrons are ”pushed” toward the gas gap.

In ordinary PET scanners, in order to build detectors and im-
prove the resolution much efforts have been made to grow crystals
with the suitable scintillating characteristics and high Z. In RPC
this problem can be circumvented, since there are much less strict
requirements on the materials to be used. For example, resistive
plates can be built with a high Z material, or, since there is no need
for an homegeneous material, they can be coated with a thin high
Z: paint or drugged near the surface. Even the detector layout can
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be tuned: multiple high Z target planes can be inserted in the gas
gap. Adopting a MultiGap layout (MRPC) is an effective way to
increase the photon detection efficiency.

2.1.3 Data acquisition

Data acquisition is also a crucial feature of a detector since it rules
the maximum acquisition rate, the probability of detecting imping-
ing photons and the signal-to-noise ratio.

Scintillating crystals are optically coupled to photomultipliers
(PMT), which collect the light output and convert them into elec-
tric signals. This coupling has a far from optimum efficiency, since
less than 30% of the signal is able to pass through the light interface
and become data to be processed. In RPCs every electron, as soon
as it reaches the surface of the gas gap, undergoes a very strong ac-
celeration that produces an avalanche between the electrodes (the
gain is about 10%). The produced ion and electron avalanche yields
a fairly strong electromagnetic signal that induces a pulse into the
readout electrodes. This signal is read out into the data acquisi-
tion modules for analisys. Therefore all photoelectrons that reach
the surface of the gas gap and overcome a small threshold against
iontrinsic electronic noise are recorded.

The spatial resolution in scintillator-PM detectors is given mainly
by three factors: the spread of light inside the crystal, the resoluton
of the photomultipliers and the optical features of their interface.
On the contrary, in RPCs the interaction point is quite near (hun-
dreds of ym) to the emission point in the gas gap and even the
avalanche has got a very small extension. A good estimate of this
factor can be given using the distance between the electrodes (d),
the intensity of applied HV (V):

C = ¢ dQroT
{C - G TAS Ty 2

where € = €,¢¢ 1s the dielectric constant of the RPC material while
roT is the total produced charge that must be absorbed to recover
the initial state. With the typical working parameters (V/d = 5000
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Figure 7: The counting rate capability of RPCs under continuous irra-
diation [11].

V/mm, €, = 5, Qror = 10 pC the area affected is about 0.04 mm?.
Assuming a ”drop-shaped” development of the avalanche its radius
would be just 80 um.

2.1.4 Maximum event rate capability

The maximum event rate is limited mainly by the unsensitive area
and the deadtime of the individual detector modules but can be
limited also by the speed of the coincidence and address logic elec-
tronics. In recent literature it has been stressed that there is a
critical need in PET for a scintillator with a decay time signifi-
cantly shorter than the 300 ns of BGO, such as LSO or PbSO, [8],
[10].

It should be asked whether these counters might withstand the
counting rates desiderable for PET. The counting rate capability of
glass MRPCs under continuous irradiation is shown in fig. 7.

Under standard operating conditions the maximum rate can be
as large as about 1-2 kHz/cm?.

Since the maximum dose injected (used for the total-body PET)
is about 10 mCi, the total maximum emission rate (Mgg) on the
full solid angle is about 370 MHz. The typical dimension of the
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detector rings (whose diameter is about 90 cm for a total-body
PET) and the dose injected yields a statistical upper bound on the
emission rate on the surface (Rg) of the detector:

Rg(a + da, b+ b) Mgr/(da x 4b)
MER/(T!'DZ)

15kHz/cm?

VARRVAY

Where (a,a + da) and (b, b+ 0b) define a unit of surface on the de-
tector and the approximation is given for a spherical sensible area
with diameter D. Since every converter plate has got about 0.5%
efficiency, every RPC can have as much as 600/(1.5-10%-0.5%) = 8
target layers without significant loss in efficiency due to their rate
capability. This rough estimate is bound to be very conservative,
since we worked on the rather naive assumption that all the ra-
diotracer was deposited in the same place. The half life of the ra-
dioisotopes commonly used for Total Body PET scans (1°F, whose
life time is 109 min) is of the same order of the time spent after the
injection to let the chemical cocktail diffuse in the body (about 20
min). Thus the maximum number of possibly ”effective” layers is
even higher, more than the feasible number of layers to be inserted
in a Multigap RPC. Therefore it seems that the maximum system
counting rate will not be limited by the RPCs rate capability.

2.1.5 Deadtime data loss.

Every measurement system exhibits a characteristic deadtime[12|:
since the pulses produced by a radiation detector have a finite time
duration, when a second pulse occurs before the first has disap-
peared, the two pulses will overlap to form a single distorted pulse
[13], [14].

Depending upon the system, one or even both particle arrivals
will go unrecorded. This loss of counts changes the measurement
statistics and the statistical moments. The statistics of the coincidence-
counting process for detectors affected by deadtime is of fundamen-
tal importance to the problem of statistical image reconstruction,
as elaborated in [15] for single-photon counting systems. Counting
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Detector 1 Detector 2

X,(®), rate=p +p, X.(t), rate=p +p,
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N (1), rate=p N (), rate=p_ (1), rate=p,
n

Singles Rate 2
S (1), rate=p,

Singles Rate 1
S,(1), rate=p

Coincidence Events
Y(t), rate=y(t)

Figure 8: Model for coincidence counting.

systems are often characterized as either non-paralyzable or para-
lyzable (extendable). In a paralyzable system, each particle arrival,
whether recorded or not, produces a deadtime of length 7; if there
is an arrival at time ¢ then any arrival from ¢ to £ + 7 will go un-
recorded.

This section investigates the and variance of the coincidence-
counting processes, for accidental coincidences and for total co-
incidences (both accidental and genuine), also known as prompt
coincidences in the PET literature.

In the scenario illustrated in fig. 8, the random process Ny(?)
counts the number of particle pairs emitted simultaneously from
the ” genuine-coincidence source” and arriving at the two detectors
in the time interval [0,¢]. It can be stated that the particles in each
Ny pair arrive simultaneously at the two detectors (similar results
can be obtained even for non-simultaneous arrivals). The random
processes IV;(t) and N;(t) count particles originating from the ran-
dom singles sources as they arrive at the two detectors. It can be
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assumed also that N;(t) and N,(t) are stochastically independent.
To preclude the possibility of multiple simultaneous arrivals, it can
be assumed that any arrival process N;(t) considered in this paper
has the property P|AN;(t) > 1] = 0 for any time ¢; where AN;(?)
denotes the increment in N;(t) at time ¢. Let Y (¢) be the sum of
three factors:

Y(t) = Yo(t) + Y1 (t) + Ya(t) (3)

i.e. Yp(t), the number of recorded coincidence events corresponding
to simultaneous arrivals, at time t, at the two detectors; Yi(¢) and
Y5(t) be respectively the number of recorded coincidence events
during (0, t] that have singles event arriving late at detectors 1 or
2; let also I' be the istantaneuous rate and pq, po the counting rates
of, respectively, N;(¢) and N(t). Then, at the time t:

so we can write the mean value of accidental coincidences as:

B = | Iy (s) [ Talwdu+Tos) [ T(u)dulds
E[Y(t)] = Tt

while the variance 1s:

2

EY®) ] =Tt(1-T7+ (2-71/t)) + %(57“2 —16r(t—1)) (5)
where ' = 2r[' Ty = 2rp; pq exp~(P1102)7,

It 1s worth comparing the coincidence-counting process to the
singles-counting process. Deadtime causes the singles-counting pro-
cess to be significantly non-Poissonian, in the sense that the vari-
ance of the process is significantly less than the mean value. In
contrast, the variance of the coincidence-counting process is very
close to the mean so it can be treated as poissonian. In PET,
accidental coincidence (AC) events occur when two photons origi-
nated in separate annihilations are detected within the coincidence
time window. The effect of AC events is most severe for sourcess
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with low true coincidence rates, such as those traversing the thorax.
Most PET scans are compensated for AC events by real-time sub-
traction of delayed-window coincidences. This precorrection yields
the proper ensemble mean, but destroys the Poisson measurement
statistics. To preserve Poisson statistics, one should acquire sepa-
rate transmission and random data. However, because of hardware
and data storage space limitations, most PET centers currently
collect and store only the random precorrected data. Scintillating
crystals have a deadtime in the order of 300 ns while RPC have a
much better time response (less then few ns, down to 50 ps) thus
the statistical occurence of AC events is much smaller. The dead-
time in an RPC is the time needed to recover the initial condition:
the HV between the electrodes is reduced by the charge contained
in the avalanche impinging on the resistive plates, then the detector
is charged again by the external power supply with an exponential
behaviour characterized by an ”electrode time constant”, 7, given
by the formula: |

b,
To = 2pr60(2€7- + ;) (6)

where p,, €, and b, are, respectively, the bulk resistivity, relative di-
electric constant and thickness of the resistive plates|7]. The ”elec-
trode time constant” is the leading factor when the deadtime is to
be calculated.

2.1.6 Non-uniformity of data sampling

Reconstruction algorithms usually are exployted with the assump-
tion that data is sampled on a continuous space and that the sen-
sible region is uniformly efficient|7]. Since the physical signal is
brought to the electronics through a discrete set of elements, this
assumptions are to be questioned, and could lead to some degree of
signal distortion or loss in efficiency. On top of this, real imaging
systems are subject to a number of physical effects that make their
response space-variant and image-dependent.

In PET, nonuniform sampling and crystal penetration effects
also lead to space-variance[l7]. There are also object-dependent
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attenuation effects that can alter the resolution. When all these
effects are not compensated, the reconstructed images can suffer
from quantitative inaccuracies and geometric distortions due to the
anisotropic response. These nonuniform resolution properties can
complicate the image reconstruction since image-dependent resolu-
tion properties make the comparison of different images or difterent
features in the same image more difficult. For tomographic applica-
tions, there is a number of analytical methods that can compensate
for space-variant physical effects. Till now, a number of methods
for PET with irregular sampling functions have been developed
[18]. Under proper conditions, some techniques can yield images
free of resolution nonuniformities, however usually noise models are
ignored. An alternative approach is to perform Maximum Likeli-
hood (ML) reconstruction using an accurate system model. When
the system model incorporates the system geometry and all the
physical effects, it is often possible to obtain image estimates that
have nearly ”perfect” resolution when a pixelated object model is
used. This means that the local impulse response defined in [19]
is a Kronecker impulse. Such estimates require iterating the al-
gorithms used to maximize the ML objective until convergence.
Unfortunately, such images usually appear overly noisy due to the
ill-conditioned nature of inverse problems. A number of solutions
have been proposed to improve the appearance of such images: a-
The Maximum Likelihood images can simply be post-filtered with a.
shift-invariant blur. If the ML image has "perfect” resolution, then
the blurred image will have uniform resolution. However this still
requires a fully converging solution to an unregularized problem,
which may take very many iterations.

b- Iteration can begin with a uniform image and can be stopped
prematurely yielding a smoother result. However such images will
have nonuniform resolution properties {20]-[22].

c- The problem can be regularized, improving convergence rates
and image quality. While one can use sieves [23] to regularize the
problem, the appropriate kernels may not always exist for a desired
resolution and system model.

Additionally, a space-invariant filter cannot provide uniform res-
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olution for space-variant systems. Another form of regularization is
the penalized-likelihood approach, where a penalty term is added
to the objective function that discourages rough images. Stan-
dard space-invariant penalties yield nonuniform resolution prop-
erties even for space-invariant systems due to the implicit data
weighting of the penalized-likelihood objective [23]. Space-variant
penalties have been developed that yield uniform resolution prop-
erties [24], [25]. In principle, these techniques may be applied to a
wide range of space-variant imaging systems to correct for both the
implicit data weighting and to compensate for the various physical
effects that make the system space-variant. Such methods would
provide for easy resolution control, where one needs only to spec-
ify the desired point spread function. However, these space-variant
penalties are data dependent, and they must be computed for each
data acquisition. Moreover, fast techniques for calculation of the
penalty term have only been developed for space-invariant systems
124]. The main obstacle to the application of these techniques to
space-variant systems, in general, remains the efficient calculation
of the penalty.

2.2 Theoretical limits on resolution

To build a good theoretical framework in which to sketch the project
of an improved PET detector, it is necessary to underline the in-
trinsic limits on data resolution. The aim of a PET image recon-
struction is to pinpoint tumors and their methabolical information.
This analisys is built on a few assumptions:

1- the density of the positron sources is a good marker;

2- the map of the positron sources is faithfully reproduced by
the map of the annihilation points;

3- the emitted photons carry enought information to reconstruct
the density of annihilation points;

4- the reconstructed image is correct;
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Isotope I8 | 1C Ga | ®2Rb
Max 8% energy (MeV) | 0.64 | 0.96 | 1.90 | 3.35
fwhm (mm) 0.13 | 0.13 | 0.31 | 0.42
fw(0.1)m (mm) 038039116 |1.9

Table 2: Positron range factors for four isotopes in water [28].

2.2.1 Field of application of PET imaging techniques

Recent experiments have shown that radiotracer compounds diffuse
through the whole body and their rate of deposition is a valuable
diagnostic tool. Anyway, it cannot be used to track every biomedi-
cal and physiological processe nor to diagnose every kind of tumor.
Methabolical data must be well know and must taken into account
to avoid misinterpretation of the reconstructed image.

2.2.2 Positron range

The annihilation points do not coincide with the emission points
since positrons travel a short path before being annihilated. Mea-
surements of positron range have shown that this distribution con-
sists of a central spike (fwhm < 0.5 mm) plus tails that can extend
outward for up to several mm [26],[27],[6], [28],[29].

Tab. 2 collect values of full width at half maximum (fwhm),
full width at 0.1m [fw(0.1)m], as well as the maximum B* energy
for four of the most common positron emitters. The fwhm and
fw(0.1)m describe the narrow central region of the distribution, but
not the tails. The fw(0.1) reflects the statistical broadening of the
entire range distribution. The statistical distribution of end points
of positrons emitted by '®F sources is shown in fig. 9

2.2.3 Noncollinearity

Since the positrons do not come to a complete rest before anni-
hilation, the two 511 keV annihilation photons are not emitted in
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Figure 9: Statistical distribution of ®F-emitted positron end points in
water[30].

exactly opposite directions[31]. The result is a Gaussian angular
distribution with about 0.5° fwhm. For a source placed at the
center of the tomograph, this introduces a contribution to the res-
olution of about 0.0022D, where D is the detector ring diameter
(in millimeters). This means that for a total body PET, where
D =90 cm, the blurring of the signal is about 2 mm or that the
source point is about 1 mm off the line adjoining the two impact
points.

The non-collinearity of the photons may have a major influence
on the geometry development of a PET detector. Since this blurring
is proportional to the distance between the annihilation point and
the detector surface, increasing the FOV will have the drawback
that the "faraway” data will have a poorer resolution. Changing the
detector geometry (eg: using a box-shaped detector with tunable
lenghts) in order to reduce the path of flight would reduce the data
spreading.

2.2.4 Combined formula for reconstructed image resolu-
tion

The combined reconstructed image resolution R, as influenced by
detector size d, noncollinearity (through the detector array diameter
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D), the effective positron range r is given by the formula:

[ = 1.25/(d/2)? + (0.00022D)?2 + 72 + b? (7)

where an additional factor b is introduced to account for other
distortions, such as those given by the parallax effect, the non-
uniformity of the data acquisition, etc.

2.3 Noise

Noise estimators are perhaps the most complex piece of a simula-
tion. This is due to the randomness of their nature and the diffi-
culty even to pinpoint their statistical features. Nonetheless they
are among the most useful tools to determine if a simulation is
good enough to fit the data and to test the image reconstruction
algorithms. This feature is extremely important for PET image
reconstruction techniques, since it has been shown that iterative
algorithms and maximum likelihood estimators can be much slower
or even fail a reconstruction (mainly they create "noise artifacts”)
due to the occurrency of "noisy” data. Several techniques have
been develped to reach a better signal-to-noise ratio.

2.4 Time window

Setting a time window is one of the most common and crucial tech-
nicniques to discriminate signals. Events detected within a preset
time are assumed to be fathered by the same process (occurring
along the line joining the two detectors which recorded the events),
while events outside the time windows are assumed to be noisy
events or singles (the other photon being not detected) and are re-
jected (see the scketch in fig.10). The coincidence time window used
for event detection is based upon the type of scanner. BGO cameras
use a coincidence window of 12 ns, for GSO and Nal systems the
width is reduced to 8 ns while LSO systems are commonly operated
with just 6 ns. Many eflorts were spent to grow scintillating crys-
tals with a better time resolution since, obviously, a shorter time
window gives a a better noise cut-off. RPCs, due to their superior
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Figure 10: Signals and noise: (a) both photons reach the sensible region
unscattered and are recorded, giving a ”good” signal, (b) One (or both)
photon(s) scatter(s) before reaching the detector, giving a distorted sig-
nal, (c) Two photons from two different sources are recorded inside the
time window, this is clearly noise.

time resolution, can work with a much shorter time window. It can
be so short that they open the path to use the time of flight infor-
mation to give a rough estimate of the point of interaction along the
chord. In PET measurements, accidental coincidence (AC) events
are a primary source of background noise[33]. AC events occur
when photons arising from separate annihilations are mistakenly
registered as having been generated by the same annihilation. In
order to estimate their occurrence the ”singles” method|34| can be
employed. However this approach is not widely used because of
the necessity to add hardware. Moreover, the rate of the singles
usually varies during the data acquisition time[35]. In most PET
scans, AC rates are estimated using delayed-window coincidences
and the data are precorrected for AC events by real-time subtrac-
tion. However real-time subtraction of delayed window coincidences
provides an average compensation for AC events but distorts the
Poisson statistic [36]. To avoid this problem, one needs to main-
tain transmission and random delayed coincidences measurements
as two separate data sample [37] [38]. The drawback is that collect-
ing randoms data sets separately would double the storage space
for the acquired data. That’s why in practice most PET centers

135



collect and archive only the randoms precorrected data.

2.5 Energy Cuts and Time Of Flight cuts

Photons crossing a human body may scatter and deviate from their
previous path. Since, clearly, the scattering destroys the spatial
information about the source carried by the two photons, the re-
construction is impossible, or even worse, misleading. Therefore
this events must be regarded as noise and rejected. To accomplish
this, scintillator-based PET detectors use an energy cut (usually
it is about 20%) to select 0.511 MeV gamma rays. Since RPC de-
tect the photons through two information-disruptive steps (gamma-
electron conversion and electron multiplication) this kind of cuts is
not feasible in an RPC.

The converter plate physics, however, grants a kind of ”built-
in” energy cut: even if the scattering amplitude is larger for low
energy photons, the mean path that a gamma-produced electron
can travel before being re-absorbed is shorter, thus RPCs have a
smaller detection efficiency for low energy gammas.

A very interesting way to cut spurious data is to use the Time
Of Flight (TOF). The very good timing of Multigap RPCs (up to
50 ps) opens the possibility to use the difference between the time of
flights of the two gammas to localize the annihilation point along
the line joining the two coincident detectors. The TOF cut has
several advantages (see [39]-[48] for further details):

‘a- the image can be reconstructed with less statistical noise;

b- each annihilation can be placed near the image plane where
1t occurred;

c- angles can be grouped, which reduces the task of data storage
and tomographic reconstruction;

A time of flight PET detector would open new techniques for
the data reconstruction; togethere with a much smaller noise ratio
given by the enlarged field of view it is very reasonable to think
that the image reconstruction would be significantly improved.
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3 Conclusions.

The comparison of the features of a scintillator-based PET detector
to those of an RPC-based strongly suggests that the latter could be
a far superior PET detector. Clearly the most critical point of the
converter plate approach to photon detection is the low quantum
efficiency (about 0,5% for every layer, but obviously it depends on
the converter plate material). Such a low value is due to the scat-
tering amplitude of the interaction and to the low energy spectrum
of the emitted electrons, which limit the maximum ”meaningful”
thickness of the converter plate. It is common practice to use sev-
eral layers of RPCs to increase the detection efficiency, since the
gamma beam is only slightly depleted crossing a detector.
Montecarlo results suggest that electrons produced by 0.511
MeV gamma rays have a reasonable probability of crossing 200 um
odd before being re-absorbed. Thus interactions farther than 200 um
from the edge of the converter plate probably will go undetected
and must be regarded as lost data. This feature greatly influences
the design of every converter-plate-based PET detector since it de-
termines a strong link between the maximum efficiency (data flux
reduction) and the mechanical accuracy of the detector.

3.1 Main features of the proposed detector.

Extensive testing and further developments are bound to be done.
We have been able to assess several key features of an economic and
accurate RPC detector to be employed in the PET medical imaging
technique: a Multigap RPC would be a promising choice. The
MultiGap design would allow to build a very compact and efficient
detector with several favourable features. Inserting, e.g., 6 target
layers inside the gas gap the efficiency would be boosted at least a
sixfold (the layers could be made of high Z material, so the efficiency
would be more than just a sixfold), while the gas gap would be only
2.6 mm (assuming 200 um thick layers spaced by 200 gm). The
parallax effect would increase, but the efliciency gain would pay oft
the small distortion of the signal. Multigap RPC can be made into
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very fast detectors with a time resolution of about 50 ps, thus the
spurious noise incidence would be minimal (due to the short time
window) and the difference between the time of flight could be used
not only to cut AC data but also to improve the reconstruction of
the source points. The uncertainty in difference of the TOF would
be 100 ps, thus the source could be reconstructed both along the
adjoining chord and within 3 cm along it. A Multigap RPC PET
detector would be much cheaper than a normal RPC one, too: the
increased efficiency of the detector would greatly reduce the number
of components to be placed in the tower, thus reducing the cost of
the electronics and handiwork needed.

4 Appendix

4.1 A: " absorbtion

For the majority of 3 spectra, the range curve has a near expo-
nential shape. The coulomb forces that constitute the major mech-
anism of energy loss for both # and heavy charged particles are
present for either positive or negative charges. The impulse and
energy transfer for particles of equal mass are almost the same,
therefore the positron tracks in an absorber are similar to those
of electrons and their specific energy loss and range are about the
same for equal initial energies. The distribution of the end point of
the positron trajectories determines their contribution to the spa-
tial resolution in a PET detector. This distribution is isotropic thus
1t can be modelled with a one-dimensional function:

Pz)=Ce ™ 4+ (1 -Cle ™ 2>0 (8)

with parameters C, ki, k; that depend on the ( energy spectra
and on the material composing the absorber. So far, they have been
measured only in water; the numerical values are shown in Tab. 3
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18F IIC 130 150

C 0.516 0.488 0.426 0.379
k; (mm~') 37.9 238 202 18.1
kg (mm™*) 3.1 1.8 1.4 0.9

Table 3: Coeflicents of eq. (8) in water.

4.2 B: Photon interaction
4.2.1 Photoelectric absorbtion

In the photoelectric absorbtion process, a photon undergoes an in-
teraction with an atom that results in the emission of an energetic
electron (sometimes called photoelectron) from one of the bound
shells. The photoelectron appears with an energy given by

Ee“ — E'y — Eb (9)

where E,- is the emitted electron energy, E. is the incoming gamma
energy and Fj is the binding energy of the electron in its original
shell. A rough approximation of the probability of photoelectric
absorbtion per atom over all the energy range is given by:

n

3.5
E’Y

T = constant X (10)
where the exponent n varies between 3 and 5 in the region of in-
terest. Since the binding energy is much smaller than the energy
emitted in a et — e~ annihilation its contribution can be neglected,
thus the energy spectra of photoelectrons is just a peak at (almost)
the same energy of the absorbed photon.

4.2.2 Compton Scattering

Compton scattering takes place between the incident photon and
an electron in the absorbing material. It is most often the predom-
inant interaction mechanism for v energies typical of radioisotope
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sources. It is the most dominant interaction mechanism in tissue.
In Compton scattering, the incoming photon is deflected through
an angle from its original direction. The photon transters a portion
of its energy to the recoiling electron (assumed to be initially at
rest), which is then known as a Compton electron. The energies
of the scattered photon hv’' and of the Compton electron FE., are
given by

hv
' = 11
w 1 4+ p(1 — cos®) (1)
E.=hv—h/—Ey~ hv—h/ (12)

where p is the energy of the incoming photon in units of energy of
an electron at rest. The angular distribution of scattered gamma
rays is predicted by the Klein-Nishina formula for the differential
scattering cross section:

do  Zrg 1 + cos ¢
d? 2 [1+ (a1~ cos?)]

(1 —cosd)
% (1 T (1 + cos?)[1 4+ a(l — cos 19)]) (13)

5 (1 + cos? 79) X

where g is the classical electron radius, ¥ is the scattering angle and
« is the fine-structure constant. The energy spectra of the emitted
electron is a continuum (Compton continuum, see fig. 11) with a
peak at its maximum value. This value is a fraction of the energy of
the incoming photon and depends solely on 1t. The maximum can
be straigthforwardly calculated from the above formula for ¥4 = 0.
The angle of electron recoil is forward at ¥ = 0 while the scattered
photon will be aimed straight back. Their energy will be:

hv
1 -2«
hv
hi . —
me 1 o 205
For low-energy photons, when the scattering interaction takes place,

little energy is transferred regardless of the probability of such an in-
teraction. As the energy increases, the fractional transfer increases,

Ee(max) = hv — (]‘4)

(15)
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Figure 11: Compton continuum for a beam of 0.511 MeV ~.

approaching 1.0 for photons at energies above 10 to 20 MeV. For
a monoenergetic gamma beam produced by electron-positron anni-
hilation the maximum F, is about 340 KeV.

4.3 C: Electron interaction

The concept of range in matter is much less defined for electrons
than for heavy charged particles because the electron total path
length is much longer then the penetration distance along the initial
velocity vector. For equivalent kinetic energy, the energy loss of
electrons is much lower than that of heavy charged particles, so their
path lenght is hundreds of times longer. To first approximation, the
product of the range times the density of the absorber is a constant
for different materials for electron of equal initial energy.
The energy collisional loss is given by:

2me* NZ ‘E
dE et N (ln mov —11'12(2[-—@—1——52)

(&) = (1= )
H1- B30 - 1= ) (16)

m0v2
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while the energy radiative loss is:

4
dE. NEZ(Z +1)e (4111 2F 4) 1

_(EE(_)T - 13Tmdct moc? 3

where mg is the electron mass, N is the Avogadro number, v is the
electron speed and 8 = v/c.

5 Acknowledgments

The author is grateful to Ministero della Istruzione, Universita e
Ricerca (MIUR), the University of Pavia and Istituto Nazionale
di Fisica Nucleare for cofinancing the PRIN project n. 2003-02-
9728. He also acknowledges the members of the group: S.P. Ratti,
P. Vitulo, M.M. Necchi, D. Pagano and C. Viviani for usefull and

critical discussions.

References

1] E.A. Babichev et al.: Nucl. Instr. and Meth. A419 (1998)
290.

[2] M. Lohmann et al.: Nucl. Instr. Meth. A419 (1998) 276.

3] a- A. Jeavons et al.: Nucl. Instr. Meth. 124 (1975) 491; b- A.
Jeavons et al.: IEEE Trans. Nucl. Sci. NS-46 (1999) 468.

[4] P. Bruyndonckx et al.: Nucl. Instr. Meth. A392 (1997) 407.

[5] A. Brahme et al.: Nucl. Instr. Meth. A454 (2000) 136. NS-
45 (1998) 1225.

6] S. E. Derenzo: in Positron Annihilation Ed. The Japan Insti-
tute of Metals (1979).

7] R.Santonico and R. Cardarelli: Nucl. Instr. Meth. 187 (1981)
377.

18] F. W. K. Firk: Nucl. Instr. Meth. A297 (1990) 532.

9] F. H. Fahey: Radiol. Clin. N. Am. 39 (2001)919.

[10] W. W. Moses, S. E. Derenzo, P. Schlichta: Trans. Nucl. Sci.

(1992) NS-39 (1992) 1190.
[11] M.Abbrescia et al.: Nucl. Instr. Meth A533 (2004) 7.

142



12] D. F. Yu, J. A. Fessler: Nucl. Instr. Meth A488 (2002) 362.

[13] J. A. Sorenson, M. E. Phelps: Physics in nuclear medicine,
Ed. Sanders (1987).

[14] Report 52: Particle counting in radioactivity measurements,
Ed. International Commission on Radiation Units and Mea-

surements (1994).

[15] D.F. Yu, J.A. Fessler: Phys. Med. Biol. 45 (2000) 2043.

[16] J. W. Stayman, J. A. Fessler: IEEE Trans. Med. Imag. 23
(2004) 269.

[17] B. Karuta, R. Lecomte: IEEE Trans. Med. Imag. 11 (1992)
379.

(18] P.R. G. Virador, W. W. Moses, R. H. Huesman: IEEE Trans.
Nucl. Sci. NS-45 (1998) 1225.

[19] J. A. Fessler, W. L. Rogers: IEEE Tr. Im. Proc. 5 (1996)
1346.

20] J. S. Liow, S. C. Strother: Phys. Med. Biol. 38 (1993) 55.

21] R. Yao, J. Siedel, C. A. Johnson, M. E. Daube-Witherspoon,
M. V. Green, R. E. Carson: IEEE Trans. Med. Imag. 19
(2000) 798.

22| National Institute of Standards and Technology. Reference
data: Athoms and molecular data; X-ray and ~-ray data;
Radio dosimetry data (NIST website).

23] D. L. Snyder, M. I. Miller, L. J. Thomas, D. G. Politte: IEEE
Trans. Med. Imag. 6 (1987) 228.

24] J. W. Stayman, J. A. Fessler: IEEE Trans. Med. Imag. 19
(2000) 601.

25] J. W. Stayman, J. A. Fessler: in Proceedings of the 1999
International Meeting on Fully 3D Image Reconstruction In
Radiation Nuclear Medicine (1999).

26] S. E. Derenzo, R. H. Huesman, J. L. Cahoon, A. B. Geyer,
W. W. Moses, D. C. Uber, T. Vuletich and T. F. Budinger:
IEEE Trans. Nucl. Sci. NS-35 (1988) 659.

27| Z. H. Cho, J. Chan, L. Eriksson et al: J. Nucl. Med. 16 (1975)
1174.

28] S. E. Derenzo: IEEE Trans. Nucl. Sci. NS-33 (1986) 565.

29] S. F. Haber, S. E. Derenzo, D. Uber: IEEE Trans Nucl Sci

NS-37 (1990) 1293.

143



[30] C.S. Levin, E. J. Hoffman: Phys. Med. Biol. 44 (1999) 781;

also ret. 7.

131] P. Colombino, B. Fiscella and L. Trossi: Nuovo Cimento 38
(1965) 707.

[32] G. Tarantola et al: J. Nucl. Med. 44 (2003) 756-769

133] M. Yavuz, J. A. Fessler, in: Inform. Proces. Med. Imag. (Ed.
Spinger, 1997) p. 190.

[34] M. E. Casey, E. J. Hoffman: J. Comp. Assisted Tomo. 10
(1986) 845.

135] J. M. Ollinger, J. A. Fessler: IEEE Sig. Proc. Mag. 14 (1997)
43.

[36] E. J. Hoffman, S. C. Huang, M. E. Phelps, D. E. Kuhl: J.
Comp. Assisted Tomo. 5 (1981) 391.

[37] E. U. Mumcuoglu, R. M. Leahy, S. R. Cherry: Phys. Med.
Biol. 41 (1996) 1777.

(38] D. G. Politte, D. L. Snyder: IEEE Trans. Med. Imag. 10
(1991) 82.

139] M. M. Ter-Pogossian, N. A. Mullani, D. C. Ficke et al: J.
Comput. Assist. Tomo. 5 (1981) 227.

[40] M. M. Ter-Pogossian, D. C. Ficke, M. Yamamoto, J. T. Hood:
in Proc. Work. Time-of-Flight Pos. Tom. (1982) p. 37.

[41] R. Gariod, R. Allemand, E. Cormoreche: Proc. Work. Time-
of-Flight Pos. Tom. (1982).

142] N. A. Mullani, J. Gaeta, K. Yerian et al: IEEE Trans. Nucl.
Sci. NS-31 (1984) 609.

[43] C. J. Thompson: IEEE Trans. Nucl. Sci. NS-36 (1989) 1072.

[44] N. Mullani, J. Markham, M. Ter-Pogossian: J. Nucl. Med.
21 (1980) 1095.

[45] N. Mullani, W. Wong, R. Hartz et al: IEEE Trans. Nucl. Sci.
NS-29 (1982) 479.

[46] T. K. Lewellen, R. L. Harrison, A. N. Bice: IEEE Trans.
Nucl. Sci. NS-36 (1989) 1095.

[47) M. Yamamoto, N. Nohara, E. Tanaka, T. Tomitani et al:
IEEE Trans. Nucl. Sci. NS-36 (1989) 998.

48] A. Mallon, P. Grangeat, P. X. Thomas: IEEE Nuclear Science
Symposium Conference Record 92CH3232-6 2 (1992) 988.

144



Volumel-n. 1
4/3/1986

Volumel-n. 2
1/7/1986

Volume II1-n. 1
15/9/1987

Volume lI-n. 2
10/12/1987

Volume IlI - n. 1
6/6/1988

Volume Il -n. 2
4/7/1988

Volume Il - n. 3
15/12/1988

Volume [V -n. 1
6/4/1989

Volume IV -n. 2
15/6/1989

Volume IV -n. 3
15/9/1989

Volume V-n. 1
15/3/1990

Volume V-n. 2
15/6/1990

CINQUANTA ANNI DI INTERAZIONI DEBOLI: DALLA TEORIA DI FERMI
ALLA SCOPERTA DEI BOSONI PESANTI - Marcello Conversi

EFFECTS OF DIOXINS ON NATURE AND SOCIETY - Opening talk, Sergio P. Ratti
DIOXIN IN MISSOURI - Armon F. Yanders
DEMONSTRATION OF INNOVATIVE REMEDIAL ACTION TECHNOLOGIES

pag. 1

pag. 3
pag. 11

AT UNITED STATES MILITARY DIOXIN CONTAMINATED SITES - Terry L. Stoddard pag. 23

TIMES BEACH DIOXIN RESEARCH FACITLY - Robert J. Schreiber

E.P.A. RISK ASSESSMENT OF CHLORINATED DIBENZO-P-DIOXIN AND
DIBENZOFURANS (CCDs/CDFs) - Donald G. Bames, Patricia Roberts

RECENT INTERNATIONAL COOPERATION IN EXCHANGE OF INFORMATION
ON DIOXIN - Donald G. Barnes

CHLORACNE AND THE AGENT ORAGE PROBLEM IN THE U.S.A. - B.Fischmann

CONVEGNO SU "LA CONOSCENZA ATTUALE DELLA INTERAZIONE GRAVITA-
ZIONALE" - MOTIVAZIONI DEL CONVEGNO - Sergio P. Ratti

LA CONOSCENZA ATTUALE DELLA INTERAZIONE GRAVITAZIONALE: UN
PROBLEMA APERTO - Sergio P. Ratti, Roberto Silvotti

SVILUPPI RECENTI SULLA CONOSCENZA DELLA COSTANTE DI GRAVITAZIONE
UNIVERSALE - Anna Grassi, Giuliano Strini

LIMITI SPERIMENTALI SULLA MISURA DELLACCELERAZIONE DI GRAVITA' -
Roberto Cassinis

CONSEGUENZE SPERIMENTALI DELLA IPOTESI DI ESISTENZA DI UNA QUINTA
INTERAZIONE - Fabrizio Massa

VERIFICA DEL PRINCIPIO DI EQUIVALENZA E FORZE TRA PARTICELLE
ELEMENTARI - Bruno Bertotti

TRANSIZIONE LIQUIDO SOLIDO - Mario Tosi
EQUAZIONI DI MAXWELL NEL VUOTO ED ELETTRODINAMICA QUANTISTICA -
Emilio Zavattini

METODI DI DILATAZIONE ANALITICA E RISONANZE IN SISTEMI QUANTISTICI
NON RELATIVISTICI - Fausto Borgonovi

CAMPO ELETTRICO ED EMISSIONI DA CARICHE IN UN MEZZO - Michele Spada
SPETTROSCOPIA VIBRAZIONALE DI SUPERRETICOLI SEMICONDUTTORI -
Luciano Colombo

SOLITONI IN FISICA NUCLEARE - Marco Radici

ASPETTI NON LOCALI DEL COMPORTAMENTO QUANTISTICO - Oreste Nicrosini

CARATTERIZZAZIONE OTTICA IN SITU DI FILMS SOTTILI - Alessandra Piaggi
TRANSIZIONI DI WETTING - Tommaso Bellini
FORZE A TRE CORPI NEI GAS RARI - Silvia Celi

FLLAVOUR PHYSICS - Luciano Maiani

THE STANDARD ELECTROWEAK MODEL: PRESENT EXPERIMENTAL STATUS -
Pierre Darriulat

WHY BE EVEN-HANDED? - Martin M. Block

LA FISICA DEI COLLIDER - Paolo Bagnaia, Fernanda Pastore

SOLAR WIND AND PHYSICS OF THE HELIOSPHERE - Bruno Coppi
THE IGNITOR PROJECT - Bruno Coppi, Francesco Pegoraro

SPETTROSCOPIA ELLISSOMETRICA NEI SOLIDI - Alessandra Piaggi
UNA INTRODUZIONE AL SUPERCONDUCTING SUPERCOLLIDER - R. Diaferia
FENOMENI DI TRASPORTO IN SISTEMI HAMILTONIANI - Fausto Borgonovi

MULTI-BODIED PHASE SPACE - A NEW APPROACH - Martin M. Bloch
SCATTERING BRILLOUIN RISONANTE - Cristina Bosio

METODO DI RINORMALIZZAZIONE PER LO STUDIO DELLA STRUTTURA ELET-
TRONICA DI SUPPERRETICOLI - Saverio Moroni

MECCANISMI DI CONDUCIBILITA' IONICA MEDIATI DA DIFETTI ESTRINSECI -
IL CASO DEL QUARZO - Alberto Paleari

STATISTICHE QUANTISTICHE ED INDISTINGUIBILITA' - Gianluca Introzzi

FISICA DELLE ALTE ENERGIE ALLE KOAN FACTORIES - Renato Diaferia
NEUTRONI FREDDI E NEUTRONI ULTRAFREDDI - Gianluca Raselli
TRANSIZIONI ORDINE-DISORDINE NELLE DISPERSIONI COLLOIDALI -
Paolo Di Trapani

pag. 41

pag. 51
pag. 63
pag. 69
pag. 3

pag. 5

pag. 19
pag- 31
pag. 43
pag. 81

pag. 3

pag. 27

pag. 1
pag. 13

pag. 29
pag. 51
pag. 83
pag. 1

pag. 23
pag. 49
pag. 1

pag. 27
pag. 47

pag. 1
pag. 2
pag. 32
pag. 3
pag. 23
pag. 49

pag. 1
pag. 20

pag. 40

pag.57
pag. 69

pag. 1
pag. 15

pag. 51



Volume VI-n. 1
p.1-11/10/1991

Volume VI-n. 1
p. I - 11710/1991

Volume VII-n. 1
15/3/1992

Volume VII-n. 2
15/10/1992

Volume VIII - n. 1
15/1/1993

Volume VHI - n. 2
15/4/1993

Volume VIII - n. 3
15/6/93

LE UNITA' DI MISURA DELLA RADIOPROTEZIONE - Sergio P. Ratti
LINCIDENTE NUCLEARE DI CHERNOBYL - Giuseppe Belli

NORMATIVA E PRINCIPI DI RADIOPROTEZIONE - Argeo Benco
APPENDICE 1 - Pubblicazioni I.C.R.P. - Argeo Benco

APPENDICE 2a) - 1l regime giuridico dell'impiego pacifico dell'energia nucleare
APPENDICE 2b) - Elenco di provvedimenti di interesse per le attivita di impiego
pacifico dell'energia nucleare e delle radiazioni ionizzanti

APPENDICE 2c¢) - Raccolta di Circolari Ministeriali relative all'utilizzazione
delle sostanze radioattive e delle macchine radiogene

APPENDICE 24d) - Raccolta di Circolari Ministeriali relative al trasporto delle
sostanze radioattive

RADIOATTIVITA' AMBIENTALE E RADIOECOLOGICA - Arrigo Cigna
EFFETTI BIOLOGICI DELLE RADIAZIONI IONIZZANTI - Marco Caprotti

MODELLO PREVISIONALE DELLA CONCENTRAZIONE DI 205y, 134¢5 g 137¢cs
NELLA CATENA ALIMENTARE - Arrigo Cigna

L'AMBIENTE E LA RADIOPROTEZIONE IN REL.LAZIONE AD INCIDENTI NUCLEARI -

Amrigo Cigna
INCIDENTE NUCLEARE "CHERNOBYL" E SUE RIPERCUSSIONI SULLA CATENA
ALIMENTARE - R. Cazzaniga, G. Dominici, A. Malvicini, E. Sangalli

pag. 1

pag. 7

pag. 17
pag. 56
pag. 59
pag. 64
pag. 78
pag. 85

pag. 87
pag. 107

pag.117
pag.131

pag. 157

PRIMA VALUTAZIONE DELLTMPATTO RADIOLOGICO AMBIENTALE NELLA ZONA
DI ISPRA IN RELAZIONE ALLINCIDENTE NUCLEARE DI CHERNOBYL - Argeo Benco pag. 177

APPROCCIO FRATTALE ALLA DESCRIZIONE DELLA RADIOATTIVITA' IN ARIA
IN ITALIA DOPO CHERNOBYL - Gianfausto Salvadori

ELECTRON ENERGY LOSS SPECTROSCOPY - Marco Amiotti

LIVELLI ELETTRONICI PROFONDI IN SEMICONDUTTORI E LORO CARATTE-
RIZZAZIONE - Adele Sassella

LA RICERCA DEL BOSONE DI HIGGS AI FUTURI ACCELERATORI - G.Montagna
SIMMETRIA CHIRALE E TEOREMA DI GOLDBERGER-TREIMAN - Carlo Gobbi

CRESCITA, CARATTERIZZAZIONE ED APPLICAZIONI DElI LANGMUIR-
BLODGETT FILMS - Marco Amiotti

LA CATODOLUMINESCENZA - Vittorio Bellani
CORRELAZIONI ELETTRONICHE IN OSSIDI DI METALLI DI TRANSIZIONE -
Luigi Sangaletti

TEORIA DELLE STRINGHE IN DIMENSIONE NON CRITICA- Alberto Vancheri
ROTTURA ESPLICITA E SPONTANEA DI SIMMETRIE CONTINUE GLOBALI NEL
MODELLO STANDARD - Antonio Defendi

APPLICAZIONI DELLA p*SR NELLA STRUTTURA DELLA MATERIA - P.Carretta
EFFETTI FOTORIFRATTIVI IN CRISTTALLI IONICI - Enrico Giulotto

LUNITA' DELLA SCIENZA. IL. CASO DELILA FISICA, OGGI - G. Salvini
APPLICAZIONI DELLA ptSR NELLA STRUTTURA DELLA MATERIA - P. Carretta

MODELLO A TETRAEDRI PER LA FUNZJONE DIELETTRICA DI SOLIDI AMOREFT -

A. Sassella ‘
INTRODUZIONE ALLE RETI NEURALI - C Macchiavello

RPC: STATUS AND PERSPECTIVES - R. Santonico

PERFORMANCE OF E771 RPC MUON DETECTOR - E. Gorini (E771 Coll.)

THE MUON TRIGGER HODOSCOPE OF THE BEAUTY HADRO-PRODUCTION
EXPERIMENT WA92; PERFORMANCES AND PRELIMINARY RESULTS ON
BEUTY MUONIC DECAYS - G. Martellotti, D. Orestano (Beatrice Coll.)

THE RPC TRIGGER SYSTEM FOR THE L3 FORWARD BACKWARD MUON
DETECTOR - S. Patricelli

RESULTS FROM THE RDS EXPERIMENT AT CERN - A. Di Ciaccio (RD5 Coll.)

LEVEL 1 MUON TRIGGER IN THE ATLAS EXPERIMENT AT THE LARGE HADRON

COLLIDER - A. Nisati (ATLAS Coll.)

RPC BASED MUON TRIGGER FOR THE CMS DETECTOR

AT LHC - G. Wrochna (CMS Coll.)

AN RPC MUON SYSTEM FOR SDC AT SSCL - G. Introzzi (Pavia SDC Group)

A MUON TRIGGER FOR LHB - R. Santacesaria

MINI: A HORIZONTAL MUON TELESCOPE IMPLEMENTED WITH RESISTIVE
PLATE CHAMBERS - G. laselli

T&T: A NEW DESIGN FOR A FRONT-END TIME DIGITIZER ELECTRONICS
M. Ambrosio, G.C. Barbarino, A. Lauro, G. Osteria, G. Agnetta, O. Catalano,

L. Scarsi, A. Lanza, G. Liguori, P. Torre

pag. 201

pag. 1
pag. 35

pag. 57
pag. 81

pag. 1
pag.35
pag. 63
pag. 1

pag. 25

pag. 39
pag. 75

pag. 1
pag. 37

pag. 73
pag. 93

pag. 1
pag. 13
pag. 29

pag. 37
pag. 45

pag. 61
pag. 73

pag. 83
pag. 103

pag. 115

pag. 123



Volume IX - n. 1
15/4/1994

Volume IX -n. 2
15/11/94

Volume X - n. 1
15/3/95

Volume X - n. 2
15/6/95

Volume X -n. 3
15/12/95

Volume XI-n. 1
15/6/96

ATMOSPHERIC AND ACCELERATOR NEUTRINO PHYSICS WITH RPCS IN

THE SOUDAN 2 CAVERN - D.J.A. Cockerill

STUDY OF THE CHARACTERISTICS OF RESISTIVE PLATE CHAMBERS IN THE
RDS EXPERIMENT - L. Pontecorvo (RDS5 Coll.)

OPERATION OF RESISTIVE PLATE CHAMBERS WITH PURE CEF;BR - R. Cardarelli

WLDC: A DRIFT CHAMBER WITH A PAD RPC FOR MUON DETECTION AT LHC
H. Faissner, Th. Moers, R. Priem, B. Razen, D. Rein, H. Reithler, D. Samm,

R. Schleichert, H. Schwarthoff, H. Tuchscherer, H. Wagner

GLASS ELECTRODE SPARK COUNTER - G. Bencivenni, G. Felici, E. Iacuessa,

C. Gustavino, M. D'Incecco

RPC READOUT FOR PARTICLE ASTROPHYSICS - M. Bonori, U. Contino, F. Massa
RESULTS OF TESTS OF PROTOTYPE RESISTIVE PLATE CHAMBERS - 1. Crotty,
J. Lamas Valverde, G. Laurenti, M.C.S. Williams, A. Zichichi

GLASS ELECTRODES RPC: PERFORMANCE AND WORKING MODEL - M. Bonori,
U. Contino, F. Massa

FAST PARALLEL RPC READOUT SYSTEM - A. Lanza, G. Liguon, P. Torre,

M. Ambrosio, G.C. Barbarino, M. Iacovacci, A. Lauro, G. Osteria, G. Agnetti,

O. Catalano, L. Scarsi

DATA ACQUISITION SYSTEMS DEVELOPED AT CAEN - F. Catarsi, C. Landi,

G. Franchi, M. Lippi

RETICOLI DISORDINATI: IL. MODELLO DI ANDERSON - R. Farchioni

BREVE INTRODUZIONE ALLA TEORIA QUANTISTICA DELLA STIMA - M. Paris
SUSY - M. Cacciari | |

MASSE DEL QUARK TOP E DEL BOSONE DI HIGGS NEL MODELLO STANDARD -
F. Piccinini

DIELETTROFORESI: LIEVITAZIONE A CONTROLLO REAZIONATO - L. Laboranti

PROPRIETA FSICHE DI CLUSTER METALLICI - V. Bellani

APPLICAZIONI DI RETI NEURALI ALLA FISICA DELLE ALTE ENERGIE - P. Vitulo
CRITTOGRAFIA QUANTISTICA - C. Macchiavello

IL "PARADOSSO" DEI GEMELLI - M. Cacciari

TRANSIZIONI DI FASE NEL PRIMO UNIVERSO - S. Rolli

SULLA STABILITA DINAMICA DELLA BICICLETTA - M. Paris

FISICA DELLE INTERAZIONI FONDAMENTALI CON NEUTRONI FREDDI

A. Guglielmi

EFFETTO DELLA DISPERSIONE SPAZIALE SULL'ASSORBIMENTOQO ECCITONICO
DEI CRISTALLI - G. Panzarini

IL CAMPO ELETTRICO GENERATO DA UNA CARICA PUNTIFORME IN
MOVIMENTO IN UN MEZZ0 ISOTROPO - U. Bellotti

SPETTROSCOPIA VIBRAZIONALE A RISOLUZIONE TEMPORALE - P. Calvi
IL CONTROLILO DEI SISTEMI CAOTICI - M. Maris

ASPETTI SPERIMENTALI DELLA FISICA DEI MESONI B A LEP - L. Viola
AN INTRODUCTION TO THE PERTURBATIVE QCD POMERON

AND TO JET PHYSICS AT LARGE RAPIDITIES - V. Del Duca

DIFFUSIONE DI LUCE DA SUPERFICI RUGOSE - M. Patrini
PRINCIPI E APPLICAZIONI DELLE SPETTROSCOPIE A
DIFFRAZIONE DI ELETTRONI - L. Rossi

IONI DI TERRE RARE IN SEMICONDUTTORI - E. Pavarini
PERDITA DI ENERGIA PER IONIZZAZIONE - P. Montagna

TOPICS IN RESISTIVE PLATE CHAMBERS - R. Santonico

THE AVALANCHE TO STREAMER TRANSITION IN RPC'S - R. Cardarelli,

R. Santonico, V. Makeev '

A MODEL OF AVALANCHE TO STREAMER TRANSITION IN PPC/RPC
DETECTORS - P. Fonte

NEW DEVELOPMENTS OF RPC: SECONDARY ELECTRON EMISSION

AND MICROSTRIP READOUT - E. Cerron Zeballos, I. Crotty, P. Fonte,

D. Hatzifotiadou, J. Lamas Valverde, V. Peskov, M.C.S. Williams, A. Zichichi

THE RPC SYSTEM FOR THE CMS EXPERIMENT AT LHC- G. Wrochna

RPC TRIGGER DESIGN FOR THE FUTURE EXPERIMENT CMS - G. De Robertis,

M. Gorski, M. Konecki, J. Krolikowski, .M. Kudla, M. Lewandowski, F. Loddo,
K. Pozniak, A. Ranieri, G. Wrochna

pag. 133

pag. 145
pag. 159

pag. 167

pag. 181
pag. 193

pag. 199

pag. 207

pag. 219

pag. 225

pag. 1
pag. 23
pag. 36

pag. 79
pag. 97

pag. 1

pag. 18
pag. 47
pag. 64
pag. 77

pag. 102
pag. 1
pag. 79
pag. 105

pag. 1

pag. 25
pag. 59
pag. 91
pag. 1

pag. 25
pag. 49
pag. 85
pag. 1

pag. 11
pag. 25

pag. 45
pag. 63

pag. 79

THE LLEVEL-1 MUON TRIGGER ALGORITHM OF THE ATLAS EXPERIMENT - A. Nisati pag. 91
RESISTIVE PLATE COUNTERS FOR THE BELLE DETECTOR AT KEKB - N. Morgan pag. 101

PRELIMINARY DESIGN OF THE BABAR DETECTOR FOR MUONS AND



Volume X1 -n. 2
15/7/96

Volume XII - n. |

NEUTRAL HADRONS AT PEP II - N. Cavallo pag
THE RPC FORWARD-BACKWARD TRIGGER SYSTEM

OF THE L3 EXPERIMENT - P. Paolucci pag
PERFORMANCES OF THE RPC TRIGGER SYSTEM IN THE L3
EXPERIMENT - R. De Asmundis pag

USE OF RPC IN THE COVER PLASTEX EXPERIMENT - C. Agnetta, M. Ambrosio,
C. Aramo, G.C. Barbarino, B. Biondo, O. Catalano, L. Colesanti, A. Erlykin,

A. Lauro, A. Mangano pag
A TEST OF THE ATLAS FIRST LEVEL MUON TRIGGER LOGIC - S. Veneziano pag
CAEN ELECTRONICS FOR RESISTIVE PLATE CHAMBERS - A. Bigongiarni,

G. Franchi, G. Grieco, C. Landi, M. Lippi, F. Vivaldi pag.
TESTS OF RPC PROTOTYPES IN RD5 DURING 1994 RUNS - H. Czyrkowski,

W. Dominik, J. Krolikowski, M. Lewandowski, Z. Mazur, M. Gorski, M. Szeptycka pag.

A TEST ON RESISTIVE PLATE CHAMBERS WITH NON OZONE DEPLETING FREON
- M. Abbrescia, A. Colaleo, G. Iaselli, M. Maggi, B. Marangelli, S. Natali, S. Nuzzo,

A. Ranieri, F. Romano, G. Gianini, G. Liguori, S.P. Ratti, P. Vitulo, M. Gorski pag
STUDY OF ELECTRODE SURFACE TREATMENT EFFECTS ON BAKELITE RPC'S
PERFORMANCES - M. Abbrescia, A. Colaleo, G. laselli, M. Maggi, B. Marangelli,

S. Natali, S. Nuzzo, A. Ranieri, F. Romano, V. Arena, G. Boca, G. Bonomi,

G. Gianini, G. Liguori, M. Marchesotti, M. Merlo, C. Riccardi, L. Viola, P. Vitulo pag
RESISTIVE PLATE CHAMBER PERFORMANCES AT GREAT ALTITUDES -

M. Abbrescia, E. Bisceglie, G. Iaselli, S. Natali, F. Romano pag
EFFECTS INDUCED BY DIFFERENT KINDS OF FREON ON THE RPC CHARGE
ACCUMULATION - V. Arena, G. Boca, G. Bonomi, G. Gianini, G. Liguori,

C. Riccardi, L. Viola, P. Vitulo pag.
TEST OF LOW GAS GAIN RPCs WITH OZONE AND NON OZONE DEPLETING

GAS MIXTURES - A. Di Ciaccio pag.
POSITION MEASUREMENT IN RPCs BY TOF - G.H. Grayer pag.
POSSIBLE USE OF RPCs IN THE MINOS EXPERIMENT - G.H. Grayer pag.
RESISTIVITY MEASUREMENTS ON RPC MATERIALS - G.H. Grayer pag.

WHAT HAVE WE LEARNED FROM A COMPARISON BETWEEN THE WIDE GAP

AND NARROW GAP RESISTIVE PLATE CHAMBER - E. Cerron Zeballos, 1. Crotty,

D. Hatzifotiadou, J. Lamas Valverde, S. Neupane, V. Peskov, S. Singh,

M.C.S. Williams, A. Zichichi pag
LATEST RESULTS ON THE PERFORMANCE OF THE WIDE GAP RPC -

E. Cerron Zeballos, 1. Crotty, D. Hatzifotiadou, J. Lamas Valverde, S. Neupane,

V. Peskov, S. Singh, M.C.S. Williams, A. Zichichi pag.

DEVELOPMENT OF RESISTIVE PLATE COUNTERS FOR THE PIERRE AUGER

COSMIC RAY OBSERVATORY - P.O. Mazur pag
THIN GAP CHAMBER: PERFORMANCE AS A TIME AND POSITION MEASURING
DEVICE - Y. Ari, E. Barberio, T. Emura, J. Goldberg, K. Homma, M. Ikeno, M. Imori,

K. Ishii, H. Ishiwaki, T. Kawamoto, T. Kobayashi, D. Lelloch, L. Levinson, N. Lupu,

G. Mikenberg, M. Miyake, K. Nagai, T. Nagano, I. Nakamura, M. Nomachi,

M. Nozaki, S. Odaka, T.K. Ohska, O. Sasaki, H. Shirasu, H. Takeda, T. Takeshida,

S. Tanaka, C. Yokoyama pag
RECENT STUDIES OF PARALLEL PLATE CHAMBERS FOR LHC EXPERIMENTS -

A. Arefiev, G.L. Bencze, A. Bizzeti, E. Choumilov, C. Civinini, G. Dajké,

R. D'Alessandro, M.1. Josa, A. Malinin, M. Meschini, J. Molndr, V. Pojidaev,

J.M. Salicio, F. Siklér, G. Vesztergombi pag
ABS PLASTIC RPCs - E. Ables, R. Bionta, H. Olson, L. Ott, E. Parker,

D. Wright, C. Wuest pag
PERFORMANCES AND SIMULATION OF GLASS SPARK CHAMBERS - M. De Deo,

M. D'Incecco, C. Gustavino, G. Bencivenni, G. Felici pag
R&D OF GLASS RPCs FOR THE BELLE DETECTOR - Y. Teramoto, A. Yamaguchi

and Y. Hoshi pag

SOME RESULTS OF RESISTIVE PLATE COUNTER AND THE PROPOSAL TO
TAU-CHARM FACTORY OF BEUING - J.G. Bian, Y.B. Chen, H.G. Han, K.L.. He,
Y.Y. Jiang, X.L. Wang, Y.G. Xie, Y. Xu, C.S. Yang, G.A. Yang, Y. Yang, Z.T. Yu,

J.Q. Zhang, Q.J. Zhang pag.
THE FOCUS EXPERIMENT RPC MUON IDENTIFICATION ARRAY - P.D. Sheldon pag
ANTIGRAVITA E VIOLAZIONE DI CP - A. Filippi pag.
MICROCAVITA A SEMICONDUTTORE - R. Seno pag
BANDE FOTONICHE E LA LOCALIZZAZIONE DELLA LUCE - R. Farchioni pag
CORRELAZIONE DIPOLARE IN CATENE POLIMERICHE

DI TIPO VINILICO - P. Montagna pag
IL LASER AD ELETTRONI LIBERI E LE SUE APPLICAZIONI

NELLA FISICA DELLO STATO SOLIDO - S. Bocelli pag

IL CONTENUTO DI STRANEZZA DEL NUCLEONE - A. Filippi pag.

. 115

. 129

. 139

. 157
177

187

197

217

. 229

. 245

255

263
273
279
285

. 295

317

. 331

. 349

. 359
. 373
. 387

. 401

419

. 437

.19

. 59

. 83

.99

1



15/6/97

Volume XIII -n. 1

15/4/98

Volume XIII - n. 2

15/5/98

Volume XIV -n. 1

15/5/99

Volume XV -n. 1

15/1000

Volume XVI-n. 1

1503/01

Volume XVI-n. 2

25/07/01

Yolume XVII-n. 1

15/12/02

Volume XVIII-n. 1

15/03/03

Volume XVHI - n. 2

15/03/03

Volume XIX -n. 1

15/12/04

Volume XX -n.1

15/04/05

Volume XX -n. 2

15/06/05

Volume XX -n. 3

15/09/05

SEZIONE D'URTO DI BREMSSTRAHLUNG - B. Pasquini

TECNICHE DI SVILUPPO IN I/N PER SISTEMI

ELETTRONICI FORTEMENTE CORRELATI - E. Pavarini

GREGOR WENTZEL E 1 CAMMINI DI FEYNMAN - E. Lunati

LA MICROSCOPIA A SCANSIONE A EFFETTO TUNNEL - P. Tognini

1 BUCHI NERI: OSSERVAZIONE NEI SISTEMI STELLARI BINARI - G. Bonomi
SPETTROMETRIA DI MASSA A IONI SECONDARI - R. Rolli

FUNZIONI DI STRUTTURA IN ELETTRODINAMICA QUANTISTICA -E. POll
CALORIMETRIA CON HBRE AL QUARZO - N. Moggi

LA FRIZIONE DINAMICA IN SCENARI DI INTERESSE ASTROFISICO - A. Pallavicini

IV International Workshop on : RESISTIVE PLATE CHAMBERS AND
RELATED DETECTORS - Sergio P. Ratti, Riccardo De Asmundis

CORRELAZIONI NELLA PRODUZIONE MULTIPLA DI PARTICELLE

A s=630E 1800 GeV - Niccold Moggi

FUNZIONI DI STRUTTURA IN QCD PERTURBATIVA - Fabrizio Gangemi

1 BUCHI NERI: OSSERVAZIONE NEI SISTEMI STELLARI BINARI - G. Bonomi
QUANTIZZAZIONE BRS DELLE TEORIE DI GAUGE - Andrea Pallavicini

CP VIOLATION IN THE Bo SECTOR ~ Amedeo Perazzo

PROVE SPERIMENTALI DELLA QUANTIZZAZIONE DELLA CARICA
FLETTRICA - D. lannuzzi

SURVIVAL PROBABILITY OF LARGE RAPIDITY GAPS IN Pp

COLLISION — MM. Block, F. Halzen |
SPIN SUSCEPTIBILITY AND DIAMAGNETIC SUSCEPTIBILITY AT THE
SUPERCONDUCTING TRANSITION. EFFECTS OF MAGNETIC FIELD AND
DOPING-DEPENDENCE IN YBCO COMPOUNDS - A. Rigamonti, P. Tedesco
RECENTI SVILUPPI SULLA REGOLA DI SOMMA

DI COULOMB NEI NUCLEI - A. Meucci

MAGNETIC CORRELATIONS AND SPIN DYNAMICS IN PURE

AND DOPED HALDANE CHAINS: Y NMR IN Y, yCayBaNi,..Mg,Os — F. Tedoldi
A FACILITY FOR THE STUDY OF PARTICLE-INDUCED

INFRARED EMISSION IN NOBLE GASES - D. Iannuzzi

PARTICLE INDUCED INFRARED EMISSION IN GASES, LIQUIDS,
AND CRYSTALS - D. lannuzzi

pag. 1

pag. 93

pag. 1

NONADIABATIC SUPERCONDUCTIVITY: FROM THEORY TO MATERIALS - P. Paci pag. 1

'FLUCTUATING DIAMAGNETISM AND Y NMR QUANTITIES FROM THE

UNDERDOPED REGIME IN YBCO SUPERCONDUCTORS - P. Tedesco
RELATIVISTIC MEAN HELD THEORY OF NUCLEAR STRUCTURE - A. Meucci

INTRODUZIONE PROPEDEUTICA Al FRATTALI IN FISICA (ed altro) — S.P. Ratti
A FEASIBILITY STUDY FOR A MEASUREMENT OF THE DYNAMICAL
CASIMIR EFFECT - C. Braggio

INTRODUZIONE PROPEDEUTICA Al FRATTALI IN FISICA (ed altro) - S.P. Ratti
(Edizione provvisoria)

THE RPC DETECTORS AND THE MUON SYSTEM FOR THE C.M.S. - G. Bruno
EXPERIMENT AT L.H.C.

NONCUMMUTATIVE SUPERSYW[ETRICIINTEGRABIE MODEL -L..Tamassia
AND STRING THEORY

pag. 1

pag- 1





