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Introduction

Quantum field theory, i.e. quantum mechanics with the basic observables
living at spacetime points, is the principle underlying our current understanding
of natural phenomena. The incredibly successful Standard Model explains all
the forces of nature, except gravity, in terms of local symmetry principles.

At the energies we are currently able to test, gravity is well described by
general relativity. However, it is expected that at energies of the order of
the Planck mass Mp ~ 10 GeV, a quantum description of gravity will be
necessary. The union of gravity with quantum field theory leads to a nonrenor-
malizable theory. History of physics suggests that this should be interpreted as
a sign that new physics will appear at higher energies, comparing for instance
to the Fermi theory case.

A natural way to modify quantum mechanics to describe a “quantum space-
time” is to generalize Heisenberg commutation relations to let the space coor-
dinates be noncommuting. In a field theory setting, in principle one could
include time in noncommutativity and consider a quantum spacetime where

[X*, X¥] = 6 (X)

This can be realized in a functional formulation by deforming the algebra
of functions on spacetime, replacing the ordinary, commutative product with
a noncommutative one that, when applied to coordinates themselves, gives
[z, z¥], = ¥ % 2¥ — z¥ * z# = 10*Y. The simplest case, with a constant
6*v, is related to spacetime translation invariance. The corresponding (Moyal)
product can be uniquely identified by requiring that the deformed algebra of
functions remains associative.

- When a field theory is deformed by replacing ordinary products with Moyal
products in the action, vertices in the Feynman rules are multiplied by a phase
factor with a dependence on the momenta, that generically acts as a regulator.
For this reason, spacetime noncommutativity was first introduced with the hope
that it might reduce the degree of divergence of a given theory [1]. However,
since the contributions from a certain diagram also include the case where the
phase factor does not depend on loop momenta, but only on external momenta,
this does not work [2].

At the moment, we only know one way to consistently cut off the diver-
gences appearing in a quantum field theory of gravity. This is string theory
3, 4], where pointlike interactions are replaced by splitting and joining of one-
dimensional objects, so that the interaction itself does not happen at a certain
point in spacetime but is described by a smooth two-dimensional surface.

String theory provides a consistent quantum theory of gravity. The number
of spacetime dimensions is fixed to ten, the theory is consistent only in the



presence of supersymmetry, relating bosonic and fermionic degrees of freedom,
and leads to gauge groups that include the Standard Model one. String theories
are unique in the sense that there are no free parameters and no freedom in
choosing gauge groups. There is more than one possible string theory (actually
five), but they happen to be all related to each other by dualities. Therefore,
a unique underlying theory is expected to exist, from which the various string
theories can be obtained as limits in a certain space of parameters.

It is striking that the somehow natural proposal for a quantum spacetime
where Heseinberg commutation relations are generalized to include a nontrivial
coordinate algebra can be obtained from string theory. The first works in this
direction showed that noncommutative tori are solutions to the problem of
compactifying M(atrix) theory [5]. Noncommutative field theories were shown
to emerge as low energy limits of open string dynamics in the presence of
a constant Neveu-Schwarz Neveu-Schwarz (NS-NS) background and D-branes
(i.e. p-dimensional manifolds where open string ends are attached) [6, 7]. Since
the background selects preferred directions in spacetime, the resulting effective
theory breaks Lorentz invariance [8]. Therefore, noncommutative field theory
must not be thought of as a fundamental theory, but as an effective description
to be used when certain backgrounds are present.

The discovery that noncommutative geometry is somehow embedded in
string theory induced a growing interest in the field. Various aspects of non-
commutative field theory, such as renormalization properties [9, 10|, solitons
(see for instance the lectures [11, 12, 13]) and instantons [14] have been investi-
gated. Furthermore, it was shown that when time is involved in noncommuta-
tivity the resulting field theories display awkward features, such as acausality
[15] and nonunitarity [16], that spoil the consistency of the theory. However, it
was also shown that these ill-defined noncommutative field theories cannot be
obtained as a low energy limit of string theory [16]. String corrections conspire
to cancel out the inconsistencies [15, 17].

Applications that are not directly related to string theory have been con-
sidered, for instance a model to describe the quantum Hall effect was proposed
in [18], based on noncommutative Chern-Simons theory. Moreover, a mech-
anism to drive inflation without an inflaton field was studied in [19], based
on noncommutativity of spacetime. Particle physics phenomenology based on
a noncommutative version of the Standard Model has been studied [20] and
possible experimental tests have been proposed [21]. In these applications also
noncommutative deformations that have not yet been shown to arise from string
theory have been considered [22]. A natural question would be at which energy
one expects to observe effects of noncommutativity. If one considers this as an
effective description in the presence of a background, the energy is related to
the background scale, and therefore cannot be determined a priori.

As 1 said, string theory is consistent only in the presence of supersym-
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metry. Supersymmetric theories are better described in superspace formalism
23, 24, 25], where spacetime is enlarged by adding fermionic coordinates. Su-
perspace geometry is not flat, torsion is present. Since noncommutative ge-
ometry arises in a string theory context and strings require supersymmetry, it
is compelling to study the possible deformations of supersymmetric theories.
The natural way to do that is to investigate the possible consistent deforma-
tions of superspace. This I did in my first paper [26], in collaboration with D.
Klemm and S. Penati. We found that consistent deformations of superspace
are possible in both Minkowski and Euclidean signatures in four dimensions. In
the Euclidean case more general structures are allowed because of the different
spinor reality conditions.

After the appearance of my paper [26], deformed superspaces were found
to emerge in superstring theory [27, 28, 29]. However, to see this effect, a par-
ticular formulation of superstring theory has to be considered, where all the
symmetries of the theory are manifest. This superPoincaré covariant formu-
lation, found in 2000 by Berkovits [30], is still “work in progress”. However,
it has already proven to be superior in handling certain string backgrounds
(Ramond-Ramond), that lead to the superspace deformations I found, and to
prove general theorems regarding string amplitudes, like for instance a theorem
stating the “finiteness” of perturbative string theory [31]. I've been studying
this formalism for the superstring and contributed, in [32], written together
with P.A. Grassi, by giving an iterative procedure to simplify the computation
of superstring vertex operators, that are the main ingredient for the evaluation
of superstring amplitudes. Some applications of our analysis are also discussed
in the paper. For instance, the vertices associated to a R-R field stength with a
linear dependence on the bosonic coordinates have been computed. These play
a role in the study of superspace deformation with a Lie-algebraic structure
such that bosonic coordinates of superspace are obtained as the anticommuta-
tor of the fermionic ones. This can be interpreted by saying that spacetime has
a fermionic substructure [33].

Going back to noncommutative field theory, a puzzling aspect is that the
noncommutative generalization of a given ordinary theory is not unique. A
selection principle can be based on trying to preserve the nice properties of a
model in its noncommutative deformation. The symmetry structure of a the-
ory is its most important characteristic and actually defines the theory when
the field content is given. Therefore, preserving the symmetry structure of a
theory should be the first criterium to consider when constructing its defor-
mation. This is also the guiding principle we used in studying deformations of
supersymmetric theories in [26].

A very special case is given by systems endowed with an infinite number
of local conserved charges. These systems, known as integrable by analogy
to the case with a finite number of degrees of freedom, display very special
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features. The presence of such a strong symmetry structure underlying the
system puts constraints on the dynamics, for instance causing the S-matrix to
be factorized and preventing particle production processes to occur. Moreover,
integrable systems usually display localized classical solutions, known as soli-
tons, that do not change shape or velocity after collisions. Therefore, when
constructing the noncommutative generalization of an integrable system, one
would like to preserve both the symmetry structure underlying the system and
the consequences that this has in ordinary geometry. The two-dimensional
case is particularly problematic in noncommutative field theory, because time
must be necessarily involved in noncommutativity and thus it is expected that
acausality and nonunitarity will spoil the consistency of the theory. One may
hope that integrability can cure these inconsistencies.

I studied the problem of constructing the generalization of two-dimensional
integrable systems by focusing on a very special example, the sine-Gordon
theory, describing the dynamics of a scalar field governed by an oscillating
potential. Integrability is a property of the equations of motion and in most
cases an action generating them is not known. The sine-Gordon model is one
of the cases where an action is also known. Therefore it is possible to move on
to a quantum description of the model.

The project about the noncommutative sine-Gordon was started by M.T.
Grisaru and S. Penati in [34], where they constructed a noncommutative version
of the sine-Gordon system by making use of a bidifferential calculus approach,
so that it was guaranteed that the system possessed an infinite number of
conserved currents. In the resulting noncommutative model the dynamics of
a single, scalar field is described by two equations. The second equations has
the form of a conservation law and becomes trivial in the noncommutative
limit. This pattern is somehow unavoidable, since it is related to the necessary
extension of SU(2) to U(2) in noncommutative geometry [35].

Because of the unusual structure of the equations, in [34] an action for the
model was not found. This was the first goal of my paper [36], written in
collaboration with M.T. Grisaru, L. Mazzanti and S. Penati. There we found
an action for the model and studied its tree-level scattering amplitudes. We
discovered that they are plagued by acausality and that particle production
occurs. Therefore this model had to be discarded and a different one had to be
constructed.

In [37], in collaboration with O. Lechtenfeld, L. Mazzanti, S. Penati and
A.D. Popov, we proposed another model obtained by a two-step reduction from
selfdual Yang-Mills theory, that proved to possess a well-defined, causal and
factorized S-matrix. Moreover, soliton solutions of this model were constructed.

The two different noncommutative versions of the sine-Gordon model I
studied differ in the generalization of the oscillating interaction term. They
can both be obtained by dimensional reduction from noncommutative selfd-

viii



ual Yang-Mills equations, with a different parametrization of the gauge group.
The second model is obtained by reducing U(2) to its U(1) x U(1) subgroup,
which seems the most natural choice and indeed leads to a successful integrable
theory.

This thesis contains four chapters. In the first one, I will give an introduc-
tion to Moyal deformation of bosonic spacetime. I will review the main results
in noncommutative field theory and in particular I will discuss the problems
arising when time is involved in noncommutativity. I will summarize Kontse-
vich results about coordinate-dependent noncommutativity. I will then move
on to supersymmetric theories, discuss the results I obtained in [26] concerning
superspace non(anti)commutative deformations in four dimensions and their
relation with following works. In the rest of the chapter I will review the string
theory results concerning the low energy description of D-brane dynamics in
terms of non(anti)commutative field theory. In particular I will consider the
bosonic, RNS, GS and NV = 2 strings in the presence of constant NS-NS back-
grounds, the covariant superstring compactified on a Calabi-Yau three-fold in
the presence of a R-R selfdual field strength and the generalization to the un-
compactified case. Finally, I will discuss the generalization to nonconstant
NS-NS backgrounds, leading to Kontsevich deformations, and I will speculate
about a possible similar analysis of nonconstant R-R backgrounds.

In the second chapter, I will first give an introduction to selected topics
concerning two-dimensional integrable systems, such as their derivation from
zero curvature conditions for a bidifferential calculus, the possibility of obtain-
ing them as dimensional reductions from selfdual Yang-Mills equations, the
factorization of the S-matrix and the presence of solitons solutions. I will only
consider the sine-Gordon model as an example. Then I will introduce the
first attempt to construct an integrable noncommutative version of the sine-
Gordon model. I will report my results in [36], concerning the construction
of an action for the model and the computation of tree-level scattering ampli-
tudes, that proved to be nonfactorized and acausal. Finally, I will discuss the
results I obtained in [37], regarding the construction of a different noncommu-
tative generalization of the sine-Gordon model that proved to possess all the
nice properties one expects from a two-dimensional integrable theory, such as
factorization of the S-matrix.

In the third chapter, I will first review the pure spinor approach to super-
string theory. In particular, I will focus on the construction of open and closed
superstring vertex operators in this formalism. I will then present the results
I obtained in [32], where I constructed and iterative procedure to compute the
vertices. I will then discuss an application of this analysis, concerning the com-
putation of the vertex operators for nonconstant R-R field strength, that are
expected to be related to coordinate-dependent superspace deformations. In



particular, I will show how to compute vertices for a R-R field strength that
is linear in the bosonic spacetime coordinates and is supposed to be associated
to a Lie algebraic superspace deformation providing a fermionic substructure
for bosonic coordinates.

In fourth chapter 1 will summarize my results and discuss open problems
and possible applications.



Chapter 1

An introduction to
non(anti)commutative
geometry and superstring
theory

1.1 A brief introduction to noncommutative and
non(anti)commutative field theory

1.1.1 The Moyal product

Weyl transform definition

Noncommutative geometry deals with manifolds whose coordinates do not com-
mute. This kind of manifold appeared in physics much before noncommutative
geometry itself was born as a branch of mathematics [38]. A well-known ex-
ample is quantum phase space. This is a manifold described by 2n operator
coordinates Xi,...,Xn,P1,...,Py, satisfying nontrivial commutation relations

%,%] = [, 5] = (L)

It is expected that the geometric nature of spacetime will be modified at very
short distances. The physical idea underlying modern noncommutative geome-
try is that a quantum spacetime will be uncovered then, where the usual trivial



commutation relations among coordinates are no longer valid and noncommu-
tativity emerges as

i, %] = i (%) 12

with 0¥ = —@Y#, In the limit 0*¥ — 0 ordinary commutative geometry must
be recovered. Coordinate algebra (1.2) gives rise to the spacetime uncertainty
relations

AXFAXY > %wm (1.3)

In (1.2) the possibility is left open that time may be involved in noncommuta-
tivity. In this case (1.2) would not be simply a generalization of the quantum
mechanical commutation relations (1.1) and it is somehow expected that it may
clash with quantum mechanics. For a while I will not worry about this, I will
reconsider the case of noncommuting time later on.

The connection between noncommutative geometry and quantum mechan-
ics is easily seen when the latter is discussed in the Weyl formalism. In this
formalism an explicit map between functions f(z,p) of the phase space vari-
ables x, p and corresponding operators Of (X, P) is constructed, where X, P
are noncommuting operators corresponding to classical variables z, p.

[ will briefly discuss this formalism, in the case of two variables z!, z2, with

corresponding operators satisfying [f( 1 X 2] = 1% with constant 6. After this

discussion the natural embedding of noncommutative geometry in quantum
mechanics will be clear to the reader [13].

On “phase space” described by coordinates x1, x5 let us consider a function
f(z',z%). Given its Fourier transform

f(al,az) — /d2£c ei(a1m1+a2x2) f(xl,mZ) (1'4)

we can define an operator O (X1, X2) as follows

04 (X1, X2) = [ P U, az) flon, ) (1.5)

(2'l'r)2

where

Ula,ag) = e~ darX +aaX?) (1.6)

Making use of Baker-Campbell-Hausdorff formula [39] we find

U(en, a)U (B, o) = e 3(21P3=02B007 7 () 4 By, vy + o) (1.7)

The map f — O s defines the Weyl-Moyal correspondence between functions
on phase space and operators.



Now we would like to determine which function corresponds to the opera-
tor O;0,. We know that in general 004 # O40y, so we expect some non-
commutative deformation of the ordinary product to arise by the Weyl-Moyal
correspondence. .

ofég - (27104 / o d*B U(er, a2)U (B, Ba) f(on, 02)(Br, 2) =

/dza d2ﬂ Ulay + Br,a2 + Ba)e™ % (c1B2—02B1)0"?,

-f(a1,22)3(B1, Be) - (1.8)

By making the change of variables v; = a; + 641, 61 = %(011 —B1), Yo = ag+ Ba,
52 = %_((12 - ﬁg) we obtain /

27r)4

050, = 27r)4 /d27d25 U(m,yz)e® (7162-—617:)1' (71 +, 5 2 -+ 62)
3 (3 -6, 2 - 6) (1.9)
Let us define Moyal product between two functions f and g in R*" as
(f * 9) (z) = €3°° %% f(2)g(a') | amar (1.10)
In our simple two-dimensional case it becomes
(f * 9)(z) = 30" 218=8%) (1) (2 ) poor (1.11)

In momentum space we can obtain the following formula for the Fourier trans-
form of f *gq

f*g(’h,vz)- Gy 5 [ Poetombmi By, 2 +52)( ~81, 2 —82)

(1.12)
From this and (1.9) it is clear that
n A 1 | — a
OfOQ = (271')2 /d2’)’ U(71772)f * g(’yla'YZ) — Of*g (113)

So Moyal product (1.10) naturally emerges in the context of quantum me-
chanics, when the latter is expressed in the Weyl-Moyal formalism. It is the
functional product corresponding to operator product between quantum ob-
servables. Applying (1.10) to the special case f = g, g = z7, we obtain the
coordinate algebra :

ot x 2! — 27 %zt = [z}, 27, = i6Y (1.14)

Therefore the quantum commutation relations we began with are reproduced
in the functional formalism as * commutators.



Translation covariance and associativity as a definition

Moyal product (1.10) can also be obtained from a general discussion concern-
ing the algebraic requirement of associativity and the geometric requirement
of covariance with respect to translations. These two properties uniquely de-
termine Moyal product. Before I discuss this, I will introduce the general ideas
concerning a field called deformation quantization and its connections with
modern noncommutative geometry.

Ordinary geometry is based on the concept of point. This is not true any-
more for noncommutative geometry, since a noncommutative manifold is com-
pletely defined in terms of the properties of the algebra of functions on it [40).
In ordinary geometry many sets of points can be completely described when
the algebra A of functions on them with values in R or C is known. A finite
dimensional vector space V is a familiar example of this, since the space of
functions f : V — R (or C) is the dual space V*, which is isomorphic to V.
In this case studying the algebra of functions on the manifold or the manifold
itself is the same thing.

We can consider the more general case of a C™* algebra A, i.e. an algebra
endowed with a norm and an involution. Every C* algebra is isomorphic to the
algebra A’ of complex continuos functions on a certain compact space V. When
A’ is commutative we can go back to the space V, that can be described as a set
of points in ordinary geometry. When A’ is noncommutative, instead, going
back to the space V can be very complicated and in some cases impossible.
However, this is irrelevant for the purpose of studying a physical theory, since
all the needed information are encoded in A’.

A recipe to obtain a theory on noncommutative space from a given one on
ordinary space is the following. Consider the algebra of functions with values
in R (or C), deform its product to a new, noncommutative one, that I will call
*, defined in terms of a parameter A. In the limit A — 0 one must recover
ordinary, commutative case. Now rewrite the old theory replacing all ordinary
products with * products, and think of the new theory as a deformation of the
ordinary one, defined on noncommutative space. This I will call the natural
deformation of a theory. It is not the only possible definition of a noncommu-
tative generalization of an ordinary theory and I will discuss this point in more
detail in section 1.1.3.

Given two functions f, g, I will denote their ordinary, commutative product
as fg. I will deform it in the following way

fxg=fg + KP(f,g9) + O(R?) (1.15)

where P(f,g) is a bilinear operator in the two functions f, g and k is the
parameter governing noncommutativity. The example of quantum phase space
discussed before suggests a good candidate for the bilinear operator P. When



the manifold we are considering is endowed with a Poisson structure { , }p,
we will choose |

P(f,g9) = {fag}p = P*¥ 9, 6:,; f(x) g($’)|x=:c’ = f%_u PH -5119 (1.16)

(The last equality is just to present a different notation. It will be preferred
since it is more suitable to superspace extension, where the presence of fermionic
indices makes different orderings inequivalent).

In the 70’s the deformation of Poisson manifolds was studied in a com-
pletely different context. In the paper by Bayen et al. [41] a different approach
to quantization was proposed. Quantization had to be understood as a defor-
mation of the algebraic structure of functions and not as a radical change in
the nature of physical observables. Moyal product * was then introduced with
the goal of reinterpreting quantum mechanics in the context of algebraic defor-
mations. In particular, in [41] an analysis of the possible noncommutative but
associative products that can be obtained as a perturbative series in the pa-
rameter ki was performed. The results obtained there are very interesting when
they are reread in the light of the new ideas of noncommutative geometry.

Consider a manifold {2 endowed with a Poisson structure P, where a set of
derivatives V,, is defined such that V,P = 0. We will also assume that this
set of derivatives is torsion free and without curvature. We define a generic
product * on §) by the smooth function

u(z) = i a (%—) (1.17)

r=0
with ag = a1 = 1, as
00 a,
frg=) W — P'(f,9) (1.18)
r=
where _
P‘l‘(f, g) = P“lul ....... Pﬂryr V“I..-Vur f Vl}looovur g (1.19)

One can show that the exponential function is the only possible choice for u
leading to an associative product, i. e. satisfying

(f*g9)xh=Ffx(gxh) (1.20)

To show this one imposes (1.20), writing every * product explicitly as in (1.18,
1.19). Order by order in & one gets constraints on the coefficients a,. The proof
makes a strong use of the assumptions on the derivative V, since one needs to
exchange derivatives and to pass the Poisson tensor P#Y through derivatives
without getting extra terms from commutators. Finally one obtains that (1.20)
is satisfied if and only if a, = 1 Vr and this uniquely identifies the function u
with the exponential.



Summarizing, under the assumptions made for 2, V and P, the unique
associative *x product has the form:

f*g=e)(f,g) (1.21)

(modulo a constant overall factor and linear changes of variables). If at least
one of the three hypotesis is not satisfied (P constant with respect to V, V
without torsion and curvature), then Moyal product is not associative anymore.
This can be easily seen by considering second and third order terms in A.
Once the product * is known, the commutation relations among coordinates
are determined by considering the special case of two coordinates themselves
as functions f and g . If Q is flat spacetime described by coordinates {z*} and
ordinary derivatives, we can take as a Poisson structure the one associated to
a constant antisymmetric matrix P*¥. In this case we obtain the coordinate
algebra

[z#,z"], = z* x2¥ — ¥ x 2 = 2hPH. (1.22)

Usually in the definition of the commutator an 7 is factorized so that the matrix
P is hermitian. Moreover, the parameter 7 is sometimes absorbed into the
definition of the matrix P.

In flat spacetime the choice of a constant P*" is deeply related to translation
invariance. In fact, if we want to deform a theory with this symmetry, the only
deformation of the coordinate algebra that preserves it is the one associated to
a constant symplectic matrix.

Consider the commutation relations [z#, 2"] = i6*¥(z) that we would like
to implement in a certain theory originally defined in terms of commuting
coordinates z¥. Suppose the original theory to be symmetric with respect
to the transformation £ — z’. For the symmetry to be preserved in the
deformed theory the new coordinate algebra must be invariant with respect
to that trasformation. When we say invariant we mean that the functional
dependence on x variable must not change under the transformation, that is

[z#,2"] = 0" (x) =y [2'*, 2] = 1047 (2) (1.23)

Note that the matrix 6“¥ only transforms punctually and does not become a
new matrix 6. The matrix 0*Y is arbitrarily chosen, defines the noncommu-
tative manifold and must be same for all £ on the manifold.

Again, let us consider the case of flat spacetime. We would like to deform a
Poincaré invariant theory. We will first consider translations £ — x +a to see
which conditions must be imposed on the matrix 6#¥ for the deformed algebra
not to break this symmetry.

['#, 2] = [z* + o*, 2" + a”] = [z*, "] (1.24)



So # must satisfy the constraint
0% (z + a) = 6*¥(x) (1.25)

Since 8*¥ must be a local function, it has to be constant. Therefore, in flat
spacetime the only nontrivial deformation preserving translation invariance is
the one with constant commutators.

Now we will consider Lorentz invariance [8]. Two different kinds of Lorentz
transformations can be considered, the ones where the observer moves while the
particle stands still (“observer” Lorentz transformations) and the ones where
the particle is boosted or rotated and the observer is fixed (“particle” Lorentz
transformations). In the first case it is sufficient for the physics of the system
not to change that the matrix §#¥ transforms covariantly. In the second case
instead the matrix ¥ must not transform, since the coordinate algebra must
remain unaltered while moving from z to z’. Thus in this case physics changes
under the transformation and the symmetry is broken.

Let us explicitly consider the “particle” Lorentz transformation z# —
z'* = A¥ x¥. It happens that

[z'#,z"] = [A"p zf, Y, a:"] = AV, [2°,2°] A%y = A¥, 077 AY, #p>2 OH°
(1.26)

We conclude that noncommutative theories in D > 2 dimensions cannot pre-
serve “particle” Lorentz transformation, while “observer” Lorentz transforma-
tion are not broken by the deformation. An exception to this general rule is
the two-dimensional case, where every antisymmetric matrix is a number times
the Ricci tensor ¢#¥, which is Lorentz invariant.

In most papers concerning noncommutative field theory the following choice
is made

g% =0, 07 #0 (1.27)

Time is “isolated” with respect to spacial directions and Lorentz symmetry is
manifestly broken. As anticipated in the beginning of this section, time-space
noncommutativity is likely to cause a breakdown of the usual framework of
quantum mechanics. Actually, it has been shown that time-space noncommu-
tativity is responsible for unitarity [16] and causality [15] problems in noncom-
mutative field theory (see section 1.1.2). To avoid this, the restriction (1.27) is
applied in most work concerning noncommutative field theory.

Finally I would like to point out that the discussion about symmetries I have
presented here is based on the assumption that the symmetry group is unde-
formed (i.e. it is a classical symmetry group and not a quantum group). This
means that parameters of symmetry transformations are commuting. This is
not the only possible way to proceed. There is a branch of mathematics called



Quantum Algebra that studies the deformation of symmetry groups. An inter-
esting example is the x-deformation of Minkowski space [42], where parameter
and coordinate algebras have an identical structure. Since Minkowski space-
time can be defined as the quotient between Poincaré and Lorentz groups, it
may seem natural to take also into consideration deformations of Minkowski
space that are accompanied by an analogous deformation in the translation

symmetry group.

I briefly summarize the results obtained, in the special case Q = R*" (the ex-
tension to Minkowski signature is straightforward). The only product * defined
as in (1.15, 1.16) that is associative and that preserves translation invariance
is Moyal product

(f *9)(z) = e3™7%% f(z) g(2')|s=sr (1.28)
that generates the coordinate algebra
[z},27], =i h6Y (1.29)

As we have seen before, Moyal product is also naturally obtained in quantum
mechanics through the Weyl-Moyal correspondence defined between quantum
operators and functions on “phase-space”.

Properties of Moyal product

Here I will summarize some useful properties of Moyal product *. Associativity
and covariance with respect to translations have been already discussed.

1. The * product between exponential functions reflects from the functional
point of view the well-known Baker-Campbell-Hausdorff formula
ez’ka: x 9% — ei(k+Q)me--=j-(k9q)
kOq = k*q"0,, (1.30)

2. By making use of the previous formula we can obtain the representation
of * in momentum space

(749 (@) = oy [ hd'afRa@e M0+ (131

3. Commutativity is recovered under integration

[+ 9@tz = / (9 % )(@)d's = ] f-9@dz  (132)

since all the corrections in (1.28) with respect to the ordinary product
are total derivatives, because of the antisymmetry of 6#*.



4. A cyclicity property can be deduced from the previous relation
/(fl * fo * .. % fn)(w)d4w = /(fn * f1 % ..% fn—l)(x)d4m (1.33)

5. Finally, % has the following behavior with respect to complex conjugation

(fxg) =g"*f" (1.34)

because of the antisymmetry of 0#¥. Clearly f * f is real when f is real,
but when both f and g are real, f * g is generally complex.

1.1.2 The natural Moyal deformation of a field theory

In this section I will discuss the main properties of noncommutative field theo-
ries that are obtained from ordinary ones by replacing ordinary products with
Moyal * products (1.28) in the action. This is what I will call the natural defor-
mation of a given field theory. I will first discuss the simple case of scalar field
theory with ®* interaction [9]. This is chosen for simplicity and most of the
features we will find in this case can be easily generalized to more complicated
situations. I will then move to gauge theories, to see how gauge invariance
is modified in noncommutative space. In this first two subsections I will only
take into consideration the restricted case (1.27). In the last subsection I will
instead discuss unitarity and causality problems arising when time is involved
in noncommutativity.

A simple example: The scalar & theory

Let us consider the natural noncommutative deformation of a given ordinary
field theory, for instance the scalar theory with ®* interaction. We have already
seen that we can obtain the deformed theory by replacing ordinary products
with * products everywhere in the action. We choose Moyal product because
we want to preserve translation invariance in the deformed theory and we want
associativity. The action for the noncommutative theory is

2
S[@]:/d“x [%%@u‘?“@—%@*@—%é*@*@*@] (1.35)
Property (1.32) implies that the quadratic part of the action does not receive
corrections from the star products. Omnly the interaction term is modified, so
the free theory is the same as the ordinary one. The noncommutative theory
is built on the same Fock space as the commutative one, but it has different
interactions. This feature is common to all theories obtained as deformation of
ordinary ones by implementing Moyal product, since it just relies on property
(1.32).



We can easily deduce Feynman rules from (1.31). Introducing the Fourier
components ¢(k) of &(x)

B(z) = (27104 / d4ket®e p(k) (1.36)

We obtain

Siht=%/d4mq)*¢>*@*fb

1 A 4 c(4 -
~ (2n)163. 4 /d4k1.,,d4k4 d(k1)p(k2)P(ka)p(ka) - (2m)*5" )(; k;)
oos Krk2  KaOks | KnOks  kaOks | KiOks kabks
2 2 2 2 2 2

(1.37)

We conclude that the only difference between the natural deformation of a
field theory and the field theory itself is a phase factor depending on momenta
and noncommutativity parameter @, appearing in front of every vertex in the
Feynman rules. This procedure can be clearly generalized to other field theories.

Now I'm going to discuss how this phases modify perturbation theory, in
particular ultraviolet behaviour and renormalization. Since the phases appear-
ing in front of vertices depend on the momenta, when we compute the con-
tribution coming from a certain diagram we have to distinguish between two
different situations. If the phase is only depending on external momenta, it
does not affect loop integrations and thus it does not modify the degree of di-
vergence. This case we will call planar. Instead, when the phase factor depends
on internal, loop momenta, it generally modifies the ultraviolet behavior of the
diagram. This case we will call nonplanar. So a single diagram in the ordinary
theory decomposes in various planar and nonplanar contributions, depending
on the ordering of momenta in the vertices.

A nice feature of natural Moyal deformations of ordinary field theories is
that nonplanar graphs always display a better ultraviolet behavior with respect
to the corresponding planar ones, since the phase acts as a regulator. So
one can say that such deformation of a renormalizable theory will also be
renormalizable. It will display the same degree of divergence in planar diagrams
and a lower degree of divergence in nonplanar ones [2]. A general discussion
of renormalizability properties of noncommutative field theory can be found in
[10].

Now I would like to discuss a typical feature of noncommutative field the-
ories called UV/IR mixing. To this purpose I will present the result of the
1-loop computation for the renormalized two-point function 1‘,‘.32, in the case of
®* theory. I will not give any detail about the computation. The interested
reader should refer to [9).
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Let A be the coupling constant of the theory, A the ultraviolet cutoff, M the
renormalized mass, p the incoming momentum. Moreover we will define pok =
pi0k = p,04°0 'k, , where 0»V is the noncommutativity matrix characterizing
the theory.

One finds that the renormalized T'?) in the limit Aeg = 1 T — 0 takes
(pop+31)
the form
A M2 1
' (p M, A) = p*+M? - - 1 ‘ 22
ren (P ) =P+ +96(27r)2(pop+ a3) 9672 I1M2(pop+ X1§)+O( )
(1.38)

If we then take the limit A — 0o we observe that an infrared divergence appears
when we take p — 0. If we instead take the limit p — O first, we discover
that the cutoff does not appear explicitly anymore and the two-point function
diverges for A — 00. So we observe an interesting connection between the
UV and IR behaviors in the extra terms appearing in the two-point function
because of noncommutativity. This is known in the literature as UV /IR mixing.

Finally, we will consider the limit § — 0. In this limit we expect to ob-
tain the standard result for the renormalized I'? of ordinary ®* theory. We
have already discussed the fact that a diagram in the ordinary theory splits
in planar and nonplanar parts in the noncommutative theory. In (1.38) the
subtraction made to obtain the renormalized mass only took into consideration
~ the divergences coming from the planar graphs. The last two terms represent
the contribution coming from nonplanar diagrams. In the limit § — 0 one may
verify that by adding to the planar contributions the nonplanar ones in the
computation of the renormalized mass, one obtains the well-known result for
ordinary 4.

Gauge theories

Up to now I have considered scalar theory for simplicity. Now I would like
to discuss Yang-Mills theories. In ordinary geometry these theories are con-
structed by promoting a global invariance to a local one. In general the gauge
group is nonabelian. |

First of all a remark is needed regarding the choice of the gauge group. In
noncommutative geometry described by Moyal product it is easy to show that
SU(n), SO(n) and Sp(n) are not closed any more and the same is valid for the
corresponding Lie algebras [35]. This is due to the fact that a nontrivial trace
part appears in the product of two traceless matrices. So we will consider U(n)
gauge theory as our example!.

The ordinary gauge theory is described by an n x n hermitian matrix of
vectors, A,,. This transforms as follows under the local gauge symmetry with

1 The cases SO(n), Sp(n) seem to allowed from the subtle string theory discussion in [43]
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parameter A (also an n x n matrix)
Ay = 0uX + 1[N A (1.39)
The field strength F),, and its transformation law are given by

F., = 8,A, — 8,A, —i[A,, A)]
SxFly = i[\, Fl] (1.40)

The pure gauge action is given by

f Tr (F*F,,) (1.41)

where the trace acts on gauge indices and the integral is taken over spacetime
variables. The invariance of (2.55) under (1.40) follows from cyclicity of the
trace.

We are going to construct the natural Moyal deformation of the theory
by substituting ordinary products with * products in the action. This time
we have matrix-valued fields, so the product between two of them will be the
tensor product between *x and the matrix product. We obtain the action

/ Tr (F* ko,,,,) (1.42)

If we also substitute ordinary products with Moyal products in the gauge trans-
formation and definition of the field strength

5,\Au=5p)\+i)\*A“-‘iAu*/\
Fo =0,A, —8,A, —iA, + A, +iA, * A,
F, =tAxFy, —iF,, * A (1.43)

we find that the gauge transformation is still a symmetry of the action. In
the noncommutative case the invariance of (1.42) under (1.43) is more subtle,
though. Cyclicity of the trace is valid for ordinary matrix product, but not
for the tensor product of the latter with *. However, the cyclicity property
of Moyal product under integral (1.33) can be extended to the case of matrix-
valued fields and used to prove the invariance of the action. In the limit 6 — 0
one recovers the ordinary theory.

It is very important to observe that while in the ordinary case n = 1 corre-
sponds to an abelian theory with field strength and transformation laws

OxAy = O,
F,, =8,A, — 8,4,
SxFl =0 (1.44)

in the noncommutative case the commutator of two gauge transformations with
parameters A; and \q is the gauge transformation with parameter A; *Ap— Ag*A;
(7). This is nontrivial even in the case n = 1, so this is a nonabelian theory
and its features perfectly mimic the case with n > 1.

12



Unitarity and causality problems

As anticipated, problems arise when time-space noncommutativity is consid-
ered. The structure of Moyal product (1.28) leads to terms in the action with
an infinite number of derivatives of fields. This renders a Moyal-deformed field
theory non local. In particular, when time is involved in noncommutativity,

nonlocality in time appears and the usual framework of quantum mechanics
breaks down.

In [16] unitarity of noncommutative field theory with time-space noncom-
mutativity has been studied. Scalar field theory deformed with time-space
noncommutativity has been considered and several one loop amplitudes have
been shown not to be unitary. In particular, the two point function in non-
commutative &> theory has been shown not to satisfy the usual cutting rules
when 6% # 0, while these rules are satisfied when only spatial noncommuta-
tivity is present. Moreover, 2 — 2 scattering in noncommutative  has been
considered and again unitarity of the S-matrix is satisfied only when 8% = 0.

Recently in a series of papers [44] a different approach to perturbative non-
commutative field theories with a noncommuting time variable has been pro-
posed. It has been argued that time-ordering is nontrivial when time is involved
in noncommutativity and so a new prescription for the computation of Green
functions must be given. This is different with respect to the naive Feynman
rules obtained by multiplying the usual vertices by a phase factor (see (1.37)).
It has been shown that in this framework unitarity is preserved when the la-
grangian of the theory is hermitian.

In [15] causality of scattering processes in noncommutative field theory with
time-space noncommutativity has been investigated. In particular, 2 — 2
tree-level scattering amplitudes for massless scalars with ®* interaction in a
two-dimensional noncommutative spacetime have been computer there. The
ordinary result for the 2 — 2 amplitude is

iM = —ig (1.45)

where ¢ is the coupling constant of the theory. In the noncommutative case
with [t,z] = 0, because of the phases appearing in front of the vertices, one
obtains instead

iM ~ glcos(p1 A p2)cos(ps Aps) +2 = 3+ 2« 4] (1.46)
where p1,...,ps are the two-momenta of the particles satisfying the conserva-
tion law Ef‘:l p; = 0 (all momenta are incoming) and the wedge product is

defined as p A ¢ = 6(p°q* — p'qP). In the center of mass frame (1.46) becomes

iM ~ g[cos(4p®8) + 2] (1.47)
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Given an incoming gaussian wave packet
Gin(p) ~ (63'--31:(1!:'—130)2 + e--i-(p+po)2) (1.48)
1

’;hﬁ: outgoing wave packet, in the limit pg > A% > o3 AG > 1, is expressed as
ollows

®out(z) ~ g [F(a:, —0, X, po) + 4V Ae T ePo% 4 F(z; 6, )\,PO)] + (po — "*Po)

(1.49)
where F'(x;8, )\, pg) represents a packet concentrated at £ = —8pgf. So the
incoming wave-packet, in the special high energy limit considered, splits into
three parts, one concentrated at £ = —8pg8, one at £ = 0 and one at z = 8pyb.
All three propagate towards x — 0.

In the center of mass frame scattering can be seen as bouncing on a wall.
The first packet is an advanced one, which means that it leaves the wall much
before the arrival of the incoming packet. The third term instead corresponds
to a delayed wave, appearing well after the arrival of the incoming packet.
These two terms suggest an interpretation of the noncommutative particle as a
rigid rod. Both terms originate from the phase factor due to noncommutativity.
The second term is not interesting, since it is neither significantly delayed or
advanced. |

The advance by itself is not an indication of acausality. A nonrelativistic
example of this is the reflection of a rigid rod of length L oriented along the
direction of motion. The center of mass of the rod appears to reflect before
reaching the wall, but the event is not acausal. However, there is a problem
when both causality and Lorentz invariance are considered. In our case the
advance increases with energy, therefore the rod seems to expand instead of
Lorentz-contract at growing energies. This bizarre behavior is a sign of the
inconsistency of a field theory with time-space noncommutativity.

When only space-space noncommutativity is considered (in a 2+1 dimen-
sional field theory), the effect of the phase in front of the vertices is to let
outgoing scattered waves originate from the diplaced position y = %ng,. This
again suggests the interpretation of the incident particles as extended rods of
size Op, but orthogonally oriented with respect to their momentum. In this
case there is no violation of causality.

In [17] it has been shown that in noncommutative field theories with time-
space noncommutativity tachyonic particles are produced. This gives a phys-
ical interpretation of the perturbative breakdown of unitarity. Moreover, in
this paper a quantitative study of various locality and causality properties of
noncommutative field theories at the quantum level has been performed.

In collaboration with M.T. Grisaru, O. Lechtenfeld, L. Mazzanti, S. Penati
and A. Popov I have also addressed the problem of acausality in noncommu-
tative field theory in [36, 37]. We have conjectured that in a noncommutative
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two-dimensional field theory that is classically integrable, i.e. it has an infinite
number of conserved charges, acausality may disappear. In [37] we have shown
that this is indeed the case for the noncommutative integrable sine-Gordon
model, whose S-matrix is factorized, as expected for an integrable system, and
causal. These results will be discussed in detail in chapter 2.

The noncommutative generalization of the sine-Gordon system characterized
by a well-defined S-matrix is not the natural one, though. In the next section
I will begin to explore some possible noncommutative versions of the sca.lar
theory that differ from the natural one considered in this section.

In the last part of section 1.2.1 T will discuss time-space noncommutativity
from the string theory point of view. There we will see that the ill-defined field
theories with time-space noncommutativity do not arise as consistent limits of
string theory. However, there exists a limit where one obtains a theory of open
strings living in a noncommutative spacetime (NCOS).

1.1.3 Other possible deformations: The free scalar field
theory example

Up to now I have considered the natural deformation of a given field theory,
obtained by simply replacing ordinary products with * products everywhere in
the action (and in the definitions of the field strength and gauge transformations
in the Yang-Mills case). I have discussed some of the peculiar properties of
noncommutative field theories obtained in such a way and noted that some of
these are not welcome in a reasonable field theory.

The natural deformation is not the only way to proceed. Given an ordinary
field theory we can more generally define a noncommutative deformation of
it as a theory written in terms of * products that reproduces the original
commutative theory in the limit 8 — 0. Of course the natural deformation is
included in this definition, but different deformations can be constructed, just
by adding new terms that vanish in the limit 8 — 0.

I would like to discuss a very simple example, the two-dimensional free
massless scalar field theory. We have previously noted that quadratic terms
in the action are not modified by Moyal product. So the natural deformation
of a free scalar field theory is trivial. There are more possible deformations,
though, that are highly nontrivial and very interesting indeed.

In ordinary geometry we can consider the element g of a nonabelian group
G. With this we can construct the principal chiral model action

Spo = / Pz 8,97 10%g (1.50)

The corresponding equation of motion is given by

8, (g '0%g) =0 (1.51)
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The case of a free scalar field theory is very simple and cannot give us any
hint. However, it is possible to add a potential term to the scalar theory to
obtain an interacting theory enjoying nice properties. In my papers [36, 37|,
in collaboration with M. Grisaru, O. Lechtenfeld, L.. Mazzanti, S. Penati and
A. Popov, I have studied the possible generalizations of a very special scalar
theory, the sine-Gordon system, describing a scalar field autointeracting by an
oscillating potential. As will be explained in detail in chapter 2, from our analy-
sis of noncommutative sine-Gordon the WZW-like generalization of the kinetic
term for scalar fields seems to be preferred. This agrees with bosonization
considerations in [47, 48].

1.1.4 The Kontsevich product

In section 1.1.1 we have seen that, in a Poisson manifold with a derivative
without torsion and curvature, such that VP = (,the only associative product
is Moyal * (1.28). If one of the three assumptions is not verified, then this
product is no longer associative. Moreover, we have noticed that in flat space-
time with ordinary derivatives the assumption of constant P is a restriction
needed for the noncommutative deformation of a translation invariant theory
to preserve this property.

In this section I would like to consider more general situations, where space-
time may be curved and translations may not be a symmetry anymore. In
particular, as I will show in detail in section 1.2.1, noncommutative geometry
naturally emerges in the context of string theory, that is naturally embedded in
curved backgrounds. Therefore, spacetimes with torsion and curvature should
be considered. Different symmetries underlying the theory may require Poisson
structures P with a particular dependence on the coordinates. For this reasons
it is interesting to consider the case when the Poisson structure P is not con-
stant with respect to a certain set of derivatives. One may think about relaxing
the other two constraints regarding the set of derivatives chosen. Actually, at
least in some cases it is possible to rewrite a Poisson structure with nonflat
derivatives and a covariantly constant Poisson tensor in terms of a noncon-
stant Poisson tensor and flat derivatives. The superspace case we will study in
the next section is an example of this.

M. Kontsevich in [49] generalized the results of Bayen et al. to the case
where derivatives V are without torsion and curvature but the Poisson structure
is not covariantly constant VP # 0. In this case Moyal product (1.28) is not
associative anymore. However, it is possible to modify Moyal product order by
order in the deformation parameter i to obtain associativity.

Let 2 be a Poisson manifold, with coordinates {z*#} and flat derivatives
{V,.}. Let P¥¥ = P*(z) be the Poisson structure of this manifold, written in
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terms of the chosen coordinates as follows
[z#, "] = P*Y () (1.55)

First of all we recall that the definition of a Poisson structure requires associa-
tivity
PHPN ,PY? + P¥PN ,P°¥ 4 P°PV ,P* =0 (1.56)

that is completely equivalent to the validity of Jacobi identity for the coordinate
algebra

[[z*,2"],2°] + [[27, 2*], 2"] + [[2", 7], 2*] = O (1.57)

When P*¥ is constant, this requirement is trivially satisfied and does not give
any further constraint on the matrix P. When a general coordinate dependence
is allowed, associativity constrains the functional dependence of the matrix.
When P# is invertible, i.e. it exists P;} satisfying P#*P,;! = d%, (1.56) can
easily be rewritten in terms of the vanishing of the three-form H

H,,=V,P,,+cycl.=0 (1.58)

Let us now consider Moyal product (1.28), expanded up to second order in
the parameter h

f+g=fg+hRP"(@)V.f V,g+ K P (z)PP(2)V,V,f V,Veg + O()
(1.59)

We then evaluate the quantity (f * g) x h — f * (9 x h) up to second order in A
(note that associativity is trivially satisfied at first order):

(f+9)%h—f*(gxh) = —h? (P7°NV, P + P4V ,P*)V,,f V,g V,h+O(K)
(1.60)
So nonvanishing terms arise, because of the = dependence of the Poisson struc-
ture. Kontsevich observed that once the trilinear dependence on the functions
f, g, h is factorized, one obtains terms with an identical structure with respect
to the ones emerging in the associativity equation for P (1.56). If one could
modify the definition of the product * (1.59) in such a way to obtain exactly the
quantity that is constrained to be zero in (1.56), one would obtain a product
associative up to order k2.
We have to add new terms of order A2, since associativity is trivially satisfied
at first order. Therefore let us define a new product *x by adding to * a new
term of order A? as follows

frxg=  fg+hP"(2)V,f Vyug+ PP (2)P(x)V,V,f ViuVeg
+AR? PPV ,PY° (V,V,f Vog — V., f V.Veg) + O(R°)
(1.61)
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where A is a coeflicient to be determined in such a way that (fxg)xh— fx(gxh)
is proportional to the constraint (1.56). One obtains

1

A= 3 (1.62)
The product x that we have defined up to second order in A is associative
if and only if the Jacobi identity for the coordinate algebra (1.94) is satisfied.
Kontsevich showed that order by order in h it is always possible to modify
Moyal product * in order to make extra terms vanish when the Jacobi identity
for the coordinates is valid. So Kontsevich x product is uniquely defined at any

order in the deformation parameter A by the requirement of associativity.

1.1.5 Deforming superspace

Up to now, we have only considered noncommutativity of bosonic coordinates,

in the form
[z#, 2¥] = i6"" (x) (1.63)

where ©#¥(x) is antisymmetric. Since, as it will be explained in section 2,
noncommutative field theories emerge naturally in the context of string theory
and string theory is only consistent in the presence of supersymmetry, it is
natural to consider the problem of deforming a supersymmetric theory.

It is well-known that the natural setting for discussing supersymmetric the-
ories is a nontrivial extension of bosonic space, known as superspace, where
bosonic coordinates  are accompanied by fermionic ones, that I will generally
denote with 6. So it seems natural and compelling to ask what happens if we
deform also the anticommutators between fermionic coordinates of superspace.
Exactly as in the bosonic case discussed before, we would like the deformation
to preserve the symmetries of our original theory, described by the group of
supertranslations. Moreover, we would like the deformed algebra to be asso-
ciative. In the bosonic case we have seen that this two properties in flat space
were identifying Moyal product.

In collaboration with D. Klemm and S. Penati, I have addressed the prob-
lem of deforming superspace in [26]. First steps had been taken in this direc-
tion before the appearance of this paper. Nonvanishing anticommutators of
fermionic coordinates have been considered in [33] in the context of a possi-
ble fermionic substructure of spacetime. In [50], quantum deformations of the
Poincaré supergroup were considered. In a modern noncommutative geometry
context, trivial superspace deformation of supersymmetric field theories have
been analysed, where only the bosonic sector of the coordinate algebra is mod-
ified [51]. In [52], a Moyal-like deformation of d = 4 N = 1 superspace was
proposed involving fermionic coordinates, that is associative and covariant with
respect to supersymmetry, but does not preserve the compiex conjugation rules
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that characterize Majorana-Weyl spinors in four dimensions. In this paper it
was also shown that in general the set of chiral superfields is not closed under
star products that involve fermionic coordinates. I will discuss the results in
[52] in detail in the second part of this section.

In [26] we were mainly concerned with the conditions imposed on the possi-
ble deformations of superspace by requirements such as covariance under clas-
sical translations and supertranslations, Jacobi identities, associativity of the
star product and closure of the set of chiral superfields under the star product,
but we wanted superspace conjugation relations to be still valid in the defor-
mation. The motivation for this requirement relies in the fact that in a theory
with N supersymmetries formulated in superspace, the number of fermionic
degrees of freedom is N times the bosonic one. As I will show in detail, by
relaxing spinor conjugation relations in the deformation, one in fact does not
preserve the number of supersymmetries.

The main results in [26] are that it is possible to fulfill all the requirements
in ad =4 N = 1 Minkowski superspace, even if the contraints imposed on
the supercoordinate algebra are strong and only [z, 8] and [z, x| can be turned
on. Moreover, in the same paper we have shown that euclidean signature is less
restrictive and allows for a nonanticommutative superspace with {6, 8} different
from zero. The results obtained in my paper will be discussed in section 1.1.6.

Since then a lot of progress has been done in understanding superspace
deformations. Non{anti)commutative superspaces have been shown to emerge
in a superstring theory context, in the presence of Ramond-Ramond (RR)
backgrounds [27, 28, 29, 53]. I will discuss these results in section 1.2.4. Fur-
thermore, in the paper by N. Seiberg [28], a deformed superspace that only
preserves N = -12- supersymmetric of the original N = 1 has been introduced.
I will review the properties of this deformation in section 1.1.7 and compare
with the ones obtained in my paper. Many deformations of superspace field
theories have been studied and their quantum properties have been discussed.
I will give a brief summary of the main results obtained in the second part of
section 1.1.7.

I will not give an introduction to supersymmetry and its superspace formu-
lation. For an introduction to this topics, I suggest the books [23, 24] and the
review paper [25].

The Ferrara-Lledo proposal

In [52]| the authors consider the problem of generalizing Moyal product (1.28) to
d =4 N = 1 superspace. This is described by the set of superspace coordinates
ZA = (z2%,02,0%), where 2*% are four real bosonic coordinates and 6%, 6 are
two—component complex Weyl fermions. The conjugation rule 8% = (8%)7 fol-
lows from the requirement to have a four component Majorana fermion (we use
conventions of Superspace [24]). In the standard (anti)commutative superspace
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the algebra of the coordinates is

(6%,6°} = {6%,0°} = {6*%,6%} = O
224, 0% = [2%,8°) = O
[a:a"‘,a:ﬁé] =0 (1.64)

and it is trivially covariant under the superPoincaré group. The subgroup of
the classical (super)translations (spacetime translations and supersymmetry
transformations)

ela —_ ea + ea
g = 6* + &
g = O L g%% _ %(eaé‘:‘ + Edﬁa) (1.65)

is generated by two complex charges Q. (Qs = Q1) and the four-momentum
P, subjected to

{QaaQﬁ} = {QaaQﬁ} =0 ) {Qaan} = Paa (166)

Representations of supersymmetry are given by superfields V (z2¢, §%,6%)
whose components are obtained by expanding V' in powers of the spinorial
coordinates. The set of superfields is closed under the standard product of
functions. The product of two superfields is (anti)commutative, V - W =
(—1)des(V)-des(W) . V| and associative, (K - V) - W = K - (V -W). The
set of superspace covariant derivatives is given by 84 = (8a4, Da, Ds). In both
this section and the following one (so in the papers [52] and [26]) the nonchiral
representation of supersymmetry has been chosen, where

? = _ ~ )
Do=0a+350%0%a i  Da=0da+ %oaaad (1.67)
Superspace geometry is nontrivial, because of the presence of a nonvanishing

torsion )
{Da,Dga} = i0aq (1.68)

To extend the construction of Moyal product to superspace, one has first
to introduce a superspace Poisson structure generalizing (1.16). The authors
propose - o - .

{®,¥} =00 o P*PP 8 530 + 3D P’ DV (1.69)

where P2%P8 gnd PP are constant matrices. This Poisson structure is man-
ifestly covariant with respect to supersymmetry. Moreover, it is associative
since it involves only 0,4 and D, and not Dg. Associativity would be bro-
ken if the whole set of superspace covariant derivatives had appeared, because
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of the nontrivial superspace torsion (1.68). With this Poisson structure the
authors construct a Moyal-like product in superspace as follows

P+T =& exp (ﬁ (%‘adpadﬁﬁ'gﬁﬁ + 5QPQB—55)) '/ (1.70)

This is an associative product, as one can easily deduce by extending to super-
space the discussion in section 1.1.1.

If we consider the special case when the superfields ® and ¥ are identified
with the supercoordinates themselves, we obtain the following anticommutation
relations

{oa’gﬁ} — pobB
{9'0'*,0'9} =0 (1.71)

They are not consistent with the d =4 N = 1 superspace conjugation relation
(6%)" = 9% (1.72)

Even if in principle a noncommutative deformation is not required to respect
the complex structure present on the original space, the relation (1.72) is needed
in the original space for the fermionic degrees of freedom to be equal to the
bosonic ones. By relaxing it in the deformation, one modifies (doubles) the
number of supersymmetries.

In the paper [52] it was also observed that the class of chiral superfields,
defined by the relation Ds® = 0, is not closed under the product (1.70). Al-
ready at first order in the % expansion nontrivial terms arise in Dy (® * ¥),
where & and ¥ are both chiral, because of the nontrivial superspace torsion
(1.68). Since the simplest superspace field theories are written in terms of chi-
ral superfields, the lack of closure for the chiral class is a serious obstruction in
constructing deformations of known supersymmetric theories.

1.1.6 Non(anti)commutative superspace

In this section I will discuss the results that I obtained in [26], in collaboration
with D. Klemm and S. Penati, regarding supersymmetric associative deforma-
tions of d =4 N = 1 Minkowski and N = 2 euclidean superspace.

Supersymmetric deformations of N =1 d = 4 superpace

In [26], a more systematical approach with respect to [52] has been followed
to determine the most general non(anti)commutative geometry in N = 1 four
dimensional superspace, invariant under the classical supertranslation group
and associative. As I have anticipated before, the deformation will be required
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to preserve the complex conjugation relations that are valid in ordinary super-
space.

We will consider the supercoordinates Z4, generically satisfying the non-
(anti)commutative algebra

[24,2P} = PAB(Z) (1.73)
where we have introduced the (anti)commutator
[Fa,Gg} = FaGp — (—)*GgFy4 O (L74)

that is a commutator if at least one of the two indices A, B is a vector and an
anticommutator otherwise.

Let us consider the transformation Z — Z’. This is the generic symme-
try of the ordinary theory that we would like to preserve in the deformation.
Exactly as in the bosonic case discussed in section 1.1.2, we will require that
the functional dependence of the non(anti)commutative algebra is not modified
under the transformation |

742"} = PA%(2) (1.75)

Since, as discussed in section 1.1.1, bosonic noncommutative deformations
break “particle” Lorentz invariance, we will not worry about this symmetry
in our superspace generalization. We will only take into consideration the su-
pertranslation group, containing ordinary bosonic translations and supersym-
metry transformations. For N = 1 d = 4 superspace conventions, we refer to
[24] (see summary in the previous section).

In order to define a non(anti)commutative superspace, we consider the most
general structure of the algebra for a set of four bosonic real coordinates and
a complex two—component Weyl spinor with (§%)! = §¢

{0,0°} = A°8(z,0,6) {é‘*‘,e‘f’} = A%(z,0,8)
(6°,6%) = B*(z,0,0)

2%,0°] = ic*(z,0,6) , [a%6°] = iC*(s,6,0)

22,28 = iD%(z,6,0) (1.76)

Here, A, B,C,D are local functions of the superspace variables and we have
defined A%® = (A%P)1, C¢¥ = (C2°)!. From the conjugation rules for the
coordinates it follows also (B‘""S")’r = B%* and (’1')“"—”)Jr = D2,

To implement (1.76) to be the algebra of the coordinates of a non(anti)com-

mutative N = 1 superspace we require its invariance under the group of space
translations and supertranslations (1.65). As before, we restrict our analysis
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to the case of an undeformed group where the parameters a®®, ¢ and & in
(1.65) are kept (anti)commuting 2.

As in the bosonic case discussed in section 1.1.1, we require the functional
dependence of the A,B,C,D in (1.76) to be the same at any point of the
supermanifold. To work out explicitly the constraints which follow, we perform
a (super)translation (1.65) on the coordinates and compute the algebra of the
new coordinates in terms of the old ones. We find that the functions appearing
in (1.76) are constrained by the following set of independent equations

A%P(2'.0'.0") = A%P(z,0,0) , B**(z',0',0") = B*%(x,0,8) (1.77)

CosB(y ¢ §) = CoB(z.0.8) — %eaBﬂd(x,B,g) _ -;--dAaﬁ(x,e,é) (1.78)

DaeBB (3! ¢ §') = DPB (g 6, 0)

= £ (o4 (2,6,8) + HC248(2,0,) — 2094 (5,0,0) — e¥CHa(2,6,5))
--} (eaﬁd‘é(:v,ﬁ,é_?)eﬁ + €*BP%(z,0,0)e

+e*B*8(z,0,0)eP + e AP (. 0, é)gﬁ)
(1.79)

together with their hermitian conjugates.

Looking for the most general local solution brings us to the following algebra
for a non(anti)commutative geometry in Minkowski superspace consistent with
(super)translations

(00,6} = A= | [§40°) = A% | {¢°,5%) = B
[z°¢,0°] = iC*%P(8,0)
[wad,éﬁ'- _ ié‘aaﬁ(g,g)
[xad,xﬁff — iD%BB(g ) (1.80)
where |
CP(0,0) = CP — %eaBﬁé - %édAaﬁ
De488(g, ) = D488 — 2 (48004 — GACPEx — gx0B% 1 GCaes)

-~ (624%46° + 6>BP3GP + 55 BA0° + 65 4°05° )
(1.81)

2More general constructions of non(anti)commutative geometries in grassmannian spaces
have been considered, where also the algebra of the parameters is deformed [50].
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and A, B, C and D are constant functions.

We note that, while invariance under spacetime translations necessarily re-
quires the non(anti)commutation functions to be independent of the x coordi-
nates, as we have seen in section 1.1.1, invariance under supersymmetry is less
restrictive and allows for a particular dependence on the spinorial coordinates.

On the algebra of smooth functions of superspace variables we can for-
mally define a graded bracket which reproduces the fundamental algebra (1.80)
when applied to the coordinates. In the case of bosonic Minkowski space-
time, the noncommutative algebra (1.63) can be obtained by interpreting the
l.h.s. of this relation as the Poisson bracket of classical commuting variables,
where, for generic functions of spacetime, the Poisson bracket is defined as
{f,9}p = iG*Y0,f0,9. Generalizing to Minkowski superspace, the graded
bracket must be constructed as a bidifferential operator with respect to the su-
perspace variables. Using covariant derivatives D4 = (Dg, D4, 844 ), for generic
functions ® and ¥ of the superspace coordinates we define the bidifferential
operator

{®,U}p = ®D 4 PAB DU (1.82)
where
pes pop pab ~A%P  _pef  jCPba
pAB — | pas Pdé pat| = | e _ j{dé ic_‘ﬁﬁd. (1.83)
paf  peb  pab iCaB Cack  {pachh

is a constant graded symplectic supermatrix satisfying
PBA — (_1)(a+1)(b+1)PAB’ (184)

a denoting the grading of A. It is easy to verify that applying this operator to
the superspace coordinates we obtain (1.80).

Alternatively, one can express the graded brackets (1.82) in terms of torsion
free, noncovariant spinorial derivatives 94 = (8q, 04, Oaa) S0 Obtaining a matrix
PAB explicitly dependent on (8,8). The bracket (1.82) is rewritten as follows

[3,0}p = 8 4 PAB G 5¥ (1.85)
where
— AP —Bo®  {CPPa(9,0)
PAB(9,§) = _BoB _ AaB iCPP4 (9. 0) (1.86)

iCo%B(9,0) iC*%P(6,0) iD*%PA(0,0)

and the functions C, C and D are given in (1.81).
The latter formulation of the graded bracket is not manifestly covariant,
but it is however very useful, since it makes clear that Kontsevich procedure

25



outlined in section 1.1.4 can be generalized to superspace to construct an as-
sociative deformation of the product between superfields. All the results from
now on can be written in both ways. In general the covariant formulation
is preferred because it naturally leads to a geometrical interpretation of the
results.

Deformation of the supersymmetry algebra

It is important to note that the non(anti)commutative extension given in (1.80)
in general deforms the supersymmetry algebra. In the standard case, defining
Qa = (Qa,Qa,—1004), the supersymmetry algebra can be written as

[Q4,Q8} = iTug’Qc , [Da,Ds} = Tap®Dc
[QA,DB} = 0 (1.87)

where T4 g is the torsion of the flat superspace (To5° = T~ = 10,0 g are the

only nonzero components). Turning on non(anti)commutativity in superspace
leads instead to

[Q4,Q8} = iTas®Qc + Ra“"QcQp
[Da,Dp} = Tag®Dc + Rag®°’DcDp

[Qa,D8} = Rap“°QcDp (1.88)

where T4° is still the torsion of the flat superspace, while

1
Rap®? = ~% PMN Tp11aTeyn"® (1.89)
([ab) means antisymmetrization when at least one of the indices is a vector in-
dex, symmetrization otherwise) is a curvature tensor whose presence is a direct
consequence of the non(anti)commutation of the grassmannian coordinates. Its
nonvanishing components are
1 o

| Y
d __ d ) ed __ o ]

1 : , ) ,
R ;% = R; % = (Pﬁaja; 4 PW;(S;) (1.90)

Ba 8
I would like to stress that the curvature terms deforming the supersymme-
try algebra are quadratic in bosonic derivatives and have no effect on the
supercoordinate-algebra. Therefore their presence is not in disagreement with
consistency of the supercoordinate algebra with supersymmetry.

Since the terms proportional to the curvature in (1.88) are quadratic in
supersymmetry charges and covariant derivatives, we can define new graded
brackets
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[Qa,QB}s = QaQs — (—1)%°[65°64° + (*‘UabRABCD]QcQD( )
1.91

and analogous ones for [D4,Dp}, and [Q4, Dp},, which satisfy the standard
algebra (1.87). The new brackets can be interpreted as a quantum deformation
associated to a g—parameter which in this case is a rank—four tensor

gas®? = 659640 + (~1)*°R45°P (1.92)

Associativity and the geometry of deformed superspace

Given the bidifferential operator (1.82) associated to the noncommutative su-
pergeometry defined in (1.80) it is easy to prove the following identities

{‘I’, \I’}P — (_1)1+deg(<1>)-deg(‘ll) {‘I’,@}p
{c®,U}p = c{®,U}p , {®,c¥}p = (~1)%s()des(®) c{p ¥}p
{2+9,Qtp = {,Q}p + {¥,Q}p (1.93)

The operator {,}p will then be promoted to a graded Poisson structure on
superspace if and only if Jacobi identities hold

{2,{2,Q}p}p + (~1)%o(®)ldea(D)+des(D{ g, {9, 0} p}p
+(—1)de9() [deg(2)+deg(V)] 1) (& WYp}p = O (1.94)

for any triplet of functions of superspace variables. This property is equivalent
to associativity of the fundamental algebra (1.80). Since the latter is nontrivial
(coordinate-dependent commutators appear), (1.94) is not in general satisfied.
Indeed, imposing (1.94) yields the nontrivial conditions

PARPBSTSRC (__ 1)c+b(c+a+r) + PBRPCSTSRA (__ 1)a+c(a+b+r)
+ PORpAST B(_1)btalbtetr) _ g (1.95)

(-1)mpAMPBN R, W CP = 0 (1.96)

where the torsion Ty5¢ and the curvature R4 5°P have been introduced in
(1.87) and (1.88). Equation (1.95) is the covariant superspace generalization
of bosonic associativity constraint (1.56) (the analogy with (1.56) is clearer
when it is rewritten in terms of the “noncovariant” Poisson structure P given
in (1.85)).

As in bosonic case, if P48 is invertible (P4 PP = §9), equation (1.95) is
equivalent to the vanishing of the contorsion tensor H4p¢ defined by

Hape = Ty Ppc(-1)* + To P Ppp(—1)? + T P Ppa(—1)%.  (1.97)
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This is the superspace generalization of (1.58), in terms of manifestly covariant
quantities. The only nonvanishing components of H are

Huap = —1t[Pas g + Psa o
Houp =i [Pag s+ Pap s
Hosp = tPos b (1.98)

We notice that its bosonic components Hgp vanish due to the z—independence
of the noncommutation functions in (1.80). The nonvanishing of H comes en-
tirely from the §—-dependence of the functions in (1.81). As will be explained
in section 1.3, it has been shown that bosonic coordinate-dependent deforma-
tions naturally emerge in string theory in the presence of curved backgrounds.
Nonassociative deformations also emerge and the parameter governing nonas-
sociativity is a bosonic three form H. Identifying the superspace analogue
of this may help characterizing the superstring background where deformed
superspaces may appear.

When P is invertible, equation (1.96) might seem to imply that the curva-
ture R is zero. This is not true in general because of the presence of the sign in
front, which is dependent on the grading of the summed index M. Moreover,
being puzzled by the unusual pattern of equations found, we have been trying
to prove that (1.96) is algebraically implied by (1.95), but this doesn’t seem to
work.

We now search for the most general solutions of the conditions (1.95, 1.96).
Writing them in terms of the PAB components we obtain

I

BoBABY 4 pPapB 0

BPBSY 4 ABajBY =

((jﬁﬁd A 4+ Cﬁﬁa BYe _ c‘radﬁ ABY _ (oeB B’YB) = 0

Im (C""‘*f’C’""ﬂ + CIECPbe 4 CPRYCOdT ) = 0. (1.99)
The first two conditions necessarily imply the vanishing of the constants A and
B. Inserting this result in the third constraint we immediately realize that it is

automatically satisfied and the only nontrivial condition which survives is the
last one. This equation has nontrivial solutions. For example, the matrix

CoP = (‘52 %) (1.100)

for any spinor ¢®, is a solution. It would correspond to assume the same
commutations rules among any bosonic coordinate and the spinorial variables.
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We conclude that the most general associative and non(anti)commutative
algebra in Minkowski superspace has the form

{o=,0°} = {8%,6°} = {6°,0°} = 0

[z, 0 = {CoeP
[x"‘"", Gl = igesh (1.101)
008,298| = ipeash 4 % (CPBag> — Casbgp 4 PBags — coshgh)

where C is subject to the last constraint in (1.99). Setting C**® = 0 we
recover the usual noncommutative superspace considered so far in literature
[52, 54, 51].

Under conditions (1.99) the graded brackets (1.82) satisfy the Jacobi identi-
ties (1.94), as can be easily proved by expanding the functions in power series.
In this case we have a well-defined super Poisson structure on superspace.

We note that a non(anti)commutative but associative geometry always man-
tains the standard algebra (1.87) for the covariant derivatives. In fact, in this

case, from (1.90) it follows Rss°P =0.

Construction of a Kontsevich-like product on superspace

We will now describe the first few steps towards the construction of a star
product defined on the class of general superfields. By definition, this product
must be associative, i.e. it has to satisfy the Jacobi identities (1.94) when the
fundamental algebra is associative.

In section 1.1.4 we have seen that in the nonsupersymmetric case the lack
of associativity of the fundamental algebra is signaled by the presence of a
nonvanishing 3—form H. A product has been constructed [49] so that the
terms violating the Jacobi identities are proportional to H. The product is
then automatically associative when the fundamental algebra is.

In the present case we have shown that the lack of associativity in super-
space is related to a nonvanishing super 3—form. This suggests the possibility to
construct a super star product by suitably generalizing Kontsevich construction
[49] to superspace. The supersymmetric Poisson structure we have constructed
on superspace can be written in a manifestly covariant form, as in (1.82), in
terms of a constant matrix and covariant derivatives that have nontrivial tor-
sion, or as in (1.85), in terms of a coordinate-dependent matrix and torsion free
derivatives. The second formulation allows for a straightforward generalization
of Kontsevich construction we outlined in section 1.1.4. However, the same
procedure can be performed in a manifestly covariant way, and I choose to give
this second version, so that the geometric interpretation of the results will be
clear.
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We conclude that the most general associative and non(anti)commutative
algebra in Minkowski superspace has the form

{,6°y = {§0°} = {68} =0

[z, 67 = {C*P

[:cad,éf" = j(osb (1.101)
l:mad,xﬁﬁ.- — z‘Daaﬂﬁ + % (C‘ﬁﬂaoa — C_'O!aﬁeﬁ + Cﬂﬂaéa _ Caaﬂgﬁ)

where C is subject to the last constraint in (1.99). Setting C*** = 0 we
recover the usual noncommutative superspace considered so far in literature
[52, 54, 51].

Under conditions (1.99) the graded brackets (1.82) satisfy the Jacobi identi-
ties (1.94), as can be easily proved by expanding the functions in power series.
In this case we have a well-defined super Poisson structure on superspace.

We note that a non(anti)commutative but associative geometry always man-
tains the standard algebra (1.87) for the covariant derivatives. In fact, in this

case, from (1.90) it follows Rag®? = 0.

Construction of a Kontsevich-like product on superspace

We will now describe the first few steps towards the construction of a star
product defined on the class of general superfields. By definition, this product
must be associative, i.e. it has to satisfy the Jacobi identities (1.94) when the
fundamental algebra is associative.

In section 1.1.4 we have seen that in the nonsupersymmetric case the lack
of associativity of the fundamental algebra is signaled by the presence of a
nonvanishing 3-form H. A product has been constructed [49] so that the
terms violating the Jacobi identities are proportional to H. The product is
then automatically associative when the fundamental algebra is.

In the present case we have shown that the lack of associativity in super-
space is related to a nonvanishing super 3—form. This suggests the possibility to
construct a super star product by suitably generalizing Kontsevich construction
[49] to superspace. The supersymmetric Poisson structure we have constructed
on superspace can be written in a manifestly covariant form, as in (1.82), in
terms of a constant matrix and covariant derivatives that have nontrivial tor-
sion, or as in (1.85), in terms of a coordinate-dependent matrix and torsion free
derivatives. The second formulation allows for a straightforward generalization
of Kontsevich construction we outlined in section 1.1.4. However, the same
procedure can be performed in a manifestly covariant way, and I choose to give
this second version, so that the geometric interpretation of the results will be
clear.
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chiral superfield, both for associative and nonassociative products. However, in
the particular case where the only nonvanishing components of the symplectic

supermatrix PAB are P23 and Psgb chiral superfields are closed both under the
deformed product defined in (1.102) and under Kontsevich star product (1.103)

(for the latter up to terms of order O(h3)). Clearly for P®? # 0 the above star
products are no more associative. Because of this, it could be problematic to
generalize for instance the Wess-Zumino model to non(anti)commutative su-
perspace, since (® x &) x & # & x (& x ¢). However, one may notice that for
chiral superfields the above star products become commutative®. This com-
mutativity implies that there is no ambiguity in putting the parenthesis in the
cubic interaction term of a deformed Wess—Zumino model, since, when ¢ is a
chiral superfield, (® x ®) * ® = & x (® x ®) holds. Therefore, the action for the

deformed Wess—Zumino model

S=fd4xd20d2§¢*<§+/d4m Udzo (%@@4-2@*@*@) +e. c.] .

3
(1.106)
is well defined and can be studied. Notice that in this case the x—product in the
kinetic term cannot be simply substituted with the standard product as it hap-
pens in superspace geometries where grassmannian coordinates anticommute

52, 51].

Non(anti)commutative N = 2 Euclidean superspace

From the discussion of d = 4 N = 1 superspace it is clear that the super-
space conjugation relations relating 6 and @< are strong constraints on the
non(anti)commutative algebra. The main difference in the description of eu-
clidean superspace with respect to Minkowski relies on the reality conditions
satisfied by the spinorial variables. So it is reasonable to hope that in an eu-
clidean signature structures with a nonvanishing anticommutator between two
fermions could appear.

As it is well known [57], in euclidean signature a reality condition on spinors
is applicable only in the presence of extended supersymmetry. In [26] we con-
centrated on the simplest case, the N = 2 euclidean superspace, even if our
analysis can be easily extended to more general cases.

In a chiral description the two—component Weyl spinors satisfy a symplectic
Majorana condition

(03) =6, =C08Cp0 , (8%)* =85;=0°7C4,Cyi (1.107)

where C'?2 = —(C5 = i. This implies that the most general non(anti)commutative
algebra can be written as an obvious generalization of (1.76) with the functions

3Generalized star products that are commutative but nonassociative have been considered
in a different context in [56).
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on the rhs now being in suitable representations of the R—symmetry group.
When imposing covariance under (super)translations we obtain that the most
general non(anti)commutative geometry in euclidean superspace is

{9?, 0% = 4%, {ga,i,gé,j} = ASP | {92 gai) = Bo% I
[:1:""‘5‘,6‘%-67 = i, % (6, 6)
zod gBi| = jcasBi(g, g)
zod 288 = ipeash(g §) (1.108)
where

C%%5:.(0,8) = %P + -%9;?3""“",. i 4 -;-éd’fAl"‘ﬁ;-,-
.

Z6% ASPT 4
2 2

C3°%(6,0) = C3*%* + 565

joni gy i
J
Dao’zﬁB (9’9') - Dadﬁﬁ'
+ (9? CBb&t _ gBradBi | géicy e gB,iCIadB,i)

+

VN I e

(1.109)

with A;, Aa, B, Cy, Cq and D constant.

Following the same steps as in the Minkowski case, we can look for the
most general associative algebra. The results we obtain for associative non-
(anti)commuting geometries in euclidean superspace are

{ag,of} = 4% {éd’*,éﬁ'i} 0 , {93;93’3'} —0

[xad’ 95: _ 0,48, _ %gd,j 4,%,,
2% g8 = (1.110)
- - o, ;L : L , 1. . .
_maa’xﬁﬁ- — ;DaBs + _;_ (ga,zclﬁﬁa,i _ gﬁ,zclaaﬁ,i) . Zea,z Alaﬁ%j g0
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or

(.07} =0, {o*h0%}=agP  {or,6%7) =0
[a:ad,Bf- =0

.- vy 1 o
2,071 = iCgt — AP (1.111)
20¢,08| = iDashh 4 2 (gaCfiht — 9P Cpeht) ;11-9,? AZPI 6F

We notice that in this case associativity imposes less restrictive constraints
because of the absence of conjugation relations between A; and As. As a con-
sequence, nontrivial anticommutation relations among 8’s (or @’s) are allowed.
Moreover the R-symmetry group of the N = 2 euclidean superalgebra is bro-
ken only by the constant terms C; and C;. Setting these terms equal to zero
leads to nontrivial (anti)commutation relations preserving R—-symmetry.

Again, explicit expressions for the corresponding graded brackets can be
obtained as an obvious generalization of (1.82, 1.83). In this case they define a
super Poisson structure on euclidean superspace. A simple example of a super
Poisson structure is

—. g
{8, V}p = - ®D A%, DLV (1.112)

We notice that this extension is allowed only in euclidean superspace, where it
is consistent with the reality conditions on the spinorial variables.

1.1.7 N = i supersymmetry
Seiberg N = 1/2 superspace

In this section I will review nonanticommutative N = % superspace introduced
by Seiberg in [28] and I will explain its relation with my results in [26]. As
I have discussed in detail in the last section, in [26] I obtained the most gen-
eral nonanticommutative deformation of d = 4 N = 1 superspace compatible
with supersymmetry and associativity. This involves nontrivial [z,8], [z, 0]
and [z,z], while {6,0}, {0,6} and {6,0} cannot be turned on. The situation
improves in euclidean signature, where it is possible to turn on the fermionic
anticommutators because of the different spinor conjugation relations. Rigor-
ously, a superspace with euclidean signature can be defined only with extended
supersymmetry, because of the impossibility to assign consistent reality con-
ditions to 8* and 8% in N = 1 [57]. This is why I have studied the N = 2
euclidean superspace in [26]. However, one can formally define an NV = 1 eu-
clidean superspace by temporarily doubling the fermionic degrees of freedom,
as it is done by Seiberg in [28].
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To show how this works, I will first redefine the N = 2 euclidean spinor
variables (1.107) as follows

=07-03 5 0=67+05
9> =9 — g% ;9% =gl - §%¢ (1.113)

These satisfy the reality conditions

o)y =i, ;3 (6% =—ibs
(62)* = —i0* ;  (0,)* =i6% (1.114)

and analogous for the dotted variables. Dotted and undotted variables are
unrelated. I will refer to #* and 6° as the left-moving sector of the theory and
to §* and 6% as the right-moving sector. This terminology will be clarificd in
section 1.2.4, where the string theory origin of deformed superspaces will be
discussed. We will see in section 1.2.4 that open string boundary conditions
relate left- and right-moving fermionic variables on the D-brane (6 = 6 on the
boundary). As a result, the effective field theory on the brane is described by
an N = 1 euclidean superspace with fermionic variables 8¢ and 6%. For this
reason from now on I will only consider spinor coordinates in the left-moving
sector.

In [26] we have used in both Minkowski and euclidean signature a nonchi-
ral representation for superspace covariant derivatives. As a result consistency
with supersymmetry transformations implied that if we turned on a nonvan-
ishing anticommutators between two fermionic variables, also nonzero boson-
boson and boson-fermion commutators appeared. This made the algebra coor-
dinate dependent and forced us to build a complicated Kontevich-like product.

A way to obtain a simpler, constant algebra for the supercoordinates is the
following [58]. In four dimensions it is possible to use a chiral representation
of supersymmetry, where, for each supersymmetry, one of the two covariant
derivatives coincides with the ordinary one while the other gets dressed. If we
make this chiral choice in N = 2 euclidean superspace, by defining

Qo = i(aa - wéaad) 3 Qs = 104
D, =8, . Dgy=04+1i0%0,,  (1.115)

corresponding to the supersymmetry transformations
0x%% = —4e®9% ; 60° =¢€* ; 50% = ¢ (1.116)
we immediately realize that the nonanticommutative algebra
{6%,0°} = 2P the rest = 0 (1.117)

with P*? a constant symmetric matrix, is consistent with (1.116) and trivially
associative . One can easily check that, comparing to (1.88, 1.89, 1.90), the
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supersymmetry algebra is not modified by the deformation but the algebra of
covariant derivatives becomes

{Da’Dﬁ} = 0; {Daa Dd} = 10uq
{Ds, Dy} = —2P*P8,48,, (1.118)

This is a problem when one tries to construct chiral superfields. So, even if
this algebra is very simple, it is not suitable for constructing deformations of
ordinary theories in superspace.

Seiberg in [28] chose the opposite chiral representation with respect to
(1.115)

Qo = 10, _ ) Qa = i(ad - iaaaad)
D, = 0, + 10%0.4 X Dy = 04 (1.119)

corresponding to the supersymmetry transformations
S = —3€%0® ; 0% =¢* ; 60% =€ (1.120)

When we turn on a nontrivial anticommutator between the 8’s, we obtain

{oa,oﬁg =2P*  [6%,6°} = {6%,6°} =0
€%, 6% = -2iP*P6>
[x%%, £PP] = 264 PP 9P (1.121)

This is consistent with supersymmetry and associativity (it is just the “N = 1”
version of the algebra (1.111) I gave in [26] and discussed in the previous
section). This is coordinate-dependent and would require the construction of a
Kontsevich-like product for the superfield algebra. However, Seiberg observed
that it is possible to make the change of variables

Y% = xo¢ — j69° (1.122)

In terms of (y=*, 8%, 6%) the superspace algebra takes the form (1.117) and this
makes it possible to define a Moyal-like associative product acting on superfields

® = ®(y**,0%,0%) as follows
@exp(—gaPaﬁgg)W

B — 35 ,P*5F 5 — —;-P262<I>82\Il (1.123)

dxVY

I

|

where P2 = P®PP,s. In contradistinction to the bosonic case, this Moyal-like
product has a finite derivative expansion, because of the grassmannian nature
of the variables involved in the deformation.
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With the antichiral representatijn (1.119) the covariant derivative algebra
is not deformed, while the < persymmetry algebra is deformed by curvature
terms analogous to the ones we found in (1.88, 1.89, 1.90)

{Qa,Qp} = 0; {Qa;Qa} = 100a
{Qaan} - "'2Pa aaaagg (1.124)

Since only the dotted sector is modified, in [28] its is argued that only N = 2
is preserved. Exactly as in the N = 2 case discussed in the previous section,
these susy-breaking terms do not affect the supercoordinate algebra, that is
consistent with supersymmetry.

In [28] chiral and vector superfields in N = % have been extensively studied.
In particular, since the covariant derivatives are not modified by the deforma-
tion, it is possible to define (anti)chiral superfields whose class is closed under
* and to write down the action for a deformed Wess-Zumino model

/ 48250 — / 36,52 — / 28592

— jdﬁsz*é*é—g-/d‘iz(b*@*(b

S(P=0)+ c f dizP2F3 (1.125)

S

where F’ is the auxiliary field in the chiral multiplet and total superspace deriva-
tives have been neglected to obtain the last equality. Similarly, one can see that
the N = 1 deformation of super Yang-Mills is characterized by explicitly susy-
breaking P dependent component terms [28]. Moreover in [28] the antichiral
ring defined by the operator relation [Qq, @] = 0 has been studied and it has
been shown that all its properties are preserved by the deformation, while the
chiral ring cannot be defined since @4 is not a symmetry of the theory anymore.

Results in non(anti)commutative field theories

After Seiberg’s paper [28] appeared, deformed superspaces have attracted much
attention and a lot of efforts have been done to elucidate the properties of
nonanticommutative field theories in superspace. This interest is mostly due
to the fact that nonanticommutative superspaces have been shown to naturally
emerge in superstring theory in the presence of R-R backgrounds [27, 28, 29, 53].
I will review the string theory side of the story in section 1.2.4. Here I’'m going
to browse the huge bibliography and discuss the main results obtained, without
giving any detail. I will first discuss the progress in understanding N = %
theories.

In [28] the N =  deformation of WZ and super Yang-Mills theories have

been proposed. The deformation of WZ model is easy to describe, since in
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component formulation it corresponds to adding to the ordinary action a cubic
term in the auxiliary field F. In [59, 60| some features of the deformed WZ
model, such as non validity of standard nonrenormalization theorems, stability
of the vacuum energy and existence of the antichiral ring have been discussed
through some examples, in both component and superspace formulations. In
particular, since supersymmetry plays an important role to guarantee renor-
malization through partial cancellation of UV divergences associated to bosonic
and fermionic degrees of freedom, it is compelling to study renormalizability
properties of the N = % theory where part of the supersymmetry is explicitly
broken.

A systematical analysis of perturbative renormalizability of N = % WZ
model has been performed in [58] by explicit calculations up to two loops. It
has been shown that, even if new divergences appear, the model can be rendered
renormalizable by adding ab initio F' and F? terms to the ordinary lagrangian.
It is somehow expected that these terms may accompany the F3 deformation,
since they are allowed by the symmetry of the theory. These two-loop results
have been extended to all orders in perturbation theory in both component and
superspace formulations [61]. The proof of renormalizability has been given on
the base of dimensional arguments and global symmetries.

The study of deformations of gauge theories is more interesting than the
scalar case. N = 1 U(n) gauge theories have been proven to be renormalizable
in [62] in WZ gauge. This result have been checked up to one loop in [63] in
component formulation, again in WZ gauge. The study of these gauge theories
in a manifestly gauge independent superspace setup has been accomplished by
generalizing the background field method to nonanticommutative case [64].

In [65, 66, 67] N = 2 super Yang-Mills instantons have been studied.

In [68] the problem of constructing a Seiberg Witten map analogous to the
one discussed in section 1.2.1 for superfields in deformed superspaces have been
considered.

The case with extended supersymmetry has also been considered [69, 70]
and it has been shown that, while in general N = (1,1) supersymmetry is
broken to N = (3,0), there are particular cases where N = (3, 1) survives.

d = 2 N = 2 classical aspects of sigma models characterized by a general
Kahler potential and arbitrary superpotential deformed by a nonanticommu-
tative product have been studied in [71].

Finally, the connection between nonanticommutative geometry and super-
matrix models have been studied in [72, 73].
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1.2 Non(anti)commutative field theory from the
(super)string

1.2.1 Noncommutative Yang-Mills theory from the open
string

In this section I mostly refer to [7] and show that a constant Neveu-Schwarz
Neveu-Schwarz (NS-NS) B-field background modifies string dynamics nontriv-
ially when D-branes are present. The open string with extrema constrained to
lay on Dp-branes sees a deformed target-space G, metric and a noncommuta-
tive target space coordinate algebra, characterized by a matrix Y. Taking a
zero slope limit o’ — 0 in such a way to keep the above open-string parameters
finite, one can obtain two different effective theory descriptions. Depending
on the choice of the regularization prescription, one obtains a field theory in
ordinary space where the background field appears explicitly, or a noncommu-
tative field theory where the background field only appears implicitly in the
noncommutativity matrix 6*¥. We are not going to give a review of the basic
string theory needed in this section. For this we suggest the textbooks [3, 4.

The open string effective metric and noncommutativity parameter

Let us consider the bosonic sector of open string theory, in a 10-dimensional
flat spacetime background with metric g,,, in the presence of a constant NS-
NS field B,, and Dp-branes. Let us assume By = 0, where ¢ is a generic
spacelike direction and O is timelike. This means that we are going to consider
a magnetic B field. At the end of this section I will briefly discuss the electric
case, to show that a zero-slope limit giving a noncommutative effective field
theory on the brane is not admitted in this case [16].

It is well-known that a constant background B field can be gauged away in
the bulk, but not on the boundary, on the Dp-brane, where it acts as a constant
magnetic (or electric) field . If rk(B) = r, we can assume r < p+ 1. We will
choose spacetime coordinates in such a way that B;; # 0 for 4,5 = 1, ...,r only
and g;; =0fori=1,..,r7j#1,...,r. The worldsheet action is

S = 1 / (g,,,,@a:z:“a“m" — 2mia/ B,-je“bc?a:c*'(’)ba:j )
>

T Ana!
1 /) X .
= —— [ g.8,a"8%" — X | Bizida 1.126
y— Sg,,, O, xH 0 2[92 jZ 0 ( )

where the second equality shows that antisymmetry of ¢ implies that the B-
term is a boundary term. X is the (euclidean) string worldsheet, 0% is its
boundary, 0; is the derivative tangent to the boundary 0¥X. Because of the
presence of Dp-branes, the boundary term cannot be eliminated. It modifies
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the boundary conditions for the open string in the directions ¢ along the brane
9ij0nz’ + 2mia’ B;j0; |os = 0 (1.127)

where J,, is the derivative in the normal direction with respect to the boundary
0%. In this equation both i and j are along the brane. We observe that for
B = 0 we obtain Neumann boundary conditions, while for maximal B rank
on the brane and B — 0o we get Dirichlet ones. In the latter case the string
extrema are constrained to a single point on the Dp-brane, since the coordinates
along the brane that describe them do not move. We can thus think that string
extrema are attached to a O-brane on the p-brane.

From now on we will consider the classical approximation to string theory.
¥ is a disk, that can be mapped to the upper half plane, described by complex
coordinates 2, Z, because of conformal invariance. The boundary conditions
(1.127) can then be rewritten as

9ij (8 — 5)2?‘7 -+ 21!'(1!.8,;'7' (8 + g)mjlzzf =0 (1128)

where 8 = &, 8 = £, Im(z) > 0. The propagator (z¢(2)z’(2’)) with the
boundary conditions (1.128) is given by [74]

(@' (2)a? (2')) = —o [g” log |z — 2"| — g" log |z — Z/|

— —I P
2 +D‘J] (1.129)

y 1.
G log|z — Z'[* + 5—06"1
+G"log |z — Z'|“ + g ——

2ra’

where

1 Y 1 1 Y
Gij = == g
(g+27ra'B)S (g+27ra'B g-—-21ra’B)

Gij = Gij — (27’(’&’)2 (Bg—lB)U

3 1 4 2 ! 1 7
6% = 2na (g+2vra’B)A (2mer) (g+27ra’B g———27ra’B)
(1.130)

and ( )g, { )a denote the symmetric and antisymmetric part of the matrix in
brackets, respectively. The constant quantities D¥ depend on B, but not on 2
and 2’. They can be fixed to a certain value by making use of the fact that B
is arbitrary. -

We are interested in taking the limit z - 7 € R, 2/ —» ' € R in (1.129).
This is because in the open string case vertex operators are to be inserted on
the boundary of the worldsheet. Taking the limit one obtains

(ZH(T)2? (7)) = =!GV log(T — T')% + %Bije('r —7') (1.131)
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The function €(7) is 1 (—1) for positive (negative) 7. The discontinuity in the
propagator can be expressed in terms of the function ¢ when convenient values
for the constants D* are chosen.

GY is interpreted as the effective metric seen by open strings. This can
be understood by comparing with the closed string case, where the propagator
between two internal worldsheet points has a short distance behavior given by

(x*(2)z (7)) = —a'g¥ log |z — 7| (1.132)

It is clear from (1.131) that, in the commutative limit § — 0, the metric G¥ is
for the open string what g% is for the closed string.

By considering the second term in (1.131), we can see that the coefficient 6%
can be interpreted as noncommutativity parameter for the coordinates along
the Dp-brane. In conformal field theory there exists a correspondence between
time ordering and operator ordering, that in this case gives

[28(7),27 (7)] = T (z*(7) 2 (77) — 2*(7) 27 (7)) = 6" (1.133)

The first equality says that the path integral of the time-ordered combina-
tion in the right hand side corresponds to a matrix element of the equal-time
commutator between z' and 2/. So we deduce that the coordinates z' are
noncommuting with parameter 6.

Correlation functions, effective action and Moyal product

Let us now consider the product of two tachyon vertex operators e (7),
e ®(r"), with 7 > 7/. By contracting with the two point function (1.131)
we obtain the short distance behavior

eP*(1) . e (1) ~ (T — T’)z""GUp‘qﬂ' e~ 3107 Pig; elPra=(ry 4 (1.134)
We observe that in the limit o’ — 0 the OPE formula reduces to * product
e T (7)e'1%(1') ~ T x % (7) (1.135)

Therefore we expect that in the limit @’ — 0 the theory should be easily
described in terms of Moyal product. However, many interesting aspects emerge
even without taking that limit.

We have shown that open strings in the presence of a constant B field on a
Dp-brane can be described not only in terms of the two parameters g/ and B%,
but also in terms of two functions G* (g, B; o) and 6% (g, B; '), representing
the effective metric and noncommutativity parameter seen by the open string
ending on the brane.

Now we are going to show that, if we choose to work with the second couple
of parameters, the dependence of the effective theory on 8 is very simple. The

40



theory with a nonvanishing € can be obtained from the one with 8 = 0 by
simply substituting Moyal * products characterized by the noncommutativity
parameter 6 to ordinary products. This is a general feature, no limit has to be
taken.

It is well-known that perturbative string theory requires the evaluation of
the path integral of vertex operators the generally take the form

V = P (8z,8%,...) 7, (1.136)

where P is a polynomial in the derivatives of z. Let us now consider the ex-
pectation value of the product of k vertex operators, with momenta p!,..., p*
and x along the Dp-brane. We are interested in determining the explicit de-
pendence on the parameter 8, while we would like to keep the dependence on G
implicit. The two-point function is the sum of two terms, one contains G only,
the other contains # only. When we contract terms containing derivatives of z,
the part of the propagator involving # does not contribute, because e(t — 7')
is a constant function. So we can obtain the 8 dependence by just taking into
consideration the contraction between exponentials

k
(T] Pr (82(mn),8%x(7n), ...) €77 %))

n=1

k
= e_% Zn)m p?o‘Jp;ne(fﬂ"Tm)<H Pn (am(‘Tn), azw(Tn), ...) eipn.x(rﬂ))G,ezﬂ
n=1

(1.137)

So the #-dependence is simply given by the phase factor

e-—-% En>mp?0ijp;."e(fn—1'm) (1138)

Because of momentum conservation ) . p™ = 0 and antisymmetry of 6, (1.138)
only depends on the cyclic order of the points 73, ..., 7, on the worldsheet bound-
ary.

By knowing the S-matrix of low energy massless particles, one can deduce
order by order in o’ an effective action for the theory. This will be expressed
in terms of a certain number of functions ®; that in general may have values
in the space of n x n matrices (think of the nonabelian gauge theory case). ®;
represents the wave function of the i-th field. By looking at (1.130) one notes
that B =04« 6 = 0. So the general form of the effective action for B = 0 will
be as follows

/ &Ptz VdetG Tr (0™ &, 6™ ,...0™ ;) (1.139)

where 0™ stands for the product of n; partial derivatives with respect to certain
unspecified coordinates.
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Now it is easy to move on to a theory with B # (0. If the effective action
is written in momentum space, then it is sufficient to insert the phase factor
(1.138). In configuration space this corresponds to replacing ordinary products
with Moyal * products (see (1.31)). To conclude, the effective action with
B # 0 takes the form

/dp"’lw VdetG Tr (0™ P, * 0™2Dg * ... x 0" Dy) (1.140)

So we have found an easy way to describe the theory with B # 0 when knowing
the one with B = 0. However we must stress that both theories have an equally
complicated o’ expansion.

The description in the zero-slope limit

The formalism of noncommutative geometry becomes much more powerful
when the zero-slope limit o/ — 0 is taken. This is somehow expected from
(1.135).

We would like to take the limit in such a way to keep the open string parameters
(G and 6 finite. This can be done by choosing

1
o ~ez =0

gij~e—0 per i,j=1,..,r (1.141)

when all the rest is kept fixed (also the two form B). Equation (1.130) becomes

gii — |~y (59%)7 perij=1,..r
g¥ otherwise
Gi: = j_(27ral)2(Bg_lB)ij peri,j=1,..,r
ij — N h .
L 9i; otherwise
1\%J . .
g4 = (F) peri,j=1,..,r 1,149
{ 0 otherwise ( )

The propagator for two points on the boundary becomes

()

(*(7)2? (0)) = 29*'3'5(7-) (1.143)

For two generic functions f and g we then obtain (see (1.135))

) %6(7’)9”

 J(2(r) 2 9@(0) : = : ¥ NV ES S f(a(r))g(a(0):  (1.144)

and thus
lim : f(z(7)) : : g(z(0)) : = : f(«(0)) * g(z(0)) : (1.145)

r—0+
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where * is Moyal product (1.28).
As a result, correlation functions of exponential operators on the disk boundary
are given by

([ 775 0™) = &4 Tasm P109p] elrn=m) g (z pn) (1.146)
n
In the general case with n functions fi, ..., fu

(I (7)) = / dzfi(@) % ... % folz) (1.147)

Adding gauge fields

Let us now add to the action (1.126) a term representing the coupling of the
string worldsheet to a gauge field A;(z). For simplicity we will take rk(A4) = 1.

i / dr Ai(2)6,7" (1.148)

Comparing with (1.126) we see that the constant field B can be replaced by a

gauge field 4; = —3 ;27, whose field strength is F = B. The bosonic string

coupled to the B-field background is invariant under the gauge symmetry
OBy = A (1.149)
modulo boundary terms. These terms can be compensated by the shift
A, = A, (1.150)

Therefore, physics will be described by the gauge invariant combination w =
F+ B.
The action (1.148) is invariant under the transformation

§A; = O;\ (1.151)

since the variation of the integrand is a total derivative.

When we consider a quantum field theory we must pay attention to the
regularization procedure. Physics of course must not depend on the particular
choice of regularization! If we choose a Pauli-Villars regularization, we obtain
an ordinary gauge theory, symmetric under the usual gauge transformation
(1.151). We can make a different choice, though. We can use a point-splitting
regularization, characterized by the fact that the product of two operators
at the same point never appears. Actually, one first eliminates the region
|7 — 7’| < 6 and then takes the limit § — 0. Now we are going to evaluate the
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variation of the path integral of the exponential of the action (1.148) under the
gauge transformation (1.151), having first expanded the exponential in series
with respect to A. The first term in the expansion gives

— / drA;(z)0,z* - [ dr’'8.+ ) (1.152)

Even though the integrand of the second factor is a total derivative, one gets
a boundary contribution for 7 — 7’ = +4. In the limit & — 0 this contribution
takes the form

—/dT s Ai(z(1))0-2t (1) + (M=(77)) — A=(7T))) :
= —-/d’l’ (A () * A = X x Ay(z)) Or 2 (1.153)

To obtain this results one makes use of the fact that there are no contrac-
tions between 0.x and z with the constant propagator (1.143). Moreover, the
relation (1.145) between operators and * product has been taken into account.

To cancel out the term (1.153), we have to modify the transformation
(1.151). So we discover that the point splitting regularized theory is not in-
variant under (1.151), but under the new transformation

SAi = A +idx Aj —iA; x )\ (1.154)

We recognize the gauge invariance (1.43) of noncommutative gauge theories
with n = 1. We have introduced the “hatted” notation A for fields in a non-
commutative algebra.

It is possible to show [7] that at a generic order m in the A-expansion of the
exponential of the action the correct gauge invariance is the noncommutative
one, when point-splitting regularization is performed.

Moreover in [7] the calculation of the expectation value of three gauge vertex
operators is performed. The result of this computation could also be obtained
by considering the following effective action as a starting point

Seﬁ' 0 ¢ [ V detG Gii’ij’TT (F’U * Firjr) (1155)

where the field strength can be expressed in terms of A as in (1.43).

We have shown that the same string theory in the limit o’ — 0 can be either
described by an effective action corresponding to an ordinary gauge theory or
by one associated to a noncommutative gauge theory, depending on the choice
of the regularization procedure. Since physics cannot depend on the way this
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procedure is performed, two results obtained with different regularizations must
be related by a redefinition of the coupling constants. In the worldsheet action
the spacetime-valued fields play the role of coupling constants, so we expect
that commutative and noncommutative effective descriptions should be related
by a redefinition of these fields.

A natural guess is that a local map A = A(A, 0A,0%A,...;0) among gauge
fields and a corresponding map X = 5\()\, O, 0%\, ...;0) among the group pa-
rameters exists. In section 1.1.2 we observed that noncommutative U (1) group
is nonabelian. This tells us that such a correspondence cannot exist. Actually,
the existence of such a map would imply an isomorphism between the ordinary
gauge group and the corresponding noncommutative one. Since an abelian
group cannot be isomorphic to a non abelian one, the first proposal for the
map is ruled out.

However, what is really needed for physics is that the gauge-transformed
field 0, A corresponds to the gauge-transformed field 45 A. Therefore it is suf-
ficient that

A(A) +55A(A) = A(A + 6,A) (1.156)
and we can look for a correspondence

A= A(A)
A= A) (1.157)

satisfying (1.156). The A-dependence of )\ solves the problem of the isomor-
phism between the two gauge groups. A relation like (1.157) does not imply
any correspondence between the two group structures. A correspondence of
the required form was found in [7] (Seiberg-Witten map). It is given in terms
of a set of differential equations describing how A and A must vary with 6 for
the physics to remain unchanged.

The results discussed in this section concerning an open string ending on a
single Dp-brane can be easily generalized to the case of a stack of n coincident
D-branes. In this case one obtains a U(n) noncommutative Yang-Mills theory
as an effective field theory on the brane worldvolume. In section 1.2.2 I have
commented on the fact that SU(n), SO(n) and Sp(n) subgroups are not closed
under Moyal product, so in principle one expects that restrictions to this sub-
groups should not emerge from the string. Actually, the case of SU(n) is ruled
out because the U(1) degree of freedom in U (n) ceases to decouple. SO(n) and
Sp(n) restrictions can instead emerge, in a very nontrivial way, by orientifold
projection, as shown in [43].
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Open string in the presence of an electric NS-NS background and the
breakdown of unitarity and causality in time-space noncommutative
field theories

In section 1.1.2 I have discussed unitarity and causality problems in noncom-
mutative field theories with time-space noncommutativity, i.e. with §% # 0.

In principle we could expect these theories to arise in string theory in the
presence of D-branes and a constant electric By; background. However, the case
of an electric background field is very different with respect to the magnetic
one. It can be shown that if the background electric field E exceeds the critical
upper value F,, string pairs are produced that destabilize the vacuum. So,
if the electric field is along the x; direction and the metric is diagonal in the
(29, ;) plane with components given by g, the bound is given by

9
In [75] it has been shown that in this case the open string parameters (G, 6)
are related to the electric field on the brane by the formula
1 E
-1
G '=——40 1.159
« 2w B, ( )
As before, to obtain the effective field theory on the brane we have to
consider a zero-slope limit a’ — 0. From the previous formula, it is clear that
if we want to keep the open string metric G finite in the limit, when o/ — 0
then also 8 — 0. Therefore, it is possible to obtain a field theory description
involving massless open string modes only, but this will be an ordinary field
theory and not a noncommutative one. On the other hand, we can keep the
noncommutativity parameter @ finite, but then o’ must also be finite and we
are considering a string theory and not a field theory.
Indeed, in [75], it has been shown that a limit can be taken where

1
—-I?-——-‘rl and g~

Ec B 2
_ ..E.)
and all the other parameters are kept fixed, in particular the open string metric
G. In this limit

(1.160)

0 = 2na’'G™1 (1.161)

is finite, so time-space noncommutativity is present. The theory obtained de-
scribes open strings in noncommutive spacetime (NCOS). Open strings decou-
ple from closed strings, therefore also from gravity. In [76] it has been shown
that NCOS theory is the S-dual description of strongly coupled, spatially non-
commutative N = 4 Yang-Mills theory (other works concerning NCOS are
listed in [77]).
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We conclude that noncommutative field theory with time-space noncommu-
tativity does not emerge as a consistent truncation of string theory. Moreover,
string theory in the presence of an electric background on the brane is unitary
and acausal effects are not present [15]. So o’ corrections to noncommutative
“electric” field theory restore unitarity and causality.

It is clear that “electric” noncommutative field theories are missing some
degrees of freedom, related to the undecoupled massive string modes, that are
necessary for unitarity and causality of the theory. In [17] it has been shown
that tachyonic particles are produced in scattering processes of noncommuta-
tive field theory with 6% turned on. Form the string theory point of view,
these particles may be viewed as a remnant of a continuous spectrum of these
undecoupled closed-string modes.

1.2.2 Generalization to the superstring in RNS and GS
formalisms

In this section I will generalize to the superstring the results obtained in the
previous section for the bosonic string. In [7] the string with N = 1 worldsheet
supersymmetry (RNS) is considered. In [54] instead the manifestly target-
space supersymmetric superstring (GS) is discussed. In both cases the open
superstring is coupled to a constant NS-NS background in the presence of D-
branes. I’'m not going to give an introduction to these two formalisms for the
superstring. For this I suggest the textbooks [3, 4]

Open RNS string in the presence of a constant B-field and D-branes

In [7] the following action for the RNS string coupled to a constant magnetic
NS-NS background field B¥ is considered

S = W /d2z {6:1:“63:,, + WYMo, + iph O, — 2mia ,Je“ba :U‘Bba:’}
(1.162)

In the directions ¢, j along the brane the following boundary conditions are
imposed

9i; (0 — 6)3:-’ + 27ra'B,J (0 + 6)3}3|
9ij ('ﬁb] '¢’J) + 27a/ zJ("l’J +"/’J)|z- = (1.163)

The first condition can be naturally obtained by requiring that there are no
boundary terms in the Euler-Lagrange equations of motion. The second one, in-
volving fermions, is obtained by requiring consistency under supersymmetry of
the boundary conditions, but cannot be obtained from the action (1.162). Actu-
ally, one finds an inconsistency when requiring both the vanishing of boundary
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terms in the variation of the action and the compatibility of boundary con-
ditions with supersymmetry. In [78] (see also [79] for a nice summary of the
methods used) it has been shown that boundary terms can be added to the ac-
tion (1.162) so that the supersymmetric boundary conditions (1.163) follow as
boundary contributions to the field equations. Therefore, the theory described
by the action § + Sp, with

1 -
S=—3 f @22 B B 00" (1.164)

and by the boundary conditions (1.163) is invariant under the rigid N = 1
worldsheet supersymmetry transformations

5z = —in(y* +¢*)

6yt = noa’
Y = nox* (1.165)

where the parameter 7 is a worldsheet spinor and a spacetime scalar.
In [7] the open string is coupled to a gauge field A by adding to (1.162) the
following boundary term

La=—i / dr (A;(z)0,a* — iF;;3°%7) (1.166)

where Fj; = §;A; —0;A; is the ordinary field strength (we are considering U(1)
case for simplicity) and

W= o (4 + ) (1167

The variation of (1.166) under the supersymmetry transformations (1.165) is a
total derivative

§ / dr (Ai(z)8,z* — iF;; T 07) = ~2ip / dro,(A; V") (1.168)

Exactly as in bosonic case, the theory is regularized by making use of a “point
splitting” technique and extra boundary terms are produced. Expanding the
exponential of the action to first order in A we can compute the variation of
the path integral up to first order in L4

i/dr/dr' (AiBra* (1) — iF;; U (1)) (2608, Ay T* (")) (1.169)

Extra boundary terms appear when 7/ — 7% and 7/ — 7~. If the following
interaction term is added to the action

/dTA,; * Aj‘l’i‘l’j (T) (1170)
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the extra terms are cancelled by its variation under (1.165). So we deduce that
L 4 must be changed into

—i / dr (A,-(a:)@,-:r:i --iﬁ,-j\p'\lf-"’) (1.171)

being F' the noncommutative field strength. If we had performed a Pauli-Villars
regularization, instead, (1.166) would have been invariant under worlsheet su-
persymmetry (1.165) and we would have ended up with field strength and gauge
symmetry of ordinary U(1).

Summarizing, in [7] it has been shown that the RNS open string in the
presence of a constant B-field and D-branes can be described, in the zero-slope
limit o’ — 0, either by ordinary gauge theory or by noncommutative gauge
theory on the brane, depending on the choice of the regularization prescrip-
tion. The two different descriptions are related by a Seiberg-Witten map, as
in bosonic case.

In [78] a different approach to the problem of coupling a gauge field to
the open string in the presence of the B field is presented. The coupling
to the A field is reconsidered in a way to preserve both shift symmetry and
supersymmetry. A coupling term different with respect to (1.166) is found that
is not supersymmetric by itself, but only together with the rest of the action
S + Sy and after making use of the corresponding boundary conditions.

Open GS superstring in the presence of a constant B-field and D-
branes

The Green-Schwarz superstring has manifest target space N = 2 supersym-
metry. The target space is a ten dimensional superspace described by the
coordinates (z#,0'), with ¢ = 1,2. When the theory is coupled to a certain
background and D-branes are present, in principle target space fermionic co-
ordinates could be involved in noncommutativity. In [54], it has been shown
that this is not true in the simple case of a constant NS-NS background. In
this case only bosonic coordinates become noncommutative. In section 1.2.4
we will see that fermionic coordinates are indeed involved in noncommutativity
when a constant R-R background is present.

The action for the GS superstring coupled to a constant NS-NS background
in flat spacetime is given by

Ses =-— 27:0, d*¢ {IL,*11% g,,, + 2i€” 6;z*(0'T,0,;0" — 6°T,6,6%)
—-2€ij (91P“6,-91)(§2I‘,,8j02) -+ e':jaix“c’)jx”Bw} (1.172)
where

Hf = 8,':1:“ — 29-1-\“6-,,9 (1173)
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are the supersymmetry invariant one-forms. It is clear from (1.172) that only
bosonic coordinates couple to B,,. However, boundary conditions along the
D-brane must also be considered before we can deduce that fermions are not
affected by the presence of the background.

We find that bosonic coordinates must satisfy the same boundary conditions
we found in the bosonic case (1.127). The two fermionic coordinates ' and 62
must satisfy 62 = I'g6! on the boundary, where I'g is a suitable B-dependent
matrix satisfying I'% = 1. So the action (1.172) with these boundary conditions
is invariant under the supersymmetry

oxH = 1el'#0
00 = ¢ (1.174)

only if the supersymmetry parameters €* also satisfy ¢2 = I'ge!. So the D-brane
breaks half of the supersymmetry.

In [54] an explicit computation is performed to dermine the coordinate al-
gebra on the brane. Following the method introduced by Chu and Ho [80], the
authors deal with boundary conditions along the brane by treating them as con-
straints on phase-space. The presence of these constraints makes it necessary
to consider Dirac brackets instead of Poisson brackets. Working in a light-cone
gauge, in [54] it was shown that the fermionic variables surviving the gauge fix-
ing procedure satisfy a standard anticommutative algebra and only the bosonic
sector is affected by the presence of the constant NS-NS background, exactly
as in [7]. So it is clear that if we want target-space fermionic variables to be
deformed, we must consider a different background.

1.2.3 Noncommutative selfdual Yang-Mills from the
N = 2 string

In this section I will briefly introduce the N = 2 string and its peculiar proper-
ties. Referring to [81], I will apply the analysis outlined in the previous section
to the open N = 2 string in the presence of n spacefilling D3-branes and a con-
stant B field to show that it coincides at tree level with U(n) noncommutative
selfdual Yang-Mills.

The N = 2 fermionic string is characterized by an N = 2 worldsheet su-
persymmetry. For the string to be critical, the target space must be four-
dimensional with signature (2,2). Its propagating degrees of freedom are the
embedding coordinates z*# and the RNS Majorana spinors ¥*, u = 1,2,3,4.
These matter fields are coupled to the N = 2 supergravity multiplet. Using
symmetries of the action, one can show that all the gravitational degrees of
freedom can be gauged away and in superconformal gauge the action can be
written as follows

1 _
S=—— d%o n*P (Ot px” + )" palpy”) guv (1.175)
drd Jx
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where g, = (diag(+1,+1,—1,-1) (¢ > 0 scaling parameter) is the metric in
R(22), This action has a residual symmetry given by the N = 2 superconformal
group, that also contains rigid N = 2 supersymmetry corresponding to the
transformations

Sz* = g P* + Jhe”
¥ = —ip® Ozt er +iJL p*0nz” €o (1.176)

where J is a complex structure compatible with the metric g, JY +J; ga, = 0
(with our flat metric J3 = -J2 = J} = —J§ = 1).

It has been shown that the open N = 2 fermionic string at tree level is
identical to self-dual Yang-Mills in 2 + 2 dimensions [82]. The absence of
massive states in the physical spectrum is related to the vanishing of all tree-
level amplitudes beyond three-point. The vanishing of amplitudes implies the
existence of symmetries and vice-versa. Since an infinite number of tree-level
amplitudes vanish, we expect an infinite number of symmetries to be present.
These were described in [83, 84].

The N = 2 string seems to be a master theory quantizing integrable systems.
It is well-known that most integrable models in d = 2 and d = 3 can be
obtained by dimensional reduction from selfdual Yang-Mills. In [82] a possible
definition for integrability in d = (2,2) has been proposed, inspired by the
peculiar properties of the tree-level S-matrix of the N = 2 string. ‘A system
in d = (2, 2) would be classically integrable if the n-point tree-level amplitudes
vanish beyond n = 3. This definition is reminiscent of the one that can be
given in d = 2 concerning factorization of the S-matrix.

The N = 2 open fermionic string can be coupled to a two-form NS-NS
background B field. In [81] it has been shown that additional boundary terms
must be added to the action for the boundary conditions obtained from the
Euler-Lagrange procedure to be N = 2 supersymmetric, exactly as in the case
of the N = 1 string [78]. Moreover, the presence of the second supersymmetry
implies a nontrivial constraint on the B field. This is the compatibility condi-
tion with respect to the complex structure B,,J§ — J/ By, = 0, i.e. B must
be Kéahler. The consistent N = 2 gauge fixed action is then

_Zw_lo? / o [(n*P guy + €*P2ma’ B, ) Bax*8pz”
>

+ (guv + 27’ Byy) i'p”“paaa":bu] (1.177)

This action functional cannot be obtained from a superspace formulation.

In [81] it has been shown that the open N = 2 string dynamics in the pres-
ence of n coincident D3-branes filling the target space is modified by a magnetic
B field so that the open string sees an effective metric G, and a noncommuta-
tive algebra on the brane characterized by a 6*” parameter. The starting point
for the analysis is again the expression for the open string correlators (1.129).
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A particular choice of the SO(2,2) generators allows us to write the matrices
J and B in terms of the generators of the U (1) x U(1) subgroup of SO(2,2),
so that in complete generality the NS-NS field is expressed in terms of the two
quantities B, and B; as

Bm = -—Bgl = Bl B34 = —B43 = Bg (1178)

In this basis the open string effective metric G*¥, noncommutativity parame-
ter #*¥ and coupling GGy can be obtained and have expressions similar to the
corresponding ones for the ten-dimensional string (1.130).

Exactly as in the ten dimensional case a zero-slope limit can be taken that
keeps the open string parameters finite. In this limit it has been shown that
tree-level three-string amplitudes can be obtained from the noncommutative
version of self-dual Yang-Mills in Leznov gauge (this depends on the choice of
the Lorentz frame, one can as well obtain Yang gauge). The corresponding
lagrangian is given by

L 1 4 s
L= EG“ tr (0,® *0,®) + —geaﬁtr (<I> * Opa D * Boﬁ,(b) (1.179)

where GH*¥ = e’;e‘){nf’ A is the open string effective metric and 0 is the corre-

sponding derivative defined by 5;; = e;0,. This result is deduced as in the
ten-dimensional case by noting that the effect of turning on the B-field is the
multiplication of any open string amplitude by a phase factor (1.138). This
corresponds to replacing ordinary products with Moyal products in the world-
volume effective field theory.

As a nontrivial check, it has also been shown that the tree-level four-point
function for U(n) noncommutative self-dual Yang-Mills in Leznov gauge van-
ishes. Therefore, the natural deformation of selfdual Yang-Mills in Leznov
gauge seems to preserve the nice scattering properties of the original, com-
mutative theory. We have seen that the vanishing of tree-amplitudes beyond
three-point defines integrable systems in d = (2, 2) exactly as the factorization
of the S-matrix is a definition of a an integrable system in d = 2. So the result
in [81] suggests that noncommutative selfdual Yang-Mills is integrable.

This result will be important for the further developments considered in
[37], where, in collaboration with O. Lechtenfeld, L. Mazzanti, S. Penati and
A. Popov, I have constructed a noncommutative version of the sine-Gordon
theory with a factorized S-matrix, that is obtained as a dimensional reduction
of (2,2) selfdual Yang Mills.

1.2.4 Non(anti)commutative field theories from the co-
variant superstring

In this section I would like to Jiscuss the superstring origin of the non(anti)-
commutative superspaces introducea in sections 1.1.5, 1.1.6, 1.1.7.
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Up to now I have discussed in detail the case of the open bosonic string in flat
space in the presence of a constant NS-NS background field and Dp-branes and
I have shown that the presence of the background induces a noncommutativity
in the brane coordinate algebra. I have generalized this result to the RNS
superstring, that is characterized by an N = 1 worldsheet supersymmetry and
happens to exhibit target space supersymmetry after a consistent truncation
of the spectrum (GSO projection) is performed. This theory is not manifestly
supersymmetric in target space. I have also shown how the bosonic results can
be generalized to the manifestly target-space supersymmetric GS superstring.
In this case we have seen that the presence of a constant NS-NS background
does not modify the anticommutators between fermionic coordinates. Finally,
I have generalized the bosonic string results to the N = 2 string, characterized
by an N = 2 worldsheet supersymmetry. In all these cases a constant NS-NS
two-form background has been considered.

In this section we face the problem of finding a suitable superstring back-
ground that could induce, in the presence of D-branes, a nonanticommutative
deformation of target space fermionic variables, exactly as the NS-NS B-field
induces a deformation of bosonic target space coordinates. So target space must
be a superspace and thus we need to consider a manifestly supersymmetric ver-
sion of the superstring. An example of this is the Green-Schwarz superstring
[4] we considered in the previous section. It lives in a ten-dimensional super-
space and its action is manifestly supersymmetric. Unfortunately, because of
its complicated worldsheet symmetries, its action in a flat background is not
quadratic, it cannot be quantized in a Lorentz-covariant way and this renders
the formalism terribly difficult to handle.

Recently [30] a new proposal was made for an action describing the ten-
dimensional superstring, that is manifestly target-space supersymmetric and
is quadratic in a flat background*. In this formalism the R-R field strengths
are all contained in a bispinor P*® where the two indices may have opposite
or same chirality depending whether we are in IIA or IIB superstring theory.
It is natural to think that, as much as the B*Y background is related to a
noncommutative deformation [z#,z”| = i6*Y, the P** background may be
related to a {6%,0%} = C*® deformation.

In a series of papers [27, 28, 53, 29| it has been shown that this is indeed the
case. In the first three papers the four-dimensional theory obtained from type
IT ten-dimensional superstring compactified on a Calabi-Yau three-fold [85, 86]
has been considered, while in the last paper the full ten-dimensional superstring
theory [30, 87] has been discussed. I will consider the four-dimensional case
first, since, compared to the covariant quantization of the superstring in ten
dimension, the formalism is much simpler in this case, because of the smaller
amount of manifest supersymmetry.

4 An introduction to this formalism will be given in chapter 3.
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The relevant part of the lagrangian density is
£ = 505° B, + paBb® + padO* + Padl* + ps00 (1.180)

where po Po Pa and Ps are conjugate momenta to the superspace fermionic
variables 6 6 8% and 6% respectively®. We indicate with dots target space
Weyl spinor chirality and with bars worldsheet holomorphicity. The four di-
mensional action corresponding to (1.180) describes a free conformal field the-
ory. The fields z, 6, 6, p and p satisfy free equations of motion, second order
for £ and first order for fermionic variables. This theory exhibits an V = 2
target-space supersymmetry®.
It is useful to apply to (1.180) the following change of variables

yao'z — xad + ,waac't + iéaéc’z

o 1 3
Qo = —Po = 0%0%aq + 50705000 — 50(026°0)
da = pi — i0°0as — 0505005 + %a(oﬂeﬁ) (1.181)

and analogous for §, and dg. In the first line the reader will recognize the
change of variables (1.181) introduced in section 1.1.7 to obtain Seiberg’s de-
formed superspace from my N = 2 non(anti)commutative superspace. This
transformation was first introduced by Vafa and Ooguri in [27]. In the second
and third lines I have written the worldsheet versions of the chiral supersym-
metry charges and superspace covariant derivatives,

d ~ 0
Qa - '55‘;8 ) Qa - 5‘5;’ ;

(Qs), Qa» Do and D, are dressed in this representation). So, ¢ and d represent
the conjugate momenta to @’s at fixed y exactly as p’s represent the same
conjugate momenta at fixed z.

The lagrangian (1.180) can be rewritten in terms of the new variables as
follows

SBerkovits covariant formalism is first order for fermionic variables, whose conjugate mo-
menta are introduced as independent fields. This was first done by Siegel in his approach to
the GS superstring [88]

51t is interesting to note that, if one considers the undotted fermions only, the model can
be regarded as a topological B-model on euclidean four-dimensional space and the topological
BRST symmetry is strictly connected to the susy transformations generated by the dotted
charges Q4 and Qg .
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1 C _ _ _
L= §6ya°‘8yaa — o 00° + dy00% — §,00% + dy00% + total derivative
(1.183)

In the presence of D-branes, one obtains the fermionic boundary conditions

90!
ed
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|
IQ l

0:6_! ) Qo
< 3 dd

I
Q.

5 (1.184)

that only preserve half of the supersymmetry, generated by the charges Q. +Qo
and Qg + Qs.

It is possible to couple the action to the R-R background described by the
selfdual graviphoton field strength

FoB £ O; F88 = (1.185)

Only in cuclidean signature it is possible to turn on the selfdual part of the
super-two-form field strength F*° while setting the antiselfdual part F*° to
zero. This is the stringy counterpart of the discussion we presented in section
1.1.5 for nonanticommutative superspaces and works exactly the same way.

It is possible to show that the background (1.185) is an exact solution of the
full nonlinear string equations of motion and that there is no backreaction to
the metric. This can be seen from the fact that a purely selfdual field strength
does not contribute to the energy momentum tensor and does not involve the
dilaton field in its kinetic term.

In the action the graviphoton field strength couples to the worldsheet su-
persymmetry currents g, as follows

] F*Pq.q3 (1.186)

This is actually the graviphoton integrated vertex operator 7, that in this case
gives the whole dynamics since there is no backreaction.

We are interested in the effect of the background on the dynamics, so we
can concentrate on the (q, ) sector, with the lagrangian

1 ) ~ Qpo o =
L= = (~4a00% ~ 3a0F* + o F £ 9ads) (1.187)

We can integrate out the fields ¢, and §, by using their equations of motion

06 = a'Faﬁ(jg

"In chapter 3 I will give a detailed derivation of the corresponding vertex operator in the
ten-dimensional case.
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96* = —a'F*Pq, (1.188)

and obtain the effective lagrangian

1 _
Log = 80> 0P 1.189
ff (algF)aB ( )

We obtain boundary conditions for both fermionic variables and their deriva-
tives

6% = 6%
86> = —Bg° (1.190)

The first condition breaks half of the supersymmetry on the boundary. The
second one corresponds to the equality of supersymmetry charges g, = ¢, on
the boundary (see the equations of motion 1.188). The boundary conditions
for derivatives of @ has first appeared in [89] for the GS superstring. In that
case they were additional, unexpected conditions, required by consistency of
boundary conditions under kappa-symmetry. They were shown not to overcon-
strain the system, because they arise as restrictions of the field equations to the
boundary. In this case instead the effective action (1.187), obtained by inte-
grating out the fermionic conjugate momenta, is second order for the fermions.
A boundary condition for derivatives of 8 naturally arises from requiring that
there are no surface terms in the Euler-Lagrange equations of motion.
One can determine the fermionic propagators

2 _
o “FopP Z—w

(0°(2)0° () = &~ log =2
o 12 paf 5 —
(0 (2)0° (w)) = &5 log ~—2
~ o*Fob (72— w)(Z — )
(6%(2)0° (w)) = — log — (1.191)
2me (z — )2
On the boundary we get
12 paf
(610 () = E—e(r — 1) (1.192)
corresponding to the algebra
{6%,0°) = o/*FoP (1.193)

Since the coordinates y and @ are not affected by the background coupling,
they remain commuting. This means that the algebra written in terms of the
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original coordinate z involves nontrivial terms in [z, z| and [z, 0], as required
by consistency and first shown in my paper [26].

In [27] the deformation (1.193) was not welcome. It has been shown that
when the open superstring is also coupled to a constant gluino superfield on
the boundary, by adding the following term to the action

%Waqa (1.194)

the superspace deformation (1.193) is undone and supersymmetry is restored
if the gluino fields satisfy the deformed algebra

{(Wy, W} = FoP (1.195)

Instead, in [28] the supersymmetry-deforming algebra (1.193) was accepted and
it was shown that in the zero-slope limit the N = —é- theories we discussed in
section 1.1.7 naturally emerge in string theory.

The analysis pursued in 28] was further developed in [53]. In this paper it
was shown that the constant selfdual background deforms the original N = 2
superPoincaré algebra into another algebra that has still eight supercharges,
four of which are unaffected by the background. In the presence of a D-brane,
N = %— supersymmetry is realized linearly and the remaining N = % is realized
nonlinearly. This interpretation of the new terms arising in the supersymmetry
algebra is similar to the original one we gave in [26]. There we didn’t consider
the new terms arising in the supersymmetry algebra as symmetry-breaking
terms. We considered them as symmetry-deforming terms and we recast them
in the known form of a q-deformation.

It is very interesting to note that if both selfdual and antiselfdual field
strength are turned on, there is a backreaction that warps spacetime to eu-
clidean AdS; x S%. The string in this background has been studied in [90]
and the structure of the action closely resembles the pure spinor version of

the superstring in AdSs x S° [87]. The action becomes quadratic in the limit

Fa8 5 resembling the Penrose limit in the ten-dimensional case. N = %

super Yang-Mills on euclidean AdS> x $° has been studied in [91].

A comparison to noncommutativity in the bosonic case is due. First of all,
we notice that the superspace deformation (1.193) vanishes in the zero slope
limit o’ — 0 unless we also take the limit F*# — o0o. This in principle can
be done since F# is an exact solution to the string equations. Moreover, it is
interesting to note that, in contradistinction to the bosonic case, where the B,
term only affects the boundary conditions, the F¢? term only affects the bulk
equations of motion. It would be nice to see if there is a duality transformation

connecting the two cases 8.

81n [92] S-duality was considered in the context of noncommutative geometry in the pres-
ence of both NS-NS B-field and R-R potentials.

57



The four-dimensional results in {27, 28] have been generalized to ten dimen-
sions in [29]. The main difference between the compactified four dimensional
case and the full ten dimensional case is that a constant R-R field strength back-
ground, represented by a bispinor P®9, is not a solution of the ten-dimensional
string equations of motion (full nonlinear type II SUGRA equations), but it
is only a solution of the linearized equations. Therefore in this case there is a
backreaction. Nevertheless, it is possible to compute the corresponding vertex
operator to be added to the action. The resulting theory is not the complete
sigma model. In [29] it was considered the general case where a NS-NS con-
stant B¥¥, a constant R-R field strength P** and constant gravitinos ¥% ¥%
are turned on. The resulting algebra is characterized by the usual nontrivial
bosonic commutator induced by B, a nontrivial anticommutator between ¢
and % induced by the R-R field strength and nontrivial commutators between
the bosonic coordinate and the two fermionic ones induced by the two grav-
itinos. It would be nice to perform an analogous analysis in the pure spinor
version of the superstring in a p-p wave background [93]. In this case the
whole sigma model action is known that involves a constant R-R field strength
coupled to fermionic variables in a similar way with respect to (1.189).

After the superspace deformation of a theory is known, one can integrate
out the fermionic variables to obtain the component formulation of the the-
ory. It has been shown in [67] that the component formulation of N = 3
super Yang-Mills theory can be obtained from standard RNS type IIB string
theory compactified of a Calabi-Yau three-fold in the presence of a constant
graviphoton background with a definite duality. A graviphoton background can
be obtained in euclidean space by wrapping a R-R 5-form around a 3-cycle of
internal Calabi-Yau space. Even if in the general case the RNS is not suitable
to deal with a R-R background, in the constant graviphoton field strength case
there are simplifications that allow for the computation of tree-level scatter-
ing amplitudes on the disk with the insertion of R-R vertex operators. The
method used in [67] is intrinsically perturbative, but the results are exact in
the o — 0 limit. So the nonanticommutative N = %— super Yang-Mills action
in its component formulation is recovered from RNS string computations.

1.3 (Generalization to non-constant backgrounds

In this section I would like to discuss some results generalizing the connection
between string theory and noncommutative geometry to the case of a noncon-
stant B field. Let us introduce the notation w = F' 4+ B for the gauge invariant
combination in terms of which the physics of an open string in the presence of
Dp-branes, gauge field A* and background B field is described. The latter
will not be constrained to be constant from now on.

We have to consider three possible situations, of growing complexity
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e constant w
e nonconstant w, dw = H =0
e nonconstant w, dw=H #0

We have discussed the first case, corresponding to flat D-brane and flat back-
ground, in sections 1.2.1, 1.2.2, 1.2.3 . Summarizing the results in [7], in this
case the Dp-brane worldvolume is described in terms of noncommuting coor-
dinates. w defines an associative symplectic structure associated to the non-
commutativity matrix 6. In the limit o/ — 0 physics can be described by an
effective theory which is a gauge theory deformed by the noncommutative as-
sociative Moyal product. In the limit o' — 0 the noncommutative parameter
g is given by the inverse of w (see 1.142).

The second case has been studied in [94]. It describes a physical situation
with curved Dp-branes in a flat background. The worldvolume deformation is
decribed by Kontsevich x product, where the noncommutativity parameter is
given by the inverse of w, as before. In this case w is not constant anymore,
so neither is  and the correct product is Kontsevich x. w™! is still a Poisson
structure on the manifold, that now exhibits a coordinate dependence such
that associativity is satisfied. The formula (1.147), valid in the limit o’ — 0,
is generalized to

(H fi (x(13))) = [V(w)dx fi*x...x fn (1.196)

being * Kontsevich associative product.

The last case, discussed in [95], is a further generalization to the case where
the background is also curved. w is not a Poisson structure anymore, since
associativity is lost. This is related to the emergence of a second geometrical
object playing a role in the physics of the system. This is the 3-form H = dw,
that has been shown to be the parameter governing nonassociativity. However,
it is always possible to give a description of the Dp-brane worldvolume in terms
of a Kontsevich-like product. Noncommutativity is still governed by w=! and
nonassociativity by H.

In [95] a metric g*¥ is considered that is a small perturbation from the flat
metric of section 1.2.1. The string action in a generic curved background is
still of the form (1.126), where the target space metric is g*¥(z), describing a
curved spacetime. It is possible to expand the action around the flat spacetime
metric as follows

S=8,+5+.. (1.197)

where Sy represents the action in a flat spacetime (1.126) and S; is the first
correction due to the presence of a small curvature.
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In situations where a curved background is present, it is convenient to
choose special coordinates, known as Riemann normal coordinates, defined
along geodesics in target space starting from z# = 0 (see for instance [96],
where the normal coordinate expansion of the metric is introduced in the con-
text of sigma models and string theory). In terms of these coordinates the
Taylor expansion of every tensor around z* = 0 is expressed in terms of covari-
ant tensors evaluated at the origin. In particular, the expansion for the metric
up to second order in z is given by

() = G = 3 Rupno?2” + O(z%) (1.198)
where R,,, - is the curvature tensor. The analogous expansion for the B field,
in radial gauge, is

1 1
Bij (.'13) = Bij -+ §H¢jk$k + Zleijkkal -+ 0(333) (1199)
with H = dB.
In [95] a first order approximation in z is applied. The action considered is
S=5+5+SsB (1.200)

where Sp + Sp is the action (1.126) for flat g and constant B, while S; is the
first order correction in z, deriving from the B expansion (1.199)

S1=—7 / Hijpa*e® 0,0 0pa (1.201)
)

S1 is treated as an interaction term with respect to the free theory, described
by the action Sj.

The perturbative analysis with the interaction S, gives the following results.
In the limit o’ — 0 correlators are expressed in a form analogous to (1.196)

(1 #: () = / VW) 'z (fr e ... fa) (1.202)

i=1

where e is Kontsevich-like nonassociative product, whose definition is com-
pletely analogous to (1.61, 1.62), with P(z) = w™!(z). The relation (1.56)
is not valid, though, for the noncommutativity parameter P = w™! and the
violation of associativity is proportional to the 3-form H as follows

(feg)eh—fe(geh)= -é-PimPf”P“Hmn,a,- f0;90kh + ... (1.203)

Note that (1.202) is problematic, because of the nonassociativity of e. It is

necessary to specify the positions of the points 7; on the boundary of the disk,
so invariance under cyclic permutations is lost.
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The coordinate algebra is given by
[z, 27, = i PY(z) (1.204)

showing that the role played by the two-form w is unchanged in the general
curved case. The relations concerning the nonassociativity of the coordinate
algebra are instead

(z' 0 27) 02" — 1 0 (27 0 2*) = %P*’mp-f"P“Hmm (1.205)

[2*, [27, 2"]e]e + [2%, [2*, 27]e]e + [27, [2¥, 2%]e)e = —P*™PImP*H, .1 (1.206)

These formulas further clarify the role played by the 3-form H as the parameter
governing nonassociativity.

The deep relationship between spacetime geometry and nonassociativity
on the D-brane worldvolume discovered in [95] is very interesting, showing
that nonassociative geometry [97] also plays a role in the new developments
regarding spacetime pioneered by string theory.

It would be nice to generalize the results discussed in this section to the
manifestly target space supersymmetric string (in Green-Schwarz or Berkovits
formalism) to see whether a Kontsevich-like product similar to the one I pro-
posed in [26], in collaboration with D. Klemm and S. Penati, may emerge in
the presence of a nontrivial super-three-form field strength background .

It would be also interesting to consider a generalization of the discussion
presented in section 1.2.4, where the R-R field strength is not constant. In
particular, when the R-R field strength has a linear dependence on the bosonic
coordinates, it would be nice to investigate whether Lie algebraic deformed
superspaces, characterized by the fermionic anticommutators

{6%,6°} = 7Pz (1.207)

can appear. These kind of superspace was first studied in [33], in a different con-
text. There, the authors considered the possibility that bosonic spacetime had
a fermionic substructure, given by the relation (1.207). In [32], in collaboration
with P. A. Grassi, I have started to consider this problem by computing the
vertex operator for the Berkovits covariant superstring for a R-R field strength
with a linear dependence on the bosonic coordinates. This will be discussed in
detail in chapter 3.
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Chapter 2

Noncommutative
deformation of integrable

field theories

2.1 A brief introduction to selected topics con-
cerning two-dimensional classical integrable
systems

Disclaimer: This section is not a thorough introduction to the vast field
of integrable systems. 1 will only review topics needed in the two following
sections, where my study of the noncommutative sine-Gordon system will be
presented. In most cases I will not give details and I will just give references
for the interested reader. Moreover, for any single topic in this section I will
exhibit a single example, the ordinary sine-Gordon model.

2.1.1 Infinite conserved currents and the bicomplex ap-
proach

In classical mechanics a system described by n degrees of freedom is completely
integrable when it is endowed with n conserved currents. In classical field
theory, a system with an infinite number of local conserved currents is also
said to be integrable. This is a property of the equations of motion. For some
integrable system an action is also known that generates the equations by an
Euler-Lagrange procedure, but this is not true in general. Indeed, it is true for
the sine-Gordon model that I will consider in the rest of this chapter.
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By making use of the bicomplex technique [98] it is possible to construct
second order differential equations that are integrable. Moreover, with this
approach it is very easy to generate the corresponding conserved currents by
an iterative procedure.

In this section we use euclidean signature and complex coordinates

2= -—\}—5(:1:0 rigl) ; 2= —%(mﬂ _iz) (2.1)
A bicomplex is a triple (M, d, §) where M = ®,>oM" is an Ny-graded associa-
tive (but not necessarily commutative) algebra, M? is the algebra of functions
on R? and d,0 : M™ — M"t1 are two linear maps satisfying the conditions
d? = 6% = {d,6} = 0. M" is therefore a space of r-forms. Let us consider the
linear equation

5¢ = lde (2.2)

where [ is a real parameter and { € M? for a given “spin” s. Suppose a
nontrivial solution £ exists. Expanding it in powers of the given parameter [ as

o0

§=) 1¢¥ (2:3)

i=0
one obtains the following equations relating the components £(9) € AM*
560 =0 ;  8¢® =geG-) 0 4>1 (2.4)
‘Therefore we obtain the chain of §-closed and d-exact forms
20+ = gel) = g¢G+) >0 (2.5)

For the chain not to be trivial £(%) must not be §-exact. When the two dif-
ferential maps d and § are defined in terms of ordinary derivatives in R?, the
conditions d? = §% = {d,d} = 0 are trivially satisfied. Therefore, the possi-
bly infinite set of conservation laws (2.4) is not associated to any second order
differential equation and it is not useful for our purpose.

However, it is possible to gauge the bicomplex by dressing the two differen-
tial maps d and é§ with the connections A and B as follows

Dg=d+A : Ds=6+B (2.6)

The flatness conditions D% = D% = {Dy, Ds} = 0 are now nontrivial and give
the differential equations

F(A)=dA+A*=0
F(B)=0B+B*=0
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G(A,B)=dB+dA+{A,B} =0 (2.7)
Exactly as before we can consider the linear equation corresponding to (2.2)
Dé = (Ds—1Dg)é=0 (2.8)
The nonlinear equations (2.7) are the compatibility conditions for (2.8)
0="D%* = [F(B)+1*F(A)-IG(A,B)] ¢ (2.9)

Supposing that the linear equation (2.8) admits a solution £ € M?® and expand-
ing it as £ =) ;o 1:¢%) one obtains the possibly infinite chain of identities

Ds¢©@ =0 ; Dgt® =DgeC-1 - i>1 (2.10)

from which Ds-closed and Ds-exact forms Z(* can be constructed, when £(©
is not d-exact. Therefore, with a suitable choice of A and B, it is possible to
construct interesting second order integrable differential equations from (2.7)
and their conserved currents from (2.10). In general the currents £(!)are non-
local functions of the coordinates, since they may be expressed in terms of
integrals, but it is possible to extract local currents from them that have a
physical meaning,.

As an example, we can derive the ordinary sine-Gordon equation from this
formalism. Let M = My ® L, where My is the space of 2 x 2 matrices with
entries in the algebra of smooth functions on ordinary R? and L = ®2_,L
is a two-dimensional graded vector space with the L! basis (7,0) satisfying
72 =02 = {r,0} = 0. If we take the differential maps

Sf=0fr—Rfec ; df=-Sfr+0dfo (2.11)

with commuting constant matrices R and S, then the conditions d? = §% =
{d,d} = 0 are trivially satisfied.

To obtain nontrivial second order differential equations we can gauge the
bicomplex by dressing d as follows

Dyf = G~'d(Gf) (2.12)

with G generic invertible matrix in Mg. The condition D% = 0 is trivially sat-
isfied, while {4, D4} = 0 yields the nontrivial second order differential equation

8 (G~'8G) = [R,G'SG] (2.13)

With the choice 0 0
R=25=2A( ) (2.14)
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and taking G € SU(2) as follows

o) . P

COS « SiN =

_ x02® __ 2 2
G = et _.( 2 @) (2.15)

-Sll'l-.-‘,- COS-2-

we obtain the sine-Gordon equation from the off-diagonal part of the matrix
equation (2.12) )
00P = 4ysin® =0 (2.16)

The diagonal part instead gives an equation which is trivially satisfied.

From this derivation it is clear that the bicomplex approach can be naturally
extended to noncommutative space, by replacing ordinary products with Moyal
products in the whole discussion. In particular Dy = d + Ax and Ds = 0 + B*
and equations (2.7) are generalized accordingly. This will be discussed for the
sine-Gordon model in section 2.2.4.

Since in the noncommutative case the group SU(2) is not closed any more
and must be extended to U(2), as we have seen in section 1.1.2, it is natural
to expect that the noncommutative generalization of this construction for the
sine-Gordon equation will be nontrivial.

2.1.2 Reductions from selfdual Yang-Mills

The self-duality equations for Yang-Mills fields in R* with signature (+ + ++)
or (++ ——) [116]

1
EEWWFM = Fu

Fu, =0,A, —0,A, + AL, A)] (2.17)

are a famous example of nonlinear integrable equations in four dimensions. For
SU(n) gauge theory the potentials A} are real. It is possible to consider an
analytic continuation of A}, into complex space parametrized by the complex
coordinates y, ¥, 2, 2. The selfduality equations (2.17) can be rewritten in the
form

where the last sign is + is the euclidean case and — in the kleinian case. The
first equation in (2.18) implies that the potentials A,, A, (Az, Az) are pure
gauges for fixed 7, Z (y, 2), therefore two n x n complex matrices B and B can
be found such that

Ay=B~'6,B ; A,=B7'9,B
Ag=B7'9;B ; A;=B7'9:B (2.19)

Defining J = BB~ € SL(n,C), the last equation can be rewritten as
95(J~18,J) £ 8:(J18,J) =0 (2.20)
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describing selfdual Yang-Mills in Yang formulation. This equation resembles
the sum of two WZW model equations (see section 1.1.3) involving (y, %) and
(2, z) variables, respectively. Therefore Yang equation (2.20) can be obtained
from the following action

S = /dz'ydzz tr(GyJagJ—1)+/d2yd2z tr(0,J0;J ")
1
- /dzyd%/ dp tr (J_lapJ[j"laﬁj’ j-—layj])
0

1
_ /dzydzz/ dp tr (J“lapf[f“lazf, j—lazj])
0 (2.21)

where J(y,7,2,Z,p) is a homotopy path satisfying J(p = 0) = 1 and J(p =
1) =J. |

Ward conjectured that all integrable equations in d = 2 can be obtained
as dimensional reductions of selfdual Yang-Mills equations [126], so that the
latter play the role of a universal integrable system. Since then the conjecture
has been tested on many integrable systems [117] whose Lax pair can also
be obtained by reduction from the one associated to the selfduality equations
(2.17). The kleinian case is particularly interesting because of its connections
with the N = 2 string, discussed in section 1.2.2.

Reductions are obtained by requiring invariance under any arbitrary sub-
group G of the group of conformal transformations of R(3? (or R(49)). After-
wards algebraic constraints can be applied to the arbitrary matrices involved
in the equations to obtain known integrable models. In most cases invariance
under translations in certain directions is required. Therefore it is clear that
there are many more possibilities in reducing selfdual Yang-Mills in R{%2) with
respect to the euclidean case, since, instead of requiring invariance under the
usual complex coordinates

Vy=zxl+ix? ; V2 =za' —ix?
V2z=23+izt ; V2z=2z3-iz* (2.22)

(combining space with space and time with time), in the kleinian case one can
also require invariance with respect to light-cone coordinates

(z® —=z) t=%( 2 +24)

(z' —2°) ; v= % (z! + z°) (2.23)

S =

U =

N ==

(combining space and time).
As an example I will show how ordinary euclidean sine-Gordon model can
be obtained from selfdual Yang-Mills equations.
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The euclidean version of Yang equation (2.20) gives the sine-Gordon equa-
tion if one choses

—

. B=ei% (2.24)

where ® = ®(y,y). In fact one finds that the field ¢ satisfies (2.16) with
4y = —1.

It will be also useful to know that the sine-Gordon equation can be obtained
from kleinian selfdual Yang-Mills equations through a two-step reduction pro-
cedure. First of all one requires independence of Yang equation (2.20) under
one of the real coordinates z*, reducing to the 2 + 1 model

B =efo1¢ios

(P + Vae®™)0,(J18,J) =0 (2.25)

where V,, is a constant vector in spacetime. A nonzero V,, breaks Lorentz in-
variance but restores integrability when it is spacelike and with unit length
(nonlinear sigma models in 2 + 1 dimensions can be Lorentz invariant or inte-
grable but not both [126]). From this equation, in the case V,, = (0,1,0), we
can make a further reduction [106] by choosing

P —iz . D
_( cosy  e"i%sing (9 5 96
d (-—e%“’sin% cos 2 )ES (2) (2.26)

with ® depending on only two coordinates with different signature. As a result,
we obtain the sine Gordon equation in 1 + 1 dimensions for the field .

2.1.3 Properties of the S-matrix

In section 2.1.1 we have seen how to construct nonlinear differential equations
in two-dimensions with the property of having an infinite number of conserved
currents. We have also said that from that construction it is possible to extract
conserved currents that are local and thus have a physical meaning. In this
case the corresponding equations are called integrable. Moreover, we have seen
an example of two-dimensional integrable system, the ordinary sine-Gordon
equation.

The S-matrix of a two-dimensional theory with an infinite set of conserved
currents that are local and yield conserved charges which are components of
Lorentz tensors of increasing rank enjoys several nice properties.

e The general multiparticle S-matrix is elastic, i.e. the number and set of
momenta of particles of any given mass remains the same before and after
the collision.

¢ Any multiparticle S-matrix factorizes into a product of two-particle S-
matrices.
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o These two-particle S-matrices satisfy a cubic equation that in most cases
is sufficient to obtain exact expressions for them (unitarity must be used,
though!). The sine-Gordon model is one of these cases.

These are of course very nice properties. Indeed, the task of computing the
general S-matrix considerably simplifies, since it reduces to determining only
the two-body S-matrix.

I’'m not going to give a proof of this theorem. The interested reader can for
instance refer to [99]. The key ingredient in the proof is the sufficient complexity
of the conserved charges (i.e. the growing Lorentz rank). However, locality is
strongly used and its is unclear whether the kind of nonlocality introduced by
the * product can be a problem. As we discussed in section 1.1.2, unitarity
and causality problems arise in theories with noncommutating time, such as
141 theories, together with a general breakdown of the quantum mechanics
framework.

In my paper [36], an explicit example of a noncommutative two dimensional
theory with an infinite number of conserved currents that does not have a
factorized S-matrix was constructed. Therefore, it seems that the theorem
cannot be trivially extended to noncommutative case. However, in my paper
[37], a noncommutative two-dimensional system which is integrable and has a
factorized S-matrix was constructed. It might be that a nontrivial interplay
between integrability and causality drives a system to exhibit or not a factorized
S-matrix. These issues will be discussed in the rest of this chapter.

2.1.4 Solitons

The name soliton refers to solutions of nonlinear equations that represent a
localized packet travelling without changing shape or velocity and preserving
these properties after collision with other packets. In complicated equations
containing nonlinear and dispersive terms, the existence of this kind of solution
is a highly nontrivial property, due to a special balance between the effects of
these two kinds of contributions. |

A very famous example of a system displaying this kind of classical solutions
is the sine-Gordon model. It can be shown that this system, described by the
equation of motion (2.16), admits the following static finite-energy solution

® o tan~! [exp(z — 70)] = Psoi(z — o) (2.27)

(soliton) and the corresponding one (antisoliton) obtained by the discrete trans-
formation & — —®, which is a symmetry of the system. Moving solutions can
be obtained from static ones by Lorentz transformation. A third kind of solu-
tion is present, called doublet or breather solution, which can be interpreted
as a bound system made of a soliton-antisoliton pair. For a detailed derivation
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of these solutions the reader should refer to [99]. It can be shown by study-
ing exact time-dependent solutions representing scattering of solitons that the
colliding solitons do not change shape or velocity after collision. From direct in-
spection of these scattering solutions, representing two (or more) (anti)solitons
far apart and approaching with a relative velocity, it is clear that the only effect
of the collision in the distant future is some time delay (see [99]).

Solitons solutions are not present in any scalar field theory with a potential
bounded from below in spatial dimension greater than two, as the energy of
any field configuration can always be lowered by shrinking. This follows from
a simple scaling argument by Derrick [100].

Let us consider a theory for a single scalar field in D+1 dimensions for
simplicity (the discussion can be easily extended to a set of N interacting scalar
fields), described by the standard relativistic lagrangian. The corresponding
energy functional for static configurations is

= = / Pz ( (02) +V(<I>)) (2.28)

Let ®¢(x) be an extremum of (2.28). Consider the energy of the configuration
b (z) = o(Az)

E(\) = = / dPz ( AP (& (x))? +A—DV(¢~0(m))) (2.29)

Since we assumed that ®¢(z) is an extremum, we require %ﬁl =1 = 0. This
gives the equation

1 1 2 —0
7z /dDa: (§(D — 2)(0Po(x))* + DV(@o(w))) =0 (2.30)

If the potential V is bounded from below by zero and D > 3, than kinetic and
potential terms in this equation must vanish separately and thus no nontrivial
space-dependent solutions are admitted. In the case D = 2 one obtains that
V(®o(xz)) = 0. If V has only discrete minima, then also in D = 2 no time-
dependent solutions are allowed. However, when V has a continuos set of
minima (in the case with more than one scalar field), possible space-dependent
solutions are permitted.

Notice that this proof is not valid when higher derivative terms are present
and when the scalar field is described by a nonrelativistic lagrangian. Moreover,
only static solutions are excluded, while time-dependent ones are allowed.
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2.2 Deforming an integrable field theory: The
sine-Gordon model (a first attempt)

2.2.1 Noncommutative solitons

In this section I will mostly refer to the ICTP lectures by R. Gopakumar [11].
To the interested reader, I also suggest the lectures by N. Nekrasov [12] and
by J. Harvey [13]. Since the literature concerning noncommutative solitons is
vast, I only give a partial list of references in [101]. To this, one should add
references [102, 103, 104, 105] where solitons of a specific 2+1 integrable model
are studied, which are related the noncommutative sine-Gordon solitons in my
work [37] that will be discussed in section 2.3.5.

A quite universal feature of noncommutative field theories is that they admit
classical finite energy soliton solutions that have no counterpart in local field
theories. This novel soliton solutions are more or less insensitive to the details
of the specific theory considered, so in this section I will consider the scalar
theory in 2+1 dimensions for simplicity, with only spatial noncommutativity.

In section 2.1.5 we have seen that ordinary scalar theory, with a standard
relativistic lagrangian and a potential with a discrete set of minima, does not
have any localized solution in spatial dimension greater than one [100] (see
section 2.1.5). In the following we will see that spatial nonlocality induced
by noncommutativity allows for the presence of novel localized solutions that
vanish in the commutative limit.

Consider the energy functional for static configurations

1 _
E = P / d?z (090% + V(®).) (2.31)

‘where z, Z are complex coordinates in the two dimensional noncommutative
space and * is the corresponding Moyal product. As we have seen in section
1.1.1, integrated quadratic terms are unaffected by Moyal product, so only the
potential term is modified with respect to the ordinary theory. Since we know
that for @ = 0 there are no solitonic solutions, we will first consider the limit
@ — oco. It is useful to rescale the complex coordinates z — 218, Z — v, so
that the * product does not depend explicitly on the deformation parameter
and the energy functional becomes

1 =
E= j P2 (355 + 0V (3).) (2.32)

where all the 8 dependence is in front of the potential term. In the limit
0 — oo the kinetic term is negligible with respect to the potential term, at
least for localized configurations varying over a size of order one in the rescaled
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coordinates. Therefore, we will look for solutions of

(%) =0 (2.33)

For instance, in the case of a cubic potential, one has to solve the equation
m2® + 30 %P =0 (2.34)
In the commutative case this equation would only admit the constant solutions
¢ =) (2.35)

where ); are the extrema of the function V(®).

Nonlocality introduced by Moyal product allows for more interesting so-
lutions. Recalling the Weyl-Moyal correspondence we introduced in section
1.1.1, relating functions in a noncommutative algebra to operators in a suit-
able Hilbert space, we see that functions ®(z, Z) satisfying & * & = & exist and
correspond to projectors P, P? = P, in the Hilbert space. Therefore it is clear
that & = \;P is a solution of (2.34) when P is a projection operator on some
subspace of the Hilbert space and \; is an extremum of V. Since integration
over coordinates z, Z corresponds through the Weyl-Moyal correspondence to
trace over the Hilbert space, the energy functional in operator language is

270

The most general solution to (2.34) is

d = EakPk (2.37)
k

where the coefficients a; are chosen among the ordinary constant extrema A;
of V(®) and P, are mutually orthogonal projection operators.

To understand the physical meaning of the solutions we have found, we
have to go back to configuration space. One finds that the solutions (2.37) are
radially symmetric in space and with an r-dependence given by

Y angn(r?) (2.38)

n=0

where
Bn(r?) = 2(—1)"e™" L, (2r?) (2.39)

and L,(x) is the n-th Laguerre polynomial. The simplest solution ¢o(r) is
a gaussian. Moreover, non radially symmetric solutions can be generated by
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noting that the action in the limit § — oo has the U{co) symmetry & —
UdU', where U is a unitary operator acting on the Hilbert space. It can
be easily proven that radially symmetric solutions are stable against small
fluctuations when they are constructed around a local minimum configuration
A; of the potential V' and that non radially symmetric are stable too, since
U (o00) rotations do not change the energy. So stable solitons are present when
the potential has at least two minima.

The U(oo) symmetry is broken when 3 corrections are taken into account
(i.e. the kinetic term is not negligible anymore). Most of the infinite solutions
we found in the § = oo case disappear, but it was found that an interesting
finite dimensional moduli space remains.

Finally, I would like to discuss the connection between solitons in noncom-
mutative field theory and D-branes. Actually, these solitons are the D-branes
of string theory manifested in a field theory. Therefore, their study allows for
probing stringy features in the more controlled context of field theory.

An example of a stringy application of our discussion of solitons in scalar
noncommutative field theory is in the context of tachyon condensation. It is
well-known that bosonic string theory is unstable because of the presence of
a tachyonic scalar field T. The effective action for the tachyon field can be
obtained by integrating out massive string fields and is expected to take the
form

C | R
S = o / d*°z./g (5 f(Mg*8,Td,T - V(T)+.. ) (2.40)

where higher derivative terms and terms involving massless modes have been
neglected. V(T) is a general potential with an unstable extremum at T" = T
and a minimum chosen to be V(0) = 0. As we have seen in section 1.2.1,
turning on a B-field is equivalent to replacing the closed string metric g*¥ with
the effective open string metric G# and ordinary products with Moyal prod-
ucts in (2.40). In the zero-slope limit derivative terms can be neglected. The
solitons of the theory obtained in this limit are the noncommutative solitons
we studied before. For instance the gaussian solution T' = Tp¢o(r) localized in
two of the noncommutative directions is a candidate for the D23-brane. These
solitons display the same instability of the corresponding D-branes, since they
correspond to an extremum of V(7T') that is a maximum.

From this brief discussion it should be clear that noncommutative field
theories exhibit stringy features, such as D-branes, in the simpler context of
a field theory. Therefore, their study can be helpful in the understanding of
many string theory issues and tachyon condensation is just one example among
these.
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2.2.2 Noncommutative deformation of integrable field the-
ories

As we have seen in chapter 1, bosonic noncommutative field theories display
a variety of interesting properties but also problematic features, when time is
involved in noncommutativity. In this context, an interesting question is how
noncommutativity could affect the dynamics of exactly solvable field theories,
as for instance two—dimensional integrable theories. As we have seen in section
2.1.1, a common feature of these systems is that the existence of an infinite
chain of local conserved currents is guaranteed by the fact that the equations
of motion can be written as zero curvature conditions for a suitable set of
covariant derivatives [107, 108]. In some cases, as for example the ordinary
sine-Gordon or sigma models, an action is also known which generates the
integrable equations according to an action principle.

Constructing a consistent noncommutative generalization of a two-dimen-
sional theory is a particularly challenging problem though, since, when working
with a Minkowski signature, time must be necessarily involved in noncommu-
tativity. |

Noncommutative versions of ordinary models are intuitively defined as mod-
els which reduce to the ordinary ones when the noncommutation parameter 4 is
removed. As we discussed in detail for the specific example of the free massless
scalar field theory in section 1.1.3, in general noncommutative generalizations
are not unique as one can construct different noncommutative equations of
motion which collapse to the same expression when @ goes to zero. For two
dimensional integrable systems, a general criterion to restrict the number of
possible noncommutative versions is to require classical integrability to survive
in noncommutative geometry. This suggests that any noncommutative gener-
alization should be performed at the level of equations of motion by promoting
the standard zero curvature techniques. This program has been worked out for
a number of known integrable equations in Refs. {109, 110].

In chapter 1 we have discussed how noncommutative theories naturally arise
in the context of string theory. In particular, in section 1.2.2, we have shown
how the open N = 2 string in the presence of a constant NS-NS background
and a stack of n D3-branes can be described, in the zero-slope limit, by U(n)
noncommutative selfdual Yang-Mills theory. Tree-level S-matrix computations
show that the vanishing of amplitudes beyond three point, which is characteris-
tic of ordinary selfdual Yang-Mills, is preserved in the noncommutative theory,
suggesting that noncommutative selfdual Yang-Mills, as its ordinary counter-
part, is endowed with classical integrability. In section 2.1.3, we have seen that
many ordinary integrable models in two and three dimensions can be obtained
through a dimensional reduction procedure from selfdual Yang-Mills. From
all this it is clear that dimensional reduction from noncommutative selfdual
Yang-Mills could be another useful technique to generate possibly integrable
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noncommutative systems in 141 and 241 dimensions.

It is well known that in integrable commutative field theories there is no
particle production and the S-matrix factorizes. A priori the same relation
between the existence of infinite conserved charges and factorization properties
of scattering processes might be lost in the noncommutative case. Nonlocal-
ity in time, responsible for acausal behavior of scattering processes and non
initarity, may interfere in a way to spoil these nice scattering properties. On
the other hand, one may also hope that classical integrability would allevi-
ate these pathologies arising when time-space noncommutativity is present. In
any case it would be nice to construct a noncommutative generalization of a
given ordinary integrable theory characterized by a well-defined and factorized
S-matrix.

Finally, as we have seen in section 2.1.5, two-dimensional integrable field
theories admit soliton solutions. In the noncommutative case, as we have seen
in section 2.2.5, a new kind of soliton appears that vanishes in the commutative
limit. The class of soliton solutions of the noncommutative version of an inte-
grable field theory is expected to display both solitons that reduce to ordinary
ones in the commutative limit and new solitons that vanish in the limit.

2.2.3 The natural noncommutative generalization of the
sine-Gordon model

In my papers [36, 37|, in collaboration with M.T. Grisaru, O. Lechtenfeld, L.
Mazzanti, S. Penati and A.D. Popov, continuing the program initiated by M.T.
Grisaru and S. Penati in [34], I have addressed the problem of generalizing the
sine-Gordon theory to noncommutative space.

The main motivation for this work was the evidence that the natural defor-
mation of this theory, described by the action

1 _
S = —~z /dzz [096% — 2v(cos, & — 1)] (2.41)

with the corresponding equations of motion
0% = vysin, ® - (2.42)

is affected by some problems both at the classical and the quantum level.

At the classical level it does not seem to be integrable since the ordinary
currents promoted to noncommutative currents by replacing the products with
s—products are not conserved [34]. Moreover, we don’t know how to find a
systematic procedure to construct conserved currents since the equations of
motion cannot be obtained as zero curvature conditions (a discussion about
the lack of integrability for this system is also given in Ref. [111]).
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Scattering properties of the natural generalization of the sine-Gordon model
have been investigated in [111]. It was found that particle production occurs.
The tree level 2 — 4 amplitude does not vanish.

At the quantum level the renormalizability properties of the ordinary model
(2.41) defined for A\ < 4 seem to be destroyed by noncommutativity. The
reason is quite simple and can be understood by analyzing the structure of the
divergences of the NC model compared to the ordinary ones [112, 113]. In the
A\? < 4 regime the only divergences come from multitadpole diagrams. In the
ordinary case the n~loop diagram gives a contribution (log m?a?)" where a and
m are the UV and IR cut—offs respectively. This result is independent of the
number k of external fields and of the external momenta. As a consequence the
total contribution at this order can be resummed as y(logm?a?)*(cos® — 1)
and the divergence is cancelled by renormalizing the coupling . This holds at
any order n and the model is renormalizable.

In the noncommutative case the generic vertex from the expansion of cos, ®
brings nontrivial phase factors which depend on the momenta coming out of
the vertex and on the noncommutativity parameter. The final configuration
of phase factors associated to a given diagram depends on the order we use
to contract the fields in the vertex. Therefore, in the noncommutative case
the ordinary n-loop diagram splits into a planar and a certain number of non-
planar configurations, where the planar one has a trivial phase factor whereas
the nonplanar diagrams differ by the configuration of the phases (for a general
discussion see Refs. [2, 114]). The most general noncommutative multitad-
pole diagram is built up by combining planar parts with nonplanar ones where
two or more tadpoles are intertwined among themselves or with external legs.
Since the nonplanar subdiagrams are convergent [114, 9, 115] a generic n—
loop diagram contributes to the divergences of the theory only if it contains a
nontrivial planar subdiagram. However, different n—loop diagrams with differ-
ent configurations of planar and nonplanar parts give divergent contributions
whose coefficients depend on the number & of external fields and on the external
momenta. A resummation of the divergences to produce a cosine potential is
not possible anymore and the renormalization of the couplings of the model is
not sufficient to make the theory finite at any order. Noncommutativity seems
to deform the cosine potential at the quantum level and the theory loses the
renormalizability properties of the corresponding commutative model.

Thus, the “natural” generalization of sine—Gordon is not satisfactory and
one must look for a different noncommutative generalization compatible with
integrability and/or renormalizability.
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2.2.4 A noncommutative version of the sine-Gordon equa-
tion with an infinite number of conserved currents

In Ref. [34] M.T. Grisaru and S. Penati constructed a classically integrable
noncommutative generalization of the sine-Gordon model, by implementing
the bicomplex approach described in section 2.1.1 (as in that section, here
we use euclidean signature and complex coordinates z = T}-é-(xo +izt), Z =
75 (° —izt)).

The bicomplex (M, d, §) is considered, where in this case M = My®L, M,
is the space of 2 x 2 matrices with entries in the algebra of smooth functions on
noncommutative R? and L = ®,_0L‘ is a two-dimensional graded vector space
with the L1 basis (7, 0) satisfying 72 = 02 = {r,0} = 0. The differential maps
are given by

6f =8fr —Rfo ; df =-Sfr+0fc (2.43)

with commuting constant matrices R and S. The conditions d? = §% = {d, 6} =
0 are trivially satisfied.

As we have seen in section 2.1.1, to obtain nontrivial second order dif-
ferential equations the bicomplex must be gauged. In the derivation of the
noncommutative sine-Gordon given in [34] the d operator is dressed as follows

Daf =G xd(G * f) (2.44)

with G generic invertible matrix in Mg to be determined in a way to obtain
a generalization of the sine-Gordon. While the condition D3 = 0 is trivially
satisfied, {4, D4} = 0 gives rise to nontrivial second order differential equations

8 (G~ *8G) = [R,G™1 x8G], (2.45)
With the choice

0 0
R=5=2/( )
d . P
i COS*— Sm*"'
G = e = ( . j;’,) (2.46)
— Slll« 5 COSx 35

equation (2.44) is a matrix equation in U(2), correspondlng to the system of
two coupled equations of motion

2i5b§5(e:%¢'*6e§ —e3® xBe; q’) = {ysin,
25a_6(f°#66* L LI & ) = 0 (2.47)

The first equation contains the potential term which is the “natural” gener-
alization of the ordinary sine potential, whereas the other one has the structure
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of a conservation law and can be seen as imposing an extra condition on the
system. In the commutative limit, the first equation reduces to the ordinary
sine-Gordon equation, whereas the second one becomes trivial. The equations
are in general complex and possess the Z; symmetry of the ordinary sine—
Gordon ( invariance under ® — —®).

The reason why integrability seems to require two equations of motions can
be traced back to the general structure of unitary groups in noncommutative
geometry. In the bicomplex approach the ordinary equations are obtained as
zero curvature conditions for covariant derivatives defined in terms of SU(2)
gauge connections. If the same procedure is to be implemented in the noncom-
mutative case, the group SU(2), which is known to be not closed in noncom-
mutative geometry, has to be extended to a noncommutative U (2) group and a
noncommutative U(1) factor enters necessarily into the game. The appearance
of the second equation in (2.47) for this noncommutative integrable version of
sine-Gordon is then a consequence of the fact that the fields develop a nontriv-
ial trace part. We note that the pattern of equations found in [34] seems to be
quite general and unavoidable if integrability is of concern. In fact, the same
has been found in Ref. [111] where a different but equivalent set of equations
was proposed.

In [34] classical integrability of the system described by the set of equations
(2.47) was proven by extracting from the bicomplex chain a set of conserved
currents that are local, in the sense that they are functions of the field ¢ and
its derivatives, but not of integrals of ®. Since Moyal product has an infinite
expansion in derivatives of fields, this introduces a kind of nonlocality in the
theory that is intrinsic and unavoidable when working in a noncommutative
space. In [34] the expansion in the noncommutativity parameter 6 has been
studied for the first currents to check their relation with ordinary currents and
to explicitly verify their conservation up to second order in the deformation
parameter. |

2.2.5 Solitons

The presence of two equations of motion is in principle very restrictive and one
may wonder whether the class of solutions is empty. To show that this is not
the case, in Ref. [34] solitonic solutions were constructed perturbatively which
reduce to the ordinary solitons when we take the commutative limit. Since a
classical action was not found in [34], these solitonic solutions found are said
to be localized in the sense that at order zero in the deformation parameter
they reduce to the well-known euclidean solitons of the sine-Gordon theory.
Since the solution at order zero determines the solution to all orders in the
deformation parameter, in [34] these solitons are called localized at all orders.
More generally, we observe that the second equation in (2.47) is automatically
satisfied by any chiral or antichiral function. Therefore, we expect the class of
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solitonic solutions to be at least as large as the ordinary one. In the general
case, instead, we expect the class of dynamical solutions to be smaller than
the ordinary one because of the presence of the nontrivial constraint. However,
since the constraint equation is one order higher with respect to the dynamical
equation, order by order in the f-expansion a solution always exists. This
means that a Seiberg-Witten map between the NC and the ordinary model
does not exist as a mapping between physical configurations, but it might be
constructed as a mapping between equations of motion or conserved currents.

The kind of noncommutative solitons discussed in section 2.2.1 has not been
studied in [34]. These solutions in principle should be present in this model.
However, the model described in [34] was shown to display bad scattering
properties [36], as I will show in detail in section 2.2.9. For this reason it had
to be discarded and replaced with a new model described in section 2.3 [37].
Both kinds of soliton solutions were studied in detail for this model (see section

2.3.5).

2.2.6 Reduction from noncommutative selfdual Yang-Mills

The material presented in this section and the following ones, until the end of
section 2.2, is mostly taken from the paper [36], written in collaboration with
M.T. Grisaru, L. Mazzanti and S. Penati.

The (anti-)selfdual Yang-Mills equation is well-known to describe a com-
pletely integrable classical system in four dimensions [116]. In the ordinary
case the equations of motion for many two dimensional integrable systems, in-
cluding sine-Gordon, can be obtained through dimensional reduction of the
(anti)selfdual Yang-Mills equations [117].

We have seen in section 2.1.3 that a convenient description of the (anti)-
selfdual Yang-Mills system is the so called J-formulation, given in terms of a
SL(N,C) matrix-valued J field satisfying

85 (J718yJ) + 85 (J~18,J) =0 (2.48)

where y, 7, z, Z are complex variables treated as formally independent.
In the ordinary case, the sine-Gordon equation can be obtained from (2.48)

by taking J in SL(2,C) to be [118§]
J = J(u,z,%) = e5%iei®oseios (2.49)

where ® = ®(y, ) depends on y and ¥ only and o; are the Pauli matrices.

A noncommutative version of the (anti-)selfdual Yang-Mills system can
be naturally obtained [119] by promoting the variables y, 7, z and Z to be
noncommutative thus extending the ordinary products in (2.48) to *—products.
In this case the J field lives in GL(N, C).
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As we outlined in section 1.2.3, it has been shown [81] that noncommu-
tative selfdual Yang-Mills naturally emerges from open N = 2 strings in a
B-field background. Moreover, in [119, 120, 110] examples of reductions to
two-dimensional noncommutative systems were given. It was also argued that
the noncommutative deformation should preserve the integrability of the sys-
tems [110, 121].

We now show that our noncommutative version of the sine-Gordon equa-
tions can be derived through dimensional reduction from the noncommutative
selfdual Yang-Mills equations. For this purpose we consider the noncommuta-
tive version of equations (2.48) and choose J, in GL(2,C) as

Jo = Ju(u,2,2) = el % 3% y o 1 (2.50)

This leads to the matrix equation

Oga I + 4 (ng + -;—sin,., <I>) o; =0 (2.51)
where a and b have been defined in (2.47). Now, taking the trace we obtain
Oza = 0 which is the constraint equation in (2.47). As a consequence, the
term proportional to o; gives rise to the dynamical equation in (2.47) for the
particular choice v = —1. Therefore we have shown that the equations of
motion of the noncommutative version of sine-Gordon proposed in [34] can be
obtained from a suitable reduction of the noncommutative selfdual Yang-Mills
system as in the ordinary case. From this derivation the origin of the constraint
appears even more clearly: it arises from setting to zero the trace part which
the matrices in GL(2,C) naturally develop under *-multiplication.

Solving (2.51) for the particular choice o; = o3 we obtain the alternative
set of equations

0 (e:%q) * 83.%‘:’) -;-'ysin,, o

%, (e?p % 83:%(5) = -—%7 sin, ® (2.52)
Order by order in the #-expansion the set of equations (2.47) and (2.52) are
equivalent. Therefore, the set (2.52) is equally suitable for the description of
an integrable noncommutative generalization of sine-Gordon.

Since our noncommutative generalization of sine-Gordon is integrable, the

present result gives support to the arguments in favor of the integrability of
noncommutative selfdual Yang-Mills system.

2.2.7 The action

We are now interested in the possibility of determining an action for the scalar
field ® satisfying the system of eqs. (2.47). We are primarily motivated by the
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possibility to move on to a quantum description of the system.

In general, it is not easy to find an action for the dynamical equation (the
first eq. in (2.47)) since ® is constrained by the second one. One possibility
could be to implement the constraint by the use of a Lagrange multiplier.
Another quite natural possibility is to try to obtain the action by a dimensional
reduction procedure from (4, 0) selfdual Yang-Mills action in Yang formulation.
Unfortunately, this does not work, since WZW-like terms disappear from the
reduced action because of cyclicity of Moyal product in an integral. As a result
one obtains a reduced action generating nonchiral equations, different from the
chiral ones in eqs. (2.47) and (2.52).

We consider instead the equivalent set of equations (2.52). We rewrite them
in the form

(g™ * 0g) = ;11-'7 (9°—97°)
b(g+0g™") = —;11-'7 (6° - 97%) (2.53)

where we have defined g = e;% ®. Since ® is in general complex g can be seen as
an element of a noncommutative complexified U(1). The gauge group valued

. t
function g = (g')"! = ed® is subject to the equations

= 1

d(g*0g")=-77(8°-37")

= 1

g~ *0g)=77(9°—37") (2.54)

obtained by taking the h.c. of (2.115).

In order to determine the action it is convenient to concentrate on the
first equation in (2.115) and the second one in (2.116) as the two independent
complex equations of motion which describe the dynamics of our system. -

We first note that the left-hand sides of equations (2.115) and (2.116) have
the chiral structure which is well known to correspond to a noncommutative
version of the WZNW action [46] (see section 1.1.3). Therefore we are led to
consider the action

Slg, 9] = Slg] + S[g] (2.55)

where, introducing the homotopy path §(t) such that §(0) =1, g(1) =g (t is a
commuting parameter) we have defined

1
Slg] = f &2z [89*5g“l+ / dt =L # 8,5 % [§7" + 8G, 57" * 5gls
0

(g +97%-2)] (2.56)

and similarly for S[g]. The first part of the action can be recognized as the
noncommutative generalization of a complexified U(1) WZNW action [122].
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To prove that this generates the correct equations, we should take the

variation with respect to the ® field (¢ = ef q’) and deal with complications
which follow from the fact that in the noncommutative case the variation of
an exponential is not proportional to the exponential itself. However, since
the variation 9 is arbitrary, we can forget about its # dependence and write
%64) = g~ 'dg, trading the variation with respect to ® with the variation with
respect to g. Analogously, the variation with respect to ®! can be traded with
the variation with respect to 3.
It is then a simple calculation to show that

6S[g] = /dzz 29~ g [5 (97" x0g) — -g'y sin, ® (2.57)

from which we obtain the first equation in (2.115). Treating § as an independent
variable an analogous derivation gives the second equation in (2.116) from S|g].

We note that, when ® is real, ¢ = g and the action (2.55) reduces to
Sreallg] = 25w zw [g] — v(cos. ® —1). In general, since the two equations (2.47)
are complex it would be inconsistent to restrict ourselves to real solutions.
However, it is a matter of fact that the equations of motion become real when
the field is real. Perturbatively in 8 this can be proved order by order by direct
inspection of the equations in [34]. In particular, at a given order one can show
that the imaginary part of the equations vanishes when the constraint and the
equations of motion at lower orders are satisfied.

2.2.8 The relation to the noncommutative Thirring model

In the ordinary case the equivalence between the Thirring and sine-Gordon
models [112] can be proven at the level of functional integrals by implementing
the bosonization prescription [45, 123] on the fermions. The same procedure
has been worked out in noncommutative geometry [47, 48]. Starting from the
noncommutative version of Thirring described by

Sr= [ & |diro +mis - 3@ roG )| @58)

the bosonization prescription gives rise to the action for the bosonized non-
commutative massive Thirring model which turns out to be a noncommutative
WZNW action supplemented by a cosine potential term for the noncommu-
tative U(1) group valued field which enters the bosonization of the fermionic
currents. In particular, in the most recent paper in Ref. [47] it has been shown
that working in Euclidean space the massless Thirring action corresponds to
the sum of two WZNW actions once a suitable choice for the regularization
parameter is made. Moreover, in Ref. [48] it was proven that the bosonization
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of the mass term in (2.58) gives rise to a cosine potential for the scalar field
with coupling constant proportional to m.

The main observation is that our action (2.55) is the sum of two noncommu-
tative WZNW actions plus cosine potential terms for the pair of U(1)¢ group
valued fields g and g, considered as independent. Therefore, our action can be
interpreted as coming from the bosonization of the massive noncommutative
Thirring model, in agreement with the results in [47, 48].

We have shown that even in the noncommutative case the sine-Gordon
field can be interpreted as the scalar field which enters the bosonization of the
Thirring model, so proving that the equivalence between the Thirring and sine—
Gordon models can be maintained in noncommutative generalizations of these
models. Moreover, the classical integrability of our noncommutative version of
sine-Gordon proven in [34] should automatically guarantee the integrability of
the noncommutative Thirring model.

In the particular case of zero coupling (v = 0), the equations (2.55) and
(2.52) correspond to the action and the equations of motion for a noncommu-
tative U(1) WZNW model [46], respectively. Again, we can use the results of
[34] to prove the classical integrability of the noncommutative U (1) WZNW
model and construct explicitly its conserved currents.

2.2.9 (Bad) properties of the S-matrix

In section 2.1.4 we showed that in integrable commutative field theories there
is no particle production and the S-matrix factorizes. In the noncommutative
case properties of the S-matrix have been investigated for two specific models:
The A®* theory in two dimensions [15] and the nonintegrable “natural” NC
generalization the the sine-Gordon model [111]. In the first reference a very
pathological acasual behavior was observed due to the space and time non-
commutativity (see section 1.1.2). For an incoming wave packet the scattering
produces an advanced wave which arrives at the origin before the incoming
wave. In the second model investigated it was found that particle production
occurs. The tree level 2 — 4 amplitude does not vanish. |

It might be hoped that classical integrability would alleviate these patholo-
gies. In the NC integrable sine-Gordon case, since we have an action, it is
possible to investigate these issues. As described below we have computed the
scattering amplitude for the 2 — 2 process and found that the acausality of
Ref. [15] is not cured by integrability. We have also computed the production
amplitudes for the processes 2 — 3 and 2 — 4 and found that they don’t
vanish.

We started from our action (2.56) rewritten in terms of Minkowski space
coordinates z°, z! and real fields (g = e 4,, at) = ' with @ real)
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Slgl = - %/d"w g‘l*a"g*g'l*6,,g+:l-[d2x(gz+g"2——2)
1

- 3 / Br PG % 0,5 % 51 % 0,5 % 51 * 0, (2.59)

where f * g = fe39¢"" 949+ and we derived the following Feynman’s rules

e The propagator
41

g% — 2y

G(g) = (2.60)

e The vertices

2
'UB(kla RN k3) = 23", g Euvklﬂkm/F(kl: vy k3)
. 1 Y
v4(k1,...,k4) =1 (-—-24 T (k?+3k1 kg) + n) F(kl,...,k4)
2eHY
1)5(]61, ey k5) = --23-.-3—' (k1“k2y — klu_kay -+ 2k1uk4y) F(kl, ceey k5)
01 Y
’Ua(kl,...,ks) =1 [26 6! (k% + 5k, - (ka — k4 +k5)) — 5——6—'-] .
-F(ky,...,ks)
(2.61)
where
F(ki,...,kn) =exp (-—-—-;— Zk,- X kj) (2.62)
i<j

is the phase factor coming from the *-products in the action (we have
indicated a x b = 0e*¥a,b, ), k; are all incoming momenta and we used
momentum conservation.

At tree level the 2 — 2 process is described by the diagrams with the
topologies in Fig. 1.

N/
7N

Figure 1: Tree level 2 — 2 amplitude
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Including contributions from the various channels and using the three point,
and four point vertices of eqs. (2.61) we obtained for the scattering amplitude
the expression

1 1
2,2 _ . 2 Y 0
E“p (2E2-——'y 5 2+7) sin” (pE§) + i COS (pEG) (2.63)

where p is the center of mass momentum and E = /p? + 2v.

For comparison with Ref. [28] this should be multiplied by an incoming
wave packet

bn@) ~ (&7 4 ) (2.64)

and Fourier transformed with e?®*. We have not attempted to carry out the
Fourier transform integration. However, we note that for py very large E and
p are concentrated around large values and the scattering amplitude assumes
the form

z% sin® (pE@) + z% cos® (pEG) (2.65)

which is equivalent to the result in Ref. [15], leading to the same acausal
pathology 1.

We describe now the computation of the production amplitudes 2 — 3
and 2 — 4. At tree level the contributions are drawn in Figures 2 and 3,

\/ X
A

Figure 2: Tree level 2 — 3 amplitude

11t is somewhat tantalizing that a change in the relative coefficient between the two terms
would lead to a removal of the trigonometric factors which are responsible for the acasu
behavior. -
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Figure 3: Tree level 2 — 4 amplitude

For any topology the different possible channels must be taken into account.
This, as well as the complicated expressions for the vertices, has led us to
use an algebraic manipulation program computer. We used Mathematica® to
symmetrize completely the vertices (2.61). This allows to take automatically
into account the different diagrams obtained by exchanging momenta entering
a given vertex. The contribution from each diagram was obtained as a product
of the combinatorial factor, the relevant vertices and propagators. Due to
the length of the program it was impossible to handle the calculation in a
completely analytic way. Instead, the program was run with assigned values of
the momenta and arbitrary € and 7. For both the 2 — 3 and 2 — 4 processes
the result is nonvanishing. As a check of our calculation we mention that the
production amplitudes vanish when we set § = 0, for any value of the coupling
and the momenta.

2.2.10 Conclusions

In (36], in collaboration with M.T. Grisaru, L. Mazzanti and S. Penati I have
investigated some properties of the integrable noncommutative sine—-Gordon
system proposed in [34]. We succeeded in constructing an action which turned
out to be a WZNW action for a noncommutative, complexified U (1) augmented
by a cosine potential. We have shown that even in the noncomutative case
there is a duality relation between our integrable noncommutative sine-Gordon
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model and the noncommutative Thirring.

Noncommutative WZNW models have been shown to be one-loop renor-
malizable [124]. This suggests that the noncommutative sine-Gordon model
proposed in [34] is not only integrable but it might lead to a well-defined quan-
tized model, giving support to the existence of a possible relation between
integrability and renormalizability.

Armed with our action we investigated some properties of the S—matrix for
elementary excitations. However, in contradistinction to the commutative case,
the S-matrix turned out to be acasual and nonfactorizable 2. The reason for
the acasual behavior has been discussed in [15] where it was pointed out that
noncommutativity induces a backward-in-time effect because of the presence of
certain phase factors (see section 1.1.2). It appears that in our case this effect
is still present in spite of integrability.

It is not clear why the presence of an infinite number of local conserved
currents (local in the sense that they are not expressed as integrals of certain
densities) does not guarantee factorization and absence of production in the S-
matrix as it does in the commutative case. The standard proofs of factorization
use, among other assumptions, the mutual commutativity of the charges - a
property we have not been able to check so far because of the complicated
nature of the currents. But even if the charges were to commute the possibility
of defining them as powers of momenta, as required in the proofs, could be
spoiled by acausal effects which prevent a clear distinction between incoming
and outgoing particles.

In a series of papers [44] a different approach to quantum noncommutative
field theories has been proposed when the time variable is not commuting. In
those papers it has been argued that the problems associated to time-space
noncommutativity are due to the fact that the time-ordering procedure does
not commute with the star multiplication. Starting from the usual definition of
the S-matrix in terms of the time-ordered exponential of the interaction term
in the action and applying Wick theorem, one cannot combine the contrac-
tion functions of positive and negative frequency to obtain the causal Feynman
propagator. Therefore, it has been suggested that, instead of the Feyman ap-
proach (2|, one should use the time ordered perturbation theory extended to
the noncommutative case. Moreover, it has been shown that in this framework
unitarity is preserved as long as the interaction lagrangian is explicitly hermi-
tian. It would be interesting to redo our calculations in that approach to see
whether a well-defined factorized S-matrix for our model can be constructed. In
this context it would be also interesting to investigate the scattering of solitons
present in our model [34]. |

In the next section a novel noncommutative sine-Gordon system, obtained
by dimensional reduction from the 2 + 1 model introduced in [103], will be

20ther problems of the S-matrix have been discussed in [16, 125].
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constructed and studied. We will see that it exhibits nice scattering properties,
consistent with the usual relation between integrability and factorization of the
S-matrix. -

2.3 The noncommutative integrable sine-Gordon
model

2.3.1 Introduction

In this section I will present the results I obtained, in collaboration with O.
Lechtenfeld, L. Mazzanti, S. Penati and A.D. Popov, in [37]. The main goal
of that work was to find a noncommutative generalization of the sine-Gordon
system which, as a hallmark of integrability, possesses a well-defined causal
and factorized S-matrix. Furthermore, its equations of motion should admit
noncommutative multi-soliton solutions which represent deformations of the
well known sine-Gordon solitons.

In sections 2.2.4 and 2.2.5 I have discussed the results obtained in [34], where
a model was proposed which describes the dynamics of a complex scalar field
by a couple of equations of motion. These equations were obtained as flatness
conditions for a U(2) bidifferential calculus [109] and automatically guarantee
the existence of an infinite number of local conserved currents. The same
equations were also generated in [36] via a particular dimensional reduction
of the noncommutative U(2) selfdual Yang-Mills equations in euclidean space.
However, this reduction did not work at the level of the action, which turned out
to be the sum of two WZW models augmented by a cosine potential. Evaluating
tree-level scattering amplitudes it was discovered, furthermore, that this model
suffers from acausal behavior and a non-factorized S-matrix, meaning that
particle production occurs.

At this point it is important to note that the noncommutative deformation
of an integrable equation is a priori not unique, because one may always add
terms which vanish in the commutative limit, as we have seen in section 1.1.3.
For the case at hand, for example, different inequivalent ansétze for the U (2)
matrices entering the bicomplex construction [109] are possible as long as they
all reproduce the ordinary sine-Gordon equation in the commutative limit. It
is therefore conceivable that among these possibilities there exists an ansatz
(different from the one in [34, 36]) which guarantees the classical integrability
of the corresponding noncommutative model. What is already certain is the
necessity to introduce two real scalar fields instead of one, since in the noncom-
mutative realm the U/(1) subgroup of U(2) fails to decouple. What has been
missing is a guiding principle towards the “correct” field parametrization.

Since the sine-Gordon model can be obtained by dimensional reduction from
242 dimensional selfdual Yang-Mills theory via a 2+1 dimensional integrable
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sigma model [126], and because the latter’s noncommutative extension was
shown to be integrable in [102], it seems a good idea to contruct an integrable
generalization of the sine-Gordon equation by starting from the linear system
of this integrable sigma model endowed with a time-space noncommutativity.
This is the key strategy of this paper. The reduction is performed on the
equations of motion first, but it also works at the level of the action, so giving
directly the 141 dimensional action we are looking for. This success is an
indication that the new field parametrization proposed in [37] is the proper
one.

To be more precise, in [37] we proposed three different parametrizations, by
pairs of fields (¢+,¢-), (p, p) and (h1, h2), all related by nonlocal field redefini-
tions but all deriving from the compatibility conditions of the underlying linear
system [102]|. The first two appear in Yang formulation [116]| while the third one
arises in Leznov formulation [127]. For either field pair in Yang formulation, the
nontrivial compatibility condition reduces to a pair of “noncommutative sine-
Gordon equations” which in the commutative limit degenerates to the standard
sine-Gordon equation for Z(¢4++¢-) or ¢, respectively, while Z(¢4—¢-) or p
decouple as free bosons. The alternative L.eznov formulation has the advan-
tage of producing two polynomial (actually, quadratic) equations of motion for
(h1,he) but retains their coupling even in the commutative limit.

With the linear system comes a well-developed technology for generating
solitonic solutions to the equations of motion. In [37] the dressing method
(128, 107] was employed to explicitly outline the construction of noncommu-
tative sine-Gordon multi-solitons, directly in 1+1 dimensions as well as by
reducing plane-wave solutions of the 2+1 dimensional integrable sigma model
[103]. The one-soliton sector was completely analyzed and it was found that
the standard soliton solution are recovered as undeformed. Noncommutativity
becomes palpable only at the multi-soliton level.

It was shown in [81] that the tree-level n-point amplitudes of noncommu-
- tative 242 dimensional SDYM vanish for n > 3, consistent with the vanishing
theorems for the N=2 string. Therefore, we were expecting nice properties
of the S-matrix to be inherited by this noncommutative sine-Gordon theory.
Indeed, a direct evaluation of tree-level amplitudes revealed that, in the Yang
as well as the Leznov formulation, the S-matrix is causal and no particle pro-
duction occurs.

2.3.2 A noncommutative integrable sigma model in 2 +1
dimensions

As has been known for some time, nonlinear sigma models in 2+1 dimensions
may be Lorentz-invariant or integrable but not both [126]. Since the integrable
variant, introduced in section 2.1.3, serves as our starting point for the deriva-
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tion of the sine-Gordon model and its soliton solutions, we shall present its
noncommutative extension [102] in some detail in the present section.

Conventions in noncommutative R%!

In R?! we shall use (real) coordinates (z*) = (¢, z, y) in which the Minkowskian
metric reads (,) = diag(—1, +1, +1). For later use we introduce the light-cone
coordinates

U = %(t+y) : v o= %(t—y) : Ou = Oi+0, Oy = 6;—0y .

(2.66)
In view of the future reduction to 141 dimensions, we choose the coordinate z
to remain commutative, so that the only non-vanishing component of the non-
commutativity tensor is

gV = —gvt = 6 > 0 . (2.67)

Linear system

Consider on noncommutative R%! the following pair of linear differential equa-
tions [102],

((0; —O0u)¥ = A*x¥  and (8, —0:)¥ = Bx¥ | (2.68)

where a spectral parameter ¢ € CP! = §2 has been introduced. The auxiliary
field ¥ takes values in U(n) and depends on (¢,z,y,() or, equivalently, on
(z,u,v,{). The u(n) matrices A and B, in contrast, do not depend on ¢ but
only on (z,u,v). Given a solution ¥, they can be reconstructed via®

A=Ux(0,-C0,)¥! and B = Ux*x(0,—(6,)¥ " . (2.69)

It should be noted that the equations (2.68) are not of first order but actually
of infinite order in derivatives, due to the star products involved. In addition,
the matrix V¥ is subject to the following reality condition [126):

1 = U(t,2,9,¢) * [Tyl | (2.70)

where ‘t’ is hermitian conjugation. The compatibility conditions for the linear
system (2.68) read

5, B—0,A = 0 | (2.71)
axA—auB_A*B'l"B*A: 0 . (2-72)

By detailing the behavior of ¥ at small { and at large { we shall now “solve”
these equations in two different ways, each one leading to a single equation of
motion for a particular field theory.

3Inverses are understood with respect to the star product, i.e. ¥~ 1 x ¥ = 1.
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Yang-type solution

We require that ¥ is regular at (=0 [83],
U(t,z,y,{—=0) = 7'(t,z,9) + OK) , (2.73)

which defines a U(n)-valued field ®(t,z,y),i.e. ®' = &~1. Therewith, Aand B
are quickly reconstructed via

A= U0,V = & 149, and B = \I‘*am\Il"llczo = & 1x0,P

(2.74)

It is easy to see that compatibility equation (2.72) is then automatic while the
remaining equation (2.71) turns into [102]

—-1|C=O

Oy (P71 %6,9) -0, (P71 %6,P) = 0 . (2.75)
This Yang-type equation [116] can be rewritten as
(7% + v, %) 8, ("1 x5,P) = 0 (2.76)

where €2% is the alternating tensor with €°?=1 and (v.) = (0,1,0) is a fixed
spacelike vector. Clearly, this equation is not Lorentz-invariant but (deriving
from a Lax pair) it is integrable.

One can recognize (2.76) as the field equation for (a noncommutative gen-
eralization of) a WZW-like modified U(n) sigma model [126, 129] with the
action?

Sy = —-% / dt dz dy n*® tr (6,,@"1 * 35@)

1 ~
— -:I;fdtdx dy/(; d\ 7, e’#¥9 tr (<I>"'1 x* 0,0 % @71 x 5,0 xd7 "« 30‘1’)

(2.77)
where Greek indices include the extra coordinate A, and €?#*? denotes the
totally antisymmetric tensor in R*. The field ®(¢,z,y,)) is an extension
of ®(t,z,y), interpolating between

oy

®(t,z,y,0) = const and d(t,z,y,1) = &, z,y) , (2.78)

and ‘tr’ implies the trace over the U(n) group space. Finally, (v,) = (v.,0) is
a constant vector in (extended) space-time.

Ywhich is obtainable by dimensional reduction from the Nair-Schiff action [130, 131] for
SDYM in 242 dimensions
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Leznov-type solution

Finally, we also impose the asymptotic condition that lim¢ ., ¥ = ¥° with
some constant unitary (normalization) matrix ¥, The large ¢ behavior [83]

U(t,z,y,( 2 o0) = (1 + (7MYt x,y) + OC™?) T° (2.79)

then defines a u(n)-valued field Y (¢, z,y). Again this allows one to reconstruct
A and B through

A= —1lim (¥, !) = §,T and B = — lim ((L*6,¥7') = §,T
¢—o0 - ¢—+oo

(2.80)
In this parametrization, compatibility equation (2.71) becomes an identity but
the second equation (2.72) turns into [102]

B2Y — 8,0, — 8, T + 8, T +9,T+8,T = 0 . (2.81)

This Leznov-type equation [127] can also be obtained by extremizing the
action

S = /dtdxdytr{%—n“"aa'r*ab‘f + %T*(amT*avT—avT*awT)} |

(2.82)
which is merely cubic.
Obviously, the Leznov field T is related to the Yang field ¢ through the
non-local field redefinition

0¥ = 1 %9, and 9,T = &' %x0,9 . (2.83)

For each of the two fields ® and Y, one equation from the pair (2.71, 2.72)
represents the equation of motion, while the other one is a direct consequence
of the parametrization (2.74) or (2.80).

2.3.3 Reduction to noncommutative sine-Gordon
Algebraic reduction ansatz

In section 2.1.3 we have seen that the (commutative) sine-Gordon equation can
be obtained from the self-duality equations for SU(2) Yang-Mills upon appro-
priate reduction from 242 to 141 dimensions. In this process the integrable
- sigma model of the previous section appears as an intermediate step in 2+1
dimensions, and so we may take its noncommutative extension as our depar-
ture point, after enlarging the group to U(2). In order to avoid cluttering the
formulae we suppress the ‘*’ notation for noncommutative multiplication from
now on: all products are assumed to be star products, and all functions are

built on them, i.e. ef(®) stands for el and so on.
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The dimensional reduction proceeds in two steps, firstly, a factorization of
the coordinate dependence and, secondly, an algebraic restriction of the form
of the U(2) matrices involved. In the language of the linear system (2.68) the
adequate ansatz for the auxiliary field ¥ reads

U(t,z,y,¢) = V(@)9(w,v,)Vi() with V(z) = £e'*"
(2.84)
where o1 = (9}), £ denotes some constant unitary matrix (to be specified

later) and « is a constant parameter. Under this factorization, the linear sys-
tem (2.68) simplifies to°

(Oy — ialadoy)yy = —av and ({0, — iaadoy)y = by (2.85)

with a = VIAV and b = VIBV. Taking into account the asymptotic
behavior (2.73, 2.79), the ansatz (2.84) translates to the decompositions

&t z,y) = V(e)g(u,v)Vi(z) with g(u,0)€U@2) ,  (2.86)

T(t,z,y) = V(z)x(u,v) Vi(z) with  x(u,v) € u(2) . (2.87)

To aim for the sine-Gordon equation, one imposes certain algebraic constraints
on ¢ and b (and therefore on ). Their precise form, however, is not needed,
as we are ultimately interested only in g or x. Therefore, we instead directly
restrict g(u,v) to the form

0 :
9= (% ) =osPi+g-P.  with g, €UQ1), and g_ €U

0 g-
(2.88)
and with projectors Py = (39) and P- = (39). This imbeds g into a
U(1)xU(1) subgroup of U(2). Note that g, and g do not commute, due
to the implicit star product. Invoking the field redefinition (2.83) we infer that
the corresponding reduction for x(u,v) should be®

. (0 At :
X = l(h 0) with heC |, (2.89)

with the “bridge relations”

a(h— Al)

—gl0ug+ = gldug_ |
' (2.90)

19,h = gtg,—1 andhec

In this way, the u(2)-matrix y is restricted to be off-diagonal.
We now investigate in turn the consequences of the ansitze (2.86, 2.88) and
- (2.87, 2.89) for the equations of motion (2.75) and (2.81), respectively.

5The adjoint action means adoy (¥) = [o1,¥).
6 Complex conjugates of scalar functions are denoted with a dagger to remind the reader
of their noncommutativity.
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Reduction of Yang-type equation

Let us insert the ansatz (2.86) into the Yang-type equation of motion (2.75).
After stripping off the V' factors one obtains

8y(9'0ug) + a*(019'019 — gla1go1) = 0 . - (2.91)

Specializing with (2.88) and employing the identities 01 Pyo1 = Py we arrive
at Y, P, +Y_P_ =0, with

U

Yy = 8,(940ug+) +o?(gl g+ — ghg-)
(2.92)

Y- = 0y(910ug-)+0?(glg-—glgs) = 0

Since the brackets multiplying o® are equal and opposite, it is worthwhile to
present the sum and the difference of the two equations:

6v(gjr|-3u9+ +9ir-6ug-—) =0,

(2.93)
8y(9}0ug+ — 9LBug-) = 20*(glg- — 9" g+)
It is natural to introduce the angle fields ¢ (u,v) via
g = e%‘¢+P+ e_“%¢—P- & g+ = e'%"’s‘*' and g- = 6_?}4”_ .
(2.94)

In terms of these, the equations (2.93) read
Oy (fz”if"’+ Bue'%‘b“‘ + e 9- 6,,,6'"5'4’") =0 ,

O (e'"é“‘“ O eTh+ — eT®- c’;?ue"%‘ﬁ") = 2a2‘(e’%¢+e"’{f¢" — e7%- e%‘“) .
(2.95)
We propose to call these two equations “the noncommutative sine-Gordon equa-
tions”. Besides their integrability (see later sections for consequences) their

form is quite convenient for studying the commutative limit. When 8 — 0,
(2.95) simplifies to

Ouly(Ppr—0-) = O and Ou0y(P1+¢_) = —8a? sin-%(qb++¢_)

(2.96)
Because the equations have decoupled we may choose

br = ¢-=¢ & gr=g. & geUQ), (297

and reproduce the familiar sine-Gordon equation

67 —82)¢ = —4a® sing . (2.98)

94



One learns that in the commutative case the reduction is SU(2)—U(1)a since
the U(1)v degree of freedom ¢, —¢_ is not needed. The deformed situation,
however, requires extending SU(2) to U(2), and so it is imperative here to keep
both U(1)s and work with two scalar fields.

Inspired by the commutative decoupling, one may choose another distin-
guished parametrization of g, namely

94+ = e¥P ety and g¢g. = L , (2.99)

which defines angles p(u, v) and ¢(u,v) for the linear combinations U(1)y and
U(1)a, respectively. Inserting this into (2.92) one finds

8,(e" %% 8,e%%) + 2ia® sinp = —8,[e"T¥e" 47 (9,e%7)et¥]

. i i i i (2.100)
0y (e7¥ Bue”3%) — 2ia? sinp = -6, le7¢e™3° (Buef")e“%‘p]
In the commutative limit, this system is easily decoupled to |
0.0,p = 0 and 8,0,p+4a®sing = 0 , (2.101)

revealing that p — 1(¢4+—¢-) and ¢ — 3(d4++¢-) = ¢ in this limit.

It is not difficult to write down an action for (2.92) (and hence for (2.95)
or (2.100)). The relevant action may be computed by reducing (2.77) with the
help of (2.86) and (2.88). The result takes the form

Slgss9-1 = Swlgs] + Swlo-] + o [atdy (gho- +gl9s-2) | (2102
where Sw is the abelian WZW action
Swiff = - § [dtdyo.s~ o.f
— / dt dy ] dr e f1a,f f10,f f1o.f (2. 103)

Here f()\) is a homotopy path satisfying the conditions f(0) = 1 and f(1) =
Parametrizing g+ as in (2.99) and using the Polyakov—Wlegmann identity, the
action for p and ¢ reads

Slo, ¢l = 2SPC[ ?] + 20 fdtdy cosp — 1) + 28w [erp]
(2.104)
- /dtdy e 3" 31:6%”(6'—7“’ O et ¥ +e’f“’3ue"’7‘*°) :

where

Spclf] = —%/dtdy(‘)vf"‘l Ouf . (2.105)
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In this parametrization the WZ term has apparently been shifted entirely to
the p field while the cosine-type self-interaction remains for the ¢ field only.
This fact has important consequences for the scattering amplitudes.

It is well known [45, 123, 132] that in ordinary commutative geometry the
bosonization of N free massless fermions in the fundamental representation
of SU(N) gives rise to a WZW model for a scalar field in SU(NN) plus a free
scalar field associated with the U(1) invariance of the fermionic system. In
the noncommutative case the bosonization of a single massless Dirac fermion
produces a noncommutative U(1) WZW model [47], which becomes free only in
the commutative limit. Moreover, the U(1) subgroup of U(/N) does no longer
decouple (35|, so that N noncommuting free massless fermions are related to a
noncommutative WZW model for a scalar in U(N). On the other hand, giving
a mass to the single Dirac fermion leads to a noncommutative cosine potential
on the bosonized side [133, 48].

In contrast, the noncommutative sine-Gordon model we propose in this
paper is of a more general form. The action (2.102) describes the propagation
of a scalar field ¢ taking its value in U(1)xU(1) C U(2). Therefore, we expect it
to be a bosonized version of two fermions in some representation of U(1)xU(1).
The absence of a WZ term for ¢ and the lack of a cosine-type self-interaction
for p as well as the non-standard interaction term make the precise identification
non-trivial however.

Reduction of Leznov-type equation

Alternatively, if we insert the ansatz (2.87) into the Leznov-type equation of
motion (2.81) we get

BuOuXx + 204 (x — o1X01) + ia[[al,x],a,,x] =0 . (2.106)

Specializing with (2.89) this takes the form Zo_+Z%0, =0 with o_ = (?29)
and oy = (3%), where

Z = 0u0ph+20*(h—h')+a{Byh,h—h'} =0 . (2.107)
The decomposition
x = i(hio1 + hoos) = h = hy+ ihs (2.108)

then yields
0,

I

6u6tuh1 - 2a {6vh2 y h2}
(2.109)
0,0vha + 4a2h2 + 2 {6,,}11 , hz} = 0

These two equations constitute an alternative description of the noncommu-
tative sine-Gordon model; they are classically equivalent to the pair of (2.93)
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or, to be more specific, to the pair of (2.100). For the real fields the “bridge
relations” (2.90) read

2iahy = —e 39179, (eTPeT¥) = 1% 1P P, (eTPe™TY) | (2.110
20,hy = cosp—1 and  18,hy = sing

One may “solve” one equation of (2.100) by an appropriate field redefinition
from (2.110), which implies already one member of (2.109). The second equa-
tion from (2.100) then yields the remaining “bridge relations” in (2.110) as well
as the other member of (2.109). This procedure works as well in the opposite
direction, from (2.109) to (2.100). The nonlocal duality between (g, p) and
(h1,h2) is simply a consequence of the equivalence between (2.75) and (2.81)
which in turn follows from our linear system (2.68).

The “h description” has the advantage of being polynomial. It is instructive
to expose the action for the system (2.109). Either by inspection or by reducing
the Leznov action (2.82) one obtains

S[hl,hgl = /dt dy {6uh16,,h1 +3uh26,,h2-—4a2h§-—4a hg thl} . (2.111)

2.3.4 Relation with the previous noncommutative gener-
alization of the sine-Gordon model

The noncommutative generalizations of the sine-Gordon model presented above
are expected to possess an infinite number of conservation laws, as they origi-
nate from the reduction of an integrable model [102]. It is worthwhile to point
out their relation to the noncommutative sine-Gordon model 1 discussed in
section 2.2, which also features an infinite number of local conserved currents.

In [34] an alternative noncommutative version of the sine-Gordon model
was proposed. Using the bicomplex approach the equations of motion were
obtained as flatness conditions of a bidifferential calculus,’

0(G'+x8G) = [R,G'*xRG]. , (2.112)
where |
R = 2 (g (1)) (2.113)

and G is a suitable matrix in U(2) or, more generally, in complexified U(2). In
[34] the G matrix was chosen as

P . P
i o COS, = Sin, =
G = e = ( o ?I,) (2.114)

7This subsection switches to Euclidean space R?, where 8 and 8 are derivatives with
respect to complex coordinates.
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with @ being a complex scalar field. This choice produces the noncommutative
equations (all the products are *-products)

é(e‘}?‘bae"’if°+e“%q’ae%°) =0 |,

5(6“’3'¢66‘5'q’—e'i’¢6e"*q’) = 4io®sin® . (2.115)

- As shown in [36] these equations (or a linear combination of them) can be
obtained as a dimensional reduction of the equations of motion for noncommu-
tative U(2) SDYM in 2+2 dimensions.

The equations (2.115) can also be derived from an action which consists of
the sum of two WZW actions augmented by a cosine potential,

SUFl = SUI+SI) with  SIf = Swifl-a? [dtdy (P+s2-2)

(2.116)
with Sw[f] given in (2.103) for f = e*® in complexified U(1). However,
this action cannot be obtained from the SDYM action in 2+2 dimensions by
performing the same field parametrization which led to (2.115).

Comparing the actions (2.102) and (2.116) and considering f and f as
independent U(1) group valued fields we are tempted to formally identify f =
g+ and f = g_. Doing this, we immediately realize that the two models
differ in their interaction term which generalizes the cosine potential. While
in (2.116) the fields f and f show only self-interaction, the fields g, and g_ in
(2.102) interact with each other. As we will see in section 2.3.6 this makes a
big difference when evaluating the S-matrix elements.

We close this section by observing that the equations of motion (2.95) can

also be obtained directly in two dimensions by using the bicomplex approach
described in [34]. In fact, if instead of (2.114) we choose

G =

( e3%+ + e~ 39- —ied%+ 4 ie““si’"’“) (2.117)

ies®+ — je—39- e7+ 4 e~ 7%-
it is easy to prove that (2.112) yields exactly the set of equations (2.95). There-

fore, by exploiting the results in [34] it should be straightforward to construct
the first nontrivial conserved currents for the present model.

2.3.5 Solitons

Dressing approach in 241 dimensions.

The existence of the linear system allows for powerful methods to systematically
construct explicit solutions for ¥ and hence for ' = ¥|._o or Y. For our
purposes the so-called dressing method [128, 107] proves to be most practical,
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and so we shall first present it here for our linear system (2.68), before reducing
the results to solitonic solutions of the noncommutative sine-Gordon equations.

The central idea is to demand analyticity in the spectral parameter ¢ for
the linear system (2.68), which strongly restricts the possible form of ¥. The
most elegant way to exploit this constraint starts from the observation that
the left hand sides of the differential relations (D):=(2.69) as well as the reality
condition (R):=(2.70) do not depend on { while their right hand sides are
expected to be nontrivial functions of ¢ (except for the trivial case ¥ = ¥9),
More specifically, CP! being compact, the matrix function ¥(¢) cannot be
holomorphic everywhere but must possess some poles, and hence the right
hand sides of (D) and (R) should display these (and complex conjugate) poles
as well. The resolution of this conundrum demands that the residues of the
right hand sides at any would-be pole in { have to vanish. We are now going
to evaluate these conditions.

The dressing method builds a solution ¥yn(t,z,y,{) featuring N simple
poles at positions u,p2,...,un by left-multiplying an (IN—1)-pole solution
Un_1(t,z,y,() with a single-pole factor of the form (1 + "—C’"_—;%iPN(t,a:, ),
where the nxn matrix function Py is yet to be determined. In addition, we are
free to right-multiply ¥nx_ (¢, ,y, ) with some constant unitary matrix ¥%,.
Starting from ¥y = 1, the iteration Yo +— ¥; — ... — Uy yields a mul-
tiplicative ansatz for ¥ which, via partial fraction decomposition, may be
rewritten in an additive form (as a sum of simple pole terms). Let us trace this
iterative procedure constructively. R

In accord with the outline above, the one-pole ansatz must read (¥9 =: ¥Y)

- 1
p1 — f 0 A1157\ 10
¥, = (1 n Pl) 00 = (1 + ) T 2.118)

(—m ' (—m/ t (
with some nxr; matrix functions A;; and S; for some 1<r;<n. The normal-
ization matrix ¥Y is constant and unitary. It is quickly checked that

rescp,(R)=0 = Pl =P =P = P =TTN0"'7 ,
(2.119)
meaning that P, is a rank r; projector built from an nx7; matrix function 73.
The columns of 77 span the image of P, and obey P;T; = T1. When using the
second parametrization of ¥; in (2.118) one finds that

res¢=j, (R) =0 = (1 — P1) SlAL =0 = T1 =5
(2.120)
modulo a freedom of normalization. Finally, the differential relations yield

wsen(D)=0 > (-R)LP(Sil) =0 = TS - 60
121
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for some 71 xr; matrices I'#* and I'B, after having defined
LA = 8, -0, and LP := p;(8; — b)) for i=1,2,...,N .
- (2.122)

Because the are linear differential operators it is easy to write down the
general solution for (2.121): Introduce “co-moving coordinates”

L

w; = m+ﬁ,;u+i1,?"1'v = W = :c+uiu+u;'1v for 2=1,2,...,N
(2.123)
Lf’B act as

0

Ow;

so that on functions of (w;,w;) alone the

L = L7 = (u—ik)

1

(2.124)

Hence, (2.121) is solved by

S1(t,2,y) = 5 (w1) gD/ (u1—h1)
for any w;-holomorphic nxr; matrix function S;  (2.125)

and ['4 = 'B =: T;. Appearing to the right of S}, the exponential factor is seen
to drop out in the formation of P; via (2.119) and (2.120). Thus, no generality
is lost by taking I'y = 0. We learn that any w;-holomorphic nxr; matrix 7y is
admissible to build a projector P, which then yields a solution ¥; (and thus ®)
via (2.118). Note that A;; need not be determined seperately but follows from
our above result. It is not necessary to also consider the residues at (=pu; since
their vanishing leads merely to the hermitian conjugated conditions.

Let us proceed to the two-pole situation. The dressing ansatz takes the

form (TOWY =: ¥Y)

- . t t
2 — fig p — i1 0 A1 S] | A22S5\ o

Vo = (14 P14+ PV, = (1+ + v, |,
2 = (T, B) (T ) = (e )

| (2.126)

where P» and S, are to be determined but P, and S; can be copied from above.

Indeed, inspecting the residues of (R) and (D) at { = fi; simply confirms that

P =1 (TJT])—ITI and =5 with S = §1 ('wl)

- (2.127)

is just carried over from the one-pole solution. Relations for P, and S arise
from

Ire€S¢=p, (R) =0 = (I—Pg) P

0 = P, =T(TT) 1],
(2.128)

resc=p,(R) =0 =  Wa(fia) SoAl; = (1-Pp)(1— &=8Lp) SAL, = 0,
(2.129)
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where the first equation makes use of the multiplicative form of the ansatz (2.126)
while the second one exploits the additive version. We conclude that P; is again
a hermitian projector (of some rank r2) and thus built from an nxry matrix
function T5. Furthermore, (2.129) reveals that 75> cannot be identified with S
this time, but we rather have

T, = (1 _ BT Pl) S, (2.130)

H1—He2

instead. Finally, we consider

rescei(D) =0 = (i) IAB (ML) = 0 = I&FS, = §THP
(2.131)
which is solved by

Sa(t,z,y) = Sy(wg)e®T3/(Ha—ha) (2.132)

for any we-holomorphic nxry matrix function §2 and T'8 = I'P =: ;. Once
more, we are entitled to put I'; = 0. Hence, the second pole factor in (2.126)
is constructed in the same way as the first one, except for the small complica-
tion (2.130). Again, Ag; and Ag2 can be read off the result if needed.

It is now clear how the iteration continues. After N steps the final result
reads

pi, MN—t — AN—¢ 0 al AN:‘STr 0
‘IJNZ{H(lJr ¢ — hin—e PN“E)}‘PN:{1+Z z'}\IJN ’
£=0 - =

featuring hermitian rank r; projectors P; at i = 1,2,..., N, via

1—1 -
P, = T,(TIT)'T! with T, = { 1 - Kzt~ Bt p }S,- ,
SR z g( Hi—t — i ;z)
(2.134)
where

Sitt,z,y) = Si(w;) (2.135)

for arbitrary w;-holomorphic nxr; matrix functions S; (w;). The corresponding
classical Yang and Leznov fields are

N
oy = TL(¢=0) = ] H(l—PiPi) with  p; = 1—% ,
i=1 ¢
(2.136)
t N
Ty = CILHC}OC(‘I’N(C) V' -1) = ) (m—m) P . (2.137)
i=1
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The solution space constructed here is parametrized (slightly redundantly) by
the set {§1}{V of matrix-valued holomorphic functions and the pole positions y;.
The so-constructed classical configurations have solitonic character (meaning
finite energy) when all these functions are algebraic.

The dressing technique as presented above is well known in the commuta-
tive theory; novel is only the realization that it carries over verbatim to the
noncommutative situation by simply understanding all products as star prod-
ucts (and likewise inverses, exponentials, etc.). Of course, it may be technically
difficult to *-invert some matrix, but one may always fall back on an expansion
in powers of 6.

Solitons of the noncommutative sine-Gordon theory

We should now be able to generate /N-soliton solutions to the noncommutative
sine-Gordon equations, say (2.100), by applying the reduction from 2+1 to 141
dimensions (see previous section) to the above strategy for the group U(2),
i.e. putting n=2. In order to find nontrivial solutions, we specify the constant
matrix £ in the ansatz (2.84) for ¥ as

£ = g—ifor _ I}EG "i) (2.138)

which obeys the relations £03 =01 € and £o1 = —03 €. Pushing £ beyond V
we can write

d(t,z,y) = W()gu,v) Wi(z) with  W(z) = e~ 1*%9  (2.139)

and

0 +g- —g-
o) = Equet = £( et = (5T

g- 9+—9-  g++9-
(2.140)
With hindsight from the commutative case [107] we choose
\/I;? = 03 Vi = v = oY (2.141)

(which commutes with W) and restrict the poles of ¥ to the imaginary axis,
u; = ip; with p; € R. Therewith, the co-moving coordinates (2.123) become

w; = z—i(pju—p;lv) = z—in(u,v) , (2.142)

defining 7; as real linear functions of the light-cone coordinates. Consequen-
tially, from (2.136) we get p; =2 and find that

gn(u,v) = H ) with B = WEBW' . (2.143)
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Repeating the analysis of the previous subsection, one is again led to construct
hermitian projectors

At

i-1
P = ﬂ(Tjﬂ)_lTit with T; = H(l 2Pi-t ﬁz’-—f) S
=1

: P+
_ (2.144)
where 2x 1 matrix functions S;(u,v) are subject to
~A,B ~ o~
Li Si = Sg I‘i for 1= 1, 2, cee ,N (2.145)

and some numbers I'; (note that now rank r;=1) which again we can put to
zero. On functions of the reduced co-moving coordinates 7; alone,

= WTEf’BW = (u,-—-ﬁ,;)WT-—(Z_-_-W = p; -i-l‘-ada (2.146)
Ow; 377:

~A,B
L.

]

so that (2.145) is solved by

Pt

= vire o i1 .
Si(u,v) = Si(m) = ( +an-) = e ( z ) with 71,72 € C
1%2€ "~ " 1732
(2.147)

Furthermore, it is useful to rewrite

—~1
Yil Vi
variz =: A} and  Yie/yi =7} = ( t ) = Ai ( . ) (2.148)
1732 17
because then |y;| may be absorbed into 7; by shifting an; — an; + In|y;|. The

multipliers A; drop out in the computation of P;. Finally, to make contact with
the form (2.140) we restrict the constants 7; to be real.

Let us check the one-soliton solution, i.e. put N=1. Suppressing the indices
momentarily, absorbing <y into n and dropping A, we infer that

- e—on ~ 1 e~2an i
T = = P =
( i 6&'7) 2 ch2a17 ( i e+2an)

-———ch2‘ o th2an

which has detg = 1. Since here the entire coordinate dependence comes in
the single combination n(u,v), all star products trivialize and the one-soliton
configuration coincides with the commutative one. Hence, the field p drops

out, g € SU(2), and we find, comparing (2.149) with (2.140), that

5(9++9-) = cos€ = th2an  and 3-(g+—8-) = sin$ = ch21an

(2.150)
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which implies

2am — _2 arcsin(th2am)

(2.151)

reproducing the well known sine-Gordon soliton with mass m = 2a. Its
2

moduli parameters are the velocity v = i—_’;ﬁ; and the center of inertia yy =

1V1-v2In|y| at zero time [107]. In passing we note that in the “h description”
the soliton solution takes the form

tan £ = e~ 2om = ¢ = 4 arctane™

=> h = pth(an+4f) = pes®
(2.152)

Noncommutativity becomes relevant for multi-solitons. At N=2, for in-
stance, one has

hi = pth2an and hy; = c_tha_n

G» = 1-2P)(1-2P,) with P, =P from (2.149)
and 132 - fg (Tgfz)nlfg

where i;2 = (1 — f‘%ﬁl) 82 and §2 = e *M203 "):2;:)
with v eR
(2.153)

We refrain from writing down the lengthy explicit expression for g2 in terms of
the noncommuting coordinates 7; and 75, but one cannot expect to find a unit
(star-)determinant for g, except in the commutative limit. This underscores
the necessity of extending the matrices to U(2) and the inclusion of a nontrivial
p at the multi-soliton level.

It is not surprising that the just-constructed noncommutative sine-Gordon
solitons themselves descend directly from BPS solutions of the 2+1 dimensional
integrable sigma model. Indeed, putting back the z dependence via (2.139),
the 241 dimensional projectors P; are built from 2x1 matrices

. ~ iaweoe (Vi 1 1 1 —iaw,

(2.154)
In the last expression the right factor drops out on the computation of pro-
jectors; the remaining column vector agrees with the standard conventions
[126, 102, 107, 105]. Reassuringly, the coordinate dependence has combined
into w;. The ensueing 2+1 dimensional configurations &) are nothing but
noncommutative multi-plane-waves the simplest examples of which were al-
ready investigated in [105].
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2.3.6 (Nice) properties of the S-matrix

In this section we compute tree-level amplitudes for the noncommutative gen-
eralization of the sine-Gordon model proposed in section 2.3.3, both in the
Yang and the Leznov formulation. In commutative geometry the sine-Gordon
S-matrix factorizes in two-particle processes and no particle production occurs,
as a consequence of the existence of an infinite number of conservation laws. In
the noncommutative case it is interesting to investigate whether the presence
of an infinite number of conserved currents is still sufficient to guarantee the
integrability of the system in the sense of having a factorized S-matrix.

The previous noncommutative version of the sine-Gordon model we intro-
duced and studied in section 2.2 is endowed with an infinite set of conserved
currents. In section 2.2.9 we have seen that, despite the existence of an infi-
nite chain of conservation laws, particle production occurs in that model and
that the S-matrix is neither factorized nor causal.® As already stressed in sec-
tion 2.3.4, the noncommutative generalization of the sine-Gordon model we
proposed in [37] and discussed in the present section 2.3 differs from the one
studied in [34] in the generalization of the cosine potential. Therefore, both
theories describe the dynamics of two real scalar fields, but the structure of
the interaction terms between the two fields is different. We then expect the
scattering amplitudes of the present theory to behave differently from those of
the previous one. To this end we will compute the amplitudes corresponding
to 2 — 2 processes for the fields p and ¢ in the g-model (Yang formulation)
as well as for the fields h; and hs in the A-model (Leznov formulation). In the
g-model we will also compute 2 — 4 and 3 — 3 amplitudes for the massive
field . In both models the S-matrix will turn out to be factorized and causal
in spite of their time-space noncommutativity.

Amplitudes in the “g-model”. Feynman rules

We parametrize the g-model with (p, ) as in (2.104) since in this parametriza-
tion the mass matrix turns out to be diagonal, with zero mass for p and m=2«
for ¢. Expanding the action (2.104) up to the fourth order in the fields, we

read off the following Feynman rules: |

e The propagators

21
= _ 1
) = Z—71=s > (2.155)
21
-------------------- = (pp) = %2 (2-156)

8 Acausal behaviour in noncommutative field theory was first observed in [15] and shown
to be related to time-space noncommutativity.

105



e The vertices (including a factor of “i” from the expansion of €¢'*)

1
= — g5 (k] — K} — 2k A ko)F (ks k2, ks)

(2.157)
1, 2
3
(2.158)
1 ) 0
i 2ic
4 = [~y 62+ 3y <) + | Pk, K ks, )
3
(2.159)
. ! J"”z
= - (k% + 3k - k3) F(ky, k2, k3, ka)
N o
3"
(2.160)

A
-
.
LY b
-~
~
s
”,
L
,
’
”,

_é%(kf—k§+2kl-k3—2k2-k3+ 2k1 A ko

+2k1 A k3 + 2k3 A kz) F(kl, ko, k3, k4) (2.161)

where we used the conventions of section 2 with the definitions
u-v = —n®uLup = — Uy Uy, and UAY = WUy —uyvy . (2.162)
Moreover, we have defined

F(kl,...,kn) = exp{—%ﬂz'&jki/\kj} . (2163)

and use the convention that all momentum lines are entering the vertex and
energy-momentum conservation has been taken into account.

We now compute the scattering amplitudes @@ — @@, pp — pp and pp —
wp and the production amplitude ¢y — pp. We perform the calculations in the
center-of-mass frame. We assign the convention that particles with momenta
k1 and ks are incoming, while those with momenta k3 and k4 are outgoing.
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Amplitude pp — win

Tne four momenta are explicitly written as
k1 = (E’p) , k2= (E, "'p) , k3= (_Eap) , ka=(-F, _p) 3 (2164)

with the on-shell condition E? — p? = 4a?. There are two topologies of dia-
grams contributing to this process. Taking into account the leg permutations
corresponding to the same particle at a single vertex, the contributions read

1 2
2
2ia?cos?(6Ep)
4 3
1 2
—3p°sin’(0Ep) >< 3B sin®(0Ep)
3 3 4

The second diagram is actually affected by a collinear divergence since the total
momentum k; + k4 for the internal massless particle is on-shell vanishing. We
regularize this divergence by temporarily giving a small mass to the p particle.
It is easy to see that the amplitude is zero for any value of the small mass since
the wedge products k; A k4 and kg A k3 from the two vertices always vanish.
As an alternative procedure we can put one of the external particles slightly
off-shell, so obtaining a finite result which vanishes in the on-shell limit.

Summing all the contributions, for the @ — @ amplitude we arrive at

I
o

o b H
ot
w
o

Appapp = 2i0* | (2.165)

which perfectly describes a causal amplitude.

A nonvanishing ¢¢ — @@ amplitude appears also in the noncommutative
sine-Gordon proposal of [34, 36]. However, there the amplitude has a non-
trivial f-dependence which is responsible for acausal behavior. Comparing the
present result with the result in [36], we observe that the same kind of dia-
grams contribute. The main difference is that the exchanged particle is now
-massless instead of massive. This crucial difference leads to the cancellation of
the #-dependent trigonometric behaviour which in the previcus case gave rise

to acausality.
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Amplitude pp — pp

In this case the center-of-mass momenta are given by
ki =(E,E), ko=(E,-FE), ki=(-E,E), ks=(—E,-FE), (2.166)

where the on-shell condition E? — p? = 0 has already been taken into account.
For this amplitude we have the following contributions

R ! 2
W 2 .. .
)1\‘ —_— O y ’:\,_ _____ = 0 y
4”’, \\\ "‘4
| 3 -4 3
1 2 % 2
_ i 2 o2/ 2 i p2an2/nr2
5 = —zE*sin“(E°) , e = E*sin(0E<)
4 3 <3 4

Again, a collinear divergence appears in the second diagram. In order to reg-
ularize the divergence we can proceed as before by assigning a small mass to
the p particle. The main difference with respect to the previous case is that
now the p particle also appears as an external particle, with the consequence
that the on-shell momenta in (2.166) will get modified by the introduction of
a regulator mass. A careful calculation shows that the amplitude is zero for
any value of the regulator mass, due to the vanishing of the factors k; A k4 and
ko A k3 from the vertices.
Therefore, the two nonvanishing contributions add to

Ajpspp = 0 . (2.167)

Amplitude pp — pp

There are two possible configurations of momenta in the center-of-mass frame,
describing the scattering of the massive particle with either a left-moving or a
right-moving massless one. In the left-moving case the momenta are

k1 = (Eap) ) k2 = (pa '—p) ) k3 - (“E)p) ) k4 = (_pa ""p) ) (2168)

while in the right-moving case we have

k1 = (E? —p) ) k2 — (pap) ’ k3 = ('—Eap) ) k4 = (—pa “"’_’P) . (2169)
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For the left-moving case (2.168) the results are

\J <

: \/ = —+Epsin(6Ep) sin(6p?) ,

% 4\\.

AN

= 1Epsin(0Ep) sin(6p?) ,
2 N4
= 0 y \—/ - 0

2 4 4 2

[U—
\“ N
&7
L2 o
l' u
Il Il
QO o
-
el
) <
(F% ]
| 1
- o

In this second case an infrared divergence is present due to the massless propa-
gator, but again it can be cured as described before. In both cases the scattering
amplitude vanishes,

Amplitude pp — pp

The momenta in the center-of-mass frame are given by
ky = (E,}')} , ko= (Ea "‘p) , ks= (—'E)E) , ka= (_Ea _E) y (2171)

In this case we have three kinds of diagrams contributing. The corresponding
results are
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<
[\ 8]
I

1+ Ep sin(6Ep) sin(0E?)

I

—iEp sin(9Ep) sin(0E?)

4. 3
1 2
\_/ \_/
= 0 , P . = 0
4 3 3 i~
Summing the four contributions, we obtain
A‘pcp—-ppp - D (2172)

as it should be expected for a production amplitude in an integrable model.
The same is true for the time-reversed production,

App—-b(pg? — 0 . (2.173)

Summarizing, we have found that the only nonzero amplitude for tree-
level 2 — 2 processes is the one describing the scattering among two of the
massive excitations. The result is constant, independent of the momenta and
so describes a perfectly causal process. Since the result is independent of
the noncommutation parameter 0 it agrees with the four-point amplitude for
the ordinary sine-Gordon model. Finally, we have found that the production
amplitudes pp — pp and pp — ¢ vanish, as required for ordinary integrable
theories.

As a further check of our calculation and an additional test of our model
we have computed the production amplitude oy — wpwe and the scattering
amplitude ppw — Yy, In both cases the topologies we have to consider are

N
/N

\/
A
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Due to the growing number of channels and ordering of vertices, it is no longer
practical to perform the calculations by hand. We have used Mathematica®
to symmetrize the vertices and take automatically into account the different
diagrams obtained by exchanging momenta entering a given vertex. The com-
putation has been performed with assigned values of the external momenta
but arbitrary values for a? and 8. We have found a vanishing result for both
the scattering and the production amplitude. This is in agreement with the
commutative sine-Gordon model results.

Amplitudes in the “h-model”

We now discuss the 2 — 2 amplitudes in the Leznov formulation. The theory is
again described by two interacting fields, h; massless and hy massive. Referring
to the action (2.111) we extract the following Feynman rules,

e The propagators
i
2k2
i/2
k2 — 42

--------------------

(h1h1) (2.174)

It
|

(hzh2) (2.175)

e The vertex

1\/2

i3

= —da(ks — kay) F(k1,k2,k3) . (2.176)

Again, we compute scattering amplitudes in the center-of-mass frame. Given
the particular structure of the vertex, at tree level there is no hihy — hi1h;
scattering. To find the hohy — hohe amplitude we assign the momenta (2.164)
to the external particles. The contributions are
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I

1 2 \/2
>< —~16i0? cos®(6Ep) = 16ia*cos*(0Ep)
3 4

1 2 /\3
5

We note that a collinear divergence appears in the last diagram which can be
regularized as described before. Summing the two nonvanishing contributions
we obtain complete cancellation.

For the hohe — hih; amplitude the center-of-mass-momenta are given in
(2.171). The only topology contributing to this production amplitude has two
channels, yielding

Il
-

which are both zero, so giving a vanishing result once more. The same is true
for the hihy — hgho production process.

Finally, for the hiho — h;hg amplitude, we refer to the center-of-mass mo-
menta defined in (2.168) and (2.169). In both cases the contributions are

and so we find that the sum of the two channels is always equal to zero.

Since all the 2 — 2 amplitudes vanish, the S-matrix is trivially causal and
factorized.

Both in the ordinary and noncommutative cases the “h-model” is dual to
the “g-model”. In the commutative limit the “g-model” gives rise to a sine-
Gordon model plus a free field which can be set to zero. In this limit our
amplitudes exactly reproduce the sine-Gordon amplitudes. On the other hand,
the amplitudes for the “h-model” all vanish. Therefore, in the commutative
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limit they do not reproduce anything immediately recognizable as an ordinary
sine-Gordon amplitude. This can be understood by observing that, both in
the ordinary and in the noncommutative case, the Leznov formulation is an
alternative description of the sine-Gordon dynamics and obtained from the
standard Yang formulation by the nonlocal field redefinition given in (2.110).
Therefore, it is expected that the scattering amplitudes for the elementary
exitations, which are different in the two formulations, do not resemble each
other.

2.3.7 Conclusions

In this section 2.3 I have introduced and discussed a novel noncommutative
sine-Gordon system [37] based on two scalar fields, which seems to retain all
advantages of 141 dimensional integrable models known from the commuta-
tive limit. The rationale for introducing a second scalar field was provided
by deriving the sine-Gordon equations and action through dimensional and
algebraic reduction of an integrable 241 dimensional sigma model: In the non-
commutative extension of this scheme it is natural to generalize the algebraic
reduction of SU(2)—U(1) to one of U(2)—U(1)xU(1). We gave two Yang-
type and one Leznov-type parametrizations of the coupled system in (2.95),
(2.100) and (2.109) and provided the actions for them, including a comparison
with previous proposals. It was then outlined how to explicitly construct non-
commutative sine-Gordon multi-solitons via the dressing method based on the
underlying linear system. We found that the one-soliton configuration agrees
with the commutative one but already the two-soliton solutions gets Moyal
deformed.

What is the gain of doubling the field content as compared to the standard
sine-Gordon system or its straightforward star deformation? Usually, time-
space noncommutativity adversely affects the causality and unitarity of the
S-matrix (see, e.g. [111, 34, 36]), even in the presence of an infinite number
of local conservation laws. In contrast, the model described in [37] seems to
possess an S-matrix which is causal and factorized, as we checked for all tree-
level 2 — 2 processes both in the Yang and Leznov formulations. Furthermore,
we verified the vanishing of some 3 — 3 scattering amplitudes and 2 — 4
production amplitudes thus proving the absence of particle production.

It would be nice to understand what actually drives a system to be inte-
grable in the noncommutative case. A hint in this direction might be that the
model] proposed in [34] has been constructed directly in two dimensions even
if its equations of motion (but not the action) can be obtained by a suitable
reduction of a four dimensional system (noncommutative self-dual Yang-Mills).
The model proposed in this paper, instead, originates directly, already at the
level of the action, from the reduction of noncommutative self-dual Yang-Mills
theory which is known to be integrable and related to the N=2 string [81].
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Several directions of future research are suggested by our results. First, one
might hope that our noncommutative two-field sine-Gordon model is equiv-
alent to some two-fermion model via noncommutative bosonization. Second,
it would be illuminating to derive the exact two-soliton solution and extract
its scattering properties, either directly in our model or by reducing wave-like
solutions of the 2+1 dimensional sigma model [105, 104]. Third, there is no
obstruction against applying the ideas and techniques of this paper to other
1+1 dimensional noncommutative integrable systems in order to cure their
pathologies as well.

114



Chapter 3

Covariant superstring
vertices and a possible
nonconstant superspace
deformation

3.1 An introduction to the pure spinor super-
string

In this section I will mostly refer to the review paper [134].

3.1.1 Motivation: Problems with RNS and GS formalisms

In section 1.2.2 I have briefly outlined how the discussion of the stringy origin of
bosonic noncommutative geometry presented in section 1.2.1 can be generalized
to the superstring, in both RNS and GS formalisms. As anticipated, both of
them display some awkward features, due to their target-space or worldsheet
symmetry structure, respectively. |

The RNS formalism is characterized by an N = 1 worldsheet supersym-
metry. The field content is the set of bosonic coordinate fields 2™ (worldsheet
scalars and spacetime vectors) together with the worldsheet spinors (and space-
time vectors) ™. The worldsheet action for the string in a flat background
is quadratic, therefore the quantization in this formalism is straightforward.
After a suitable consistent truncation of the spectrum (GSO projection), the
theory also enjoys target space supersymmetry, but clearly this symmetry is
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not manifest. As a result, a series of problems arises, for instance in the com-
putation of amplitudes with more than four external fermions and in dealing
with general R-R backgrounds.

The GS formalism instead is manifestly target-space supersymmetric, but
the worldsheet symmetry structure is quite complicated. Target space is a
ten-dimensional superspace described by the bosonic coordinates ™ and their

superpartners 6, 68 (in type II case). For the number of physical fermionic
degrees of freedom to be related to the bosonic ones as required by target-
space supersymmetry, a worldsheet fermionic local symmetry must be present
(k-symmetry, [135]). Therefore, the natural supersymmetric generalization of
the bosonic string action

8 = f Pov/RRITL; -1, (3.1)

where k'’ is the worldsheet metric and II is the supersymmetrized bosonic
momentum, does not work, not being x-symmetric. When N < 2 a WZ term
S can be added, so that the resulting action S = S§; + S; is k-symmetric
(for this discussion the reader can refer to [4] and references therein). S in
conformal gauge and in a flat background is given by (1.172) with B = 0. It is
nonquadratic and describes a complicated, interacting worldsheet field theory.
'This fact prevents quantization except in light-cone, where the action reduces
to a quadratic form. Since light-cone gauge is not manifestly Lorentz covariant,
problems in the computation of amplitudes emerge also in this formalism and
only four-point tree and one-loop amplitudes have been computed. Moreover,
backgrounds that do not allow for a light-cone choice cannot be dealt with at
the quantum level.

An alternative approach to the GS formalism was introduced by Siegel [88].
The main problem of the GS superstring is that a set of phase-space constraints
arise at the classical level whose structure do not allow for a Dirac quantization
procedure. In particular, since the conjugate momenta p, to the fermionic
variables 6% do not appear in the action, one has phase space constraints d, = 0
together with the Virasoro constraint 7' = —%II-H = (O related to the conformal
gauge choice. The anticommutator of the d’s is proportional to the II’s. As
a result, half of the fermionic constraints are first class and half are second
class [137]. The separation of the two different kinds of constraint cannot be
achieved in a manifestly Lorentz covariant way. This explains why quantization
of the model only works in light-cone gauge.

In [88] Siegel proposed to rewrite the GS action in a first order formalism
for the fermionic variables, hoping that a set of phase space constraints that
are all first class could be found. These contraints were to be constructed out
of the supersymmetric objects II", 0% and the GS constraint d,, no longer
constrained to vanish. The explicit form of the left-moving contribution to the
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GS action in conformal gauge in Siegel formalism is
5= [ (—;-meémm ; paaea) (3:2)

where the fermionic conjugate momenta p, are independent variables. This
approach was shown to work for quantizing the superparticle, but not the
superstring, since its correct physical spectrum was never obtained. We should
note that the action (3.2) is quadratic and therefore it is immediate to determine
the OPE’s between the free fields. Quantization of this theory is as simple as
the in RNS formalism.

In the next section we will see how Siegel action (3.2) is the starting point for
the construction of a formalism for the superstring that allows for a covariant
quantization and describes the same physics as the RNS and GS strings.

3.1.2 Pure spinor superstring basics

From now on I will use the Weyl representation of the 32 x 32 ten-dimensional
Dirac matrices, where they are off-diagonal and 7} and 72:@ are the real sym-

metric 16 x 16 off-diagonal blocks, satisfing the Fierz identities Ymo(BY8) = 0.
Useful properties to keep in mind are the following. Every symmetric
bispinor can be decomposed in terms of a vector and a five form as

mnpqr

fap = 7::“ﬁfm + Yop Jmnpgr (3.3)

while every antisymmetric bispinor can be decomposed in terms of a three form

as

fap = 7;1;pfmnp (3.4)

Our conventions for d = 10 N = 2 superspace covariant derivatives and
supersymmetry charges are

1 1
Do =04 + 5(7m9)aam y Qo =0 — 5(7m0)aam y
1

o n A 1
Da = 04 + '2'(7m9)a3m , Qa=20s— '2'(’)’m9)&3m ,  (3.5)

which satisfy
{DaaDﬁ} =7?56m1 {f)&)f)ﬁ} :‘_72@61713 {Daaﬁﬁ} =0
{Da’Qﬁ} =0 y {Dﬁ, Qé} =0 (36)

Berkovits completed Siegel action (3.2) by adding some missing worldsheet
ghost degrees of freedom. The evaluation of what’s missing in Siegel approach
can be achieved by “counting”. Siegel action (3.2) gives the free-field OPE’s

™ (y)z" (w) ~ —2n™" log |y — w|
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Pa(y)0P (w) ~ 65 (y — w) ™! (3.7)

From this, we can determine the contributions of the different fields to the
conformal anomaly. Since fermionic fields contribute -32 and bosonic ones
+10, the missing fields should contribute 422. Moreover, one can consider the
contribution to the Lorentz current coming from fermionic degrees of freedom
Mynn = 3PYmnf and compare to the analogous term in RNS formalism Mp,, =
Ym¥n. The current-current OPE’s are similar, except for the coeflicient of the
double pole term, which is +4 in Siegel case and +1 in RNS case. Therefore,
the missing ghost variables should contribute to the Lorentz current in a way
to produce a -3 in the double pole.

Indeed, Berkovits found that an irreducible representation of SO(9,1) with
these characteristics exists. This is a bosonic pure-spinor satisfying

AMY"A=0 (3.8)

To solve this constraint and find the free ghost fields, one has to break the
manifest Lorentz covariance to a U(5) subgroup of (Wick rotated) SO(10).
In terms of this parametrization one can write down the ghost-field action,
check that the OPE of the ghost contribution to the Lorentz current has a
-3 coefficient in the double pole and that the stress tensor has central charge
+22, as required. Apparently, one goes back to the old problem of the lack of
manifest Lorentz covariance. However, one can formally write down an action
in the form

S = / d?z (%Ba:mgmm + P 00% + waé)\“) +right moving  (3.9)

where the independent conjugate momenta w, of the ghost field A* have been
introduced, and then “remember” that the A fields are constrained by equation
(3.8). Both the action and the pure spinor constraint are manifestly Lorentz
covariant. The problem is how to deal with constrained fields in a path integral
approach.

When there are first class constraints in a theory, a BRST quantization
procedure can be applied and the BRST charge is constructed out of the con-
straints themselves multiplied by ghost fields. When the constraints are second
class, this does not work because the BRST charge one obtains is not nilpotent.
In Berkovits approach to the superstring, the (left-moving) BRST-like charge
is defined as

Q= / dz)d, (3.10)

where d, is the constraint of the GS superstring that in this formalism plays
the role of the supersymmetric version of the fermionic conjugate momentum

Pa
1 1
do = Do — -2-63:’” (Ym8) o — g(vmﬁ)a(ﬂfymaﬂ) (3.11)
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Therefore, this construction of ) could be reminiscent of some sort of BRST
quantization of the GS superstring.
From the free OPE’s (3.7) one can compute the OPE’s between the com-

posite variables d, and find

do(y)da(w) ~ —(y — w) " Y 3p10n (w) (3.12)

Therefore the BRST charge (3.10) is nilpotent because of the pure spinor con-
dition (3.8). Also because of the pure spinor condition, one observes that the
ghost conjugate momentum w, can only appear in combinations that are in-
variant under the gauge transformation

Wo = An(Y"A)a (3.13)

with arbitrary A,,. These gauge-invariant combinations are the pure spinor
contribution to the Lorentz current Npp = 3 : (WYymnA) : and the ghost number
current J =: woA® ..

In the superparticle case, the BRST charge (3.10) and pure spinor condition
(3.8) can be obtained by an honest, although unusual, gauge fixing procedure
starting from the Brink-Schwarz action in semi-light-cone gauge rewritten in
the Siegel formalism.

Unfortunately, no analogous procedure works for the superstring. Following
the usual prescription of the BRST quantization rules, we could start from the
GS superstring and define the quantum action as follows

So = Sgs + Q/dzzwaéﬁa (3.14)

where Sggs is the Green-Schwarz action in conformal gauge [4]. By moving
on to a Siegel description for fermionic fields and by explicitly writing down
all the contributions to (3.28), one obtains (3.9). Even if this looks like the
usual BRST procedure, we have to notice that the BRST-like operator @ is
nilpotent up to gauge transformations (3.26). This compensates the fact that
the Green-Schwarz action is not invariant under BRST transformations. In
addition, we can always add BRST invariant terms to the action. However,
there is no procedure to get (3.28) from an honest gauge fixing of the Green-
Schwarz action (a suggestion is given in [138]). '

Now I'm going to discuss pure spinor superstring vertex operators. I will
first derive the open superstring vertices for simplicity. Closed superstring
vertices will be studied in much detail in section 3.1.3.

Since in the open string case vertices are to be inserted on the boundary
of the worldsheet, where the boundary condition § = 6|,—; holds, they can
be expressed in terms of the left-moving fermions only (or, more correctly, in
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terms of the linear combination 0, = 715(6 + 6) and the corresponding one for

the fermionic momenta).

Physical states for the open superstring are defined as ghost-number one
states in the cohomology of @, defined in (3.10), with )\ satisfying the pure
spinor condition (3.8). Open superstring vertex operators with (mass)? =
5 are constructed out of the fields z™, 0%, dy, A® and the gauge invariant
objects N, and J containing the ghost momenta. They are obtained as
the generic combinations with ghost number one and conformal weight n at
zero momentum. Since the composite objects dn, Ny and J carry conformal
weight one and A® carries ghost number one, it is clear that for instance the

most general vertex operator at (mass)? = 0 is
VD = A\%A,(z, 8) (3.15)

By requiring QV(1) = 0, one obtains the equations of motion for the spinor
superfield A, (x,#). By making use of the OPE

do(y)Ap(z,0)(w) ~ DaAg(w) (3.16)

one finds that the superfield A, (z,0) must satisfy the equation A>A\°D,Ag =
0. Because of the property (3.3) and the pure spinor condition (3.8), this is

equivalent to
V28 pgrDaAp = 0 (3.17)

It can be shown that these are the superMaxwell equations written in terms
of a spinor superfield. Equation QU = 0 is invariant under the gauge transfor-
mation U = Qf) where Q is a generic scalar superfield. Indeed, this implies
the gauge transformation for the spinor superfield d A, = D,f?, which is the
expected gauge transformation of superMaxwell theory.

Going on to the next mass level, (ma.ss)2 = , one finds that the most

general vertex operator is

VP = A% Aq(z,0)+ : 80P A*Bog(x,0) : + : dgA*CP (z,6) :
+ IIMA*Hpa(z,0) i+ : JACEQ(x,0) : + : N A*EFomn(z,0) :
(3.18)

Cohomology equations and gauge transformations imply that the superfields
appearing in the vertex describe a spin two multiplet.

The integrated massless open superstring vertex operator [ dzV© can be
obtained by making use of the cohomology descent equation

@, VO] =8y (3.19)
V() is expanded in terms of the 1-forms X = (86%,1I"™,dy, 3 Nm») as follows

VO = 0% A (2, 0) + II™ Ay (3, 0) + da W (, 8) + %Nm,,,pmn (3.20)
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The descent equation (3.19) is satisfied when the superfields A,, Ay, W and
F..n are governed by the superMaxwell equations

-DaAm - amAa — 7‘maﬁwﬁ =0
1
DaW? = 2 (") Fn
AN (Ymp) g TDo F™ = 0 (3.21)
The last equation is redundant, since it is implied by the previous one and by

the pure spinor condition (3.8). The vertex (3.20) was first found by Siegel in
[88], except for the pure spinor term, by making use of superspace arguments.

All this discussion can be easily generalized to type II closed superstrings.
The field content is z™ where m = 0,...,9, two Majorana-Weyl spinors 6,
0% witha =& =1,...,16 (with opposite or same chirality depending whether
one is in IIA or IIB case), their conjugate momenta p,, ps, two ghosts A%, \&
satisfying the pure spinor conditions

AM™A=0, M™A=0,

and the corresponding conjugate momenta w,, Ws. Again, supersymmetric
versions of the fermionic conjugate momenta can be introduced as follows

1 1
do = Po — é’amm(')’me)a — =(v"0)a(6vm09) ,

0

A A mAN (A BA
da = s — 502" (Ymb)a — 5(7"0)a (Bvm0) (3.22)

The BRST operators are defined by
QL = j{ dz)\d,, Qr = }f dz\&d; . (3.23)

which satisty
Q2 =-— j{dz MM, [QL,Qrl=0, Q%=- fdz M™AL,,  (3.24)

where II7" and f[;-"' are the left- and right-moving supersymmetrized bosonic
momenta

A _ 1, -
7 =0z™ + %9’7"‘68 ; 17 = 6™ + 59'7"‘66 (3.25)

Due to pure spinor constraints, the BRST charges are nilpotent up to gauge
transformations of w,, w4, given by

S.Wa = Amn(Y™Na Sra = Am(Y™Na - (3.26)
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with arbitrary local parameters A,, and A,,. Gauge invariant operators are

NL——-%:w’ym"’)\:, NR::-%-:'LD’)/"‘"A:,

(3.27)

By formally following the usual prescription of the BRST quantization rules,
we can define the quantum action starting from the GS superstring in Siegel
formalism as follows

So = SGS + QL/dzzwagea + QR /dzzzbdaé& . (3.28)
By exploiting the different contributions in (3.28), we obtain
Sy = f dzz(-;-c")ccmgmm + Do B8% + Padh% + we I + w&ai&) (3.29)

which is BRST invariant and invariant under the gauge transformation (3.26)
if the spinors A%, A% are pure. The action is also invariant under the N = 2
supersymmetry transformations generated by Q. = €* ¢ dzq,+é* § dzZds where
the explicit expressions for the supersymmetry currents are

1 1
doo = Do + §8$m (7m9)a + 5&'(97”169) ('Ymg)a y
A A 1 ~ o 1 A _ A A
do = Pa + 5393m(’7m9)a + 51(97m39)(7m9)& : (3.30)

It is interesting to note that these do not anticommute with the BRST operators
QL and @R, since

QL) qa] = OXa [QRa‘Z@] = 5)23 (3.31)

where X, and ) are the BRST-invariant quantities

1 R P
Xa = §(A7m9)(’7m9)a, X5 = ’3‘()\’)’”9)(’)’1:9)& (3.32)

We also introduce the Lorentz currents

L™ = -;— : fzlmg™ +-;— :(py™"0) .+ : N™" ¢
IPI = -;— : OrlPzd -I-% : (pyP90) : 4 : NP9 -, (3.33)
which satisfy the following commutation relations with the BRST charges
Qr,L™"| =08G™"; @R, fﬂ’q] = HGPI (3.34)
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where

1 1 A 1 4 ..& A .
G = 207 NG + 1@nr™0); 6P = By V) (629 +  (Byr96)
(3.35)
are BRST invariant. By usmg the equations of motion from (3.29) it is easy to

show that the currents qn, ¢z, A%d,, )\ﬁdg, L™ and LP? are holomophic and
anti-holomorphic, respectlvegr

In the following section I will describe in detail type II vertex operators,
their descent equations and the corresponding superfield equations of motion
and gauge transformations. These closed string vertices are as usual obtained
by taking the left-right product of the open superstring vertices I described in
the present section.

3.1.3 Type 1l superstring vertex operators

In this section I will describe in detail the construction of the closed superstring
ghost number (1,1) local vertex operator V(I'1) and of the integrated vertex

operators [ dz pob) , [dz Vi and [ dzAdz V9 related to it by the closed
string descent equations.

Introducing the notation O(“’ ) for local vertex operators with ghost number
a(b) in the left (right) sector and (anti)holomorphic indices ¢(d), we identify

O(l D~ ya, o8
0(0 1) __ v(O l)dz , 0(1 0) — vz(_l,o)dz— :
00 - v§2. O)dz Adz. (3.36)
The descent equations read?
Q0 =008, [Qr, 057 =805, (337)

where 0 = dz20, and 8 = dz8; are the holomorphic and antiholomorphic differ-
entials. ()7 and Q)i are the BRST charges for holomorphic and antiholomorphic
sectors we introduced in (3.23). More explicitly, at the first level we have

[QL, VOV =0, [QrV*V]=0, (3.38)

while at the next level we get
[QL, VOV =0,y [Qgr, VY] =0, (3.39)
Qr, ViV =00, 1Qr, ViV =0, (3.40)

1 Here we use the square brackets to denote both commutation and anti-commutation
relations. The difference is established by the nature of the operators involved in the relations.
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and, finally,
Qr, VeV =8,V [Qr, VY] = -8, VOV (3.41)

The vertex operators O(“ ®) are to be expanded in powers of ghost fields A®

and A% or in powers of the supersymmetric holomorphic and antiholomorphic
1-forms

)

X, = (azoa, 7, d,a, 1N;n") , X; = (azéﬁ , 112, d,5, ;NP‘-')

2
(3.42)
The explicit expressions of these 1-form operators in terms of sigma model
fields are given in (3.22, 3.25, 3.27). The coefficients are superfields of the

coordinates ™, 6% and 6%. A further relation is obtained by acting from the
left on the first equation of (3.41) with Qg or on the second with Q. Using
eqs. (3.39), one obtains

[Qr, [QL, V2] = 6,8,y (3.43)

which is the closed string analogue of (3.19) and relates the integrated vertex

V{20 6 the unintegrated one V(11
Equations (3.38, 3.39, 3.41) are mvaria.nt under the gauge transformations
given by

sV = [Qr, AV + [Qr, ATY] (3.44)

sVY = [Q, %) + 6;A00) SV = [Qg, 709 4+ 8,AO1) (3.45)
V0 = 9,700 — 9,700 (3.46)

where the zero forms A©®!) and A9 have ghost number (1,0) and (0,1)

and are proportional to A% and 5\‘3‘ and the coefficients are superfields. The

holomorphic and antiholomorphic 1-forms 7 ( ) and 'r(O %) are to be expanded
in terms of the 1-forms X, and X; given in (3.42) and coefficients are again
superfields.

In addition, the gauge parameters A(®1), A9 {00 514 700 st satisfy
the following consistency conditions
C QuAYI=0  [@rA®Y] =0, (3.47)
and
Qr, 7] +8,A09 =0 Qr, "] + 8:A0V = 0. (3.48)

These equations resemble the descent equations for the open string vertex op-
erator V() = XA, but in that case there are boundary conditions for the
fermionic fields: 8%(z) = 0%(2) at z = Z.
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Equations (3.47) and (3.48) are further invariant under the gauge transfor-
mations

SALO = [Qp, Y00 A0 = [Qp, YOO (3.49)
5700 = _g, 100 500 _ _5 400 (3.50)

where Y9 and T are generic superfields. However, consistency with
(3.45) imposes T©9) = T(:0)  The superfield T will be useful to define a
suitable gauge fixing procedure and to take into account the reducible gauge
symmetry of the NS-NS two form of 10-dimensional supergravity.

To derive equations (3.39) we can view the vertex operators (1) and Vz(—l’o)
as deformations of the BRST charges

QL— QL+ f dz vt Qr — Qr+ f dz VO, (3.51)
and the vertex operator vﬁ‘;"” as the deformation of the action
S— S+ / dzdz V%Y. (3.52)

Eqs. (3.38) are derived by requiring the nilpotency of the new charges and the
vanishing of their anticommutation relation.

3.1.4 Amplitudes

Since the worldsheet ghost variables A® are constrained by the pure spinor
condition (3.8), it is not obvious how the define a path integral in this vari-
ables and therefore how to compute superstring amplitudes. For this reason
in [139] a different formulation was proposed where the pure spinor constraint
is relaxed by adding more fields to the theory. Clearly this should be done
without modifying the BRST cohomology, that was shown to reproduce the
correct superstring physical spectrum [140, 141]. However, Berkovits recently
showed [31] that multiloop superstring amplitudes can be computed in the pure
spinor formalism, by introducing an analogue of the RNS “picture changing”
operators.

When only tree-level amplitudes are under concern, a prescription can be
given to compute them relying on properties of BRST cohomology, as shown
in [142]. The prescription given there was shown to coincide with the standard

RNS one in [143]. In terms of the vertex operators Og";b), the amplitudes on
the sphere are defined as

-A‘n+3 - <v(1’1) (zhzl)v(l,l)(z% 22)])(1’1) (237 23) H/dZdzv(0’0)> (3'53)
n
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where the three unintegrated vertex operators are needed to fix the SL(2,C)
invariance on the sphere. An unintegrated vertex V{1:1) (2, z;) can be replaced
by a product of (1,0) and (0,1) vertices ¢ dzyoD $ dzvz‘.l’o’ which has the
same total ghost number and the same total conformal spin as the original
vertex V(I'1), In [142] supersymmetry and gauge invariance were proven under
the assumption that the prescription for the zero modes is the following

(VG = 1 (3.54)
where
V33 = (Ag7™0o 0700 A 0P 8000 YmnpP0) (AoY™ 80 Ao7" 80X 0P 8000 Ymnsbo) -
(3.55)

As anticipated, this zero-mode prescription is justified by cohomological ar-
guments. In fact, by analogy with the RNS case, one deduces that the the
expectation value for the +3 ghost-number vertex operator for the Yang-Mills
antighost must be fixed to one and there is a unique state of such ghost number
in the pure-spinor BRST cohomology, given by V(3:3),

In [31] Berkovits has given a general prescription for the computation of
multiloop amplitudes in the pure spinor formalism for the superstring. Since
in my work I didn’t compute amplitudes, I'm not going to give technical details
about this. However, I will discuss the various difficulties that were overcome
in [31].

As outlined in section 3.1.1, the ghost variables can appear only as A®
(with conformal weight 0) or in the two gauge-invariant combinations Ny,
and J (with conformal weight 1). Because of the pure spinor constraint (3.8),
A% has only eleven free components. As a result, on a genus g surface A* has
eleven independent zero-modes and N,,,, and J have 11g ones. It is not obvious
how to determine a Lorentz covariant prescription to integrate over these ghost
zero-modes. A Lorentz-invariant measure for A [D)A] was constructed in [31].
Moreover, it has been noted that zero modes of N and J are related by a
constraint following from the pure spinor relation (3.8), such that all these
zero-modes can be expressed in terms of ten free N zero-modes. The measure
for these free modes, [DN], is also given in [31].

On a genus g surface, one integrates out all the non-ghost fields and the
ghost non-zero-mode fields by making use of the given OPE’s. One is then left
with an expression like

A= (f(A\,N1,J1,...,Ng,J,)) (3.56)

that only depends on the ghost zero-modes. Then one uses the Lorentz invari-
ant measures to define the integration over these zero-modes

A= f [DA[DN] ... [DN,1f(\, N1, Ju, -, Ny, J,) (3.57)
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To compute the integral, as in RNS formalism [136], it is necessary to insert
picture changing operators involving the delta-functions §{Cy %), §(Byn N™")
and ¢ (J ), where the constant spinor and antisymmetric tensor C, and B,
shoild not affect the amplitudes (that otherwise could not be Lorentz invari-
ant!). These picture changing operators will be called Yo, Zg and Z; respec-
tively. Their insertion in loop amplitudes is necessary to absorb the ghost zero-
modes. Exactly as in the RNS formulation, picture changing operators must
be BRST-invariant with a BRST-trivial worldsheet derivative, this second re-
quirement needed for the amplitudes to be independent of PCQO’s positions on
the worldsheet. In [31| operators with these properties were constructed and
it was also shown that even if they are not supersymmetric, their variation is
BRST-trivial. As a result, supersymmetry is preserved (up to surface terms).
In [31] it was also shown that the computation of tree amplitudes with the
Lorentz covariant measure for pure spinor zero-modes agrees with the previous
prescription obtained by cohomology arguments.

To compute loop amplitudes a last ingredient is missing. In fact, in RNS
formalism, in the computation of a g-loop amplitude the insertion of (3g—3) b-
ghosts is necessary. The b-ghost has —1 ghost number and satisfies the relation
{Q,b(u)} = T(u) where T is the stress tensor. The problem is that in the
pure spinor formalism the ghost conjugate momentum w, only appears in the
gauge invariant combinations N,,, and J that have both ghost-number zero.
So apparently there is no candidate for an analogue of the b ghost in this
formalism. However, in [31] it was shown that the picture raising operator Zp,
that will be present in the expression of a general multiloop amplitude, can
be used to construct a nonlocal operator bg, carrying ghost-number zero, such
that {Q,bs(u,2)} = T(u)Zp(z). From bg(u, 2) it is possible to define a local
bs(u), however for the computation of the amplitudes it will be sufficient to
know the nonlocal operator (about this topic, see also [144]).

With all these ingredients one can give the following super-Poincaré covari-
ant prescription for the computation of a generic N-point g-loop closed string
amplitude

3g—-3

= /d271 ---d27(3g—3)(| H /dzuPﬂP(uP)BBP(uPaZP)

00 P=1

Il Zs-(2p) H Z;(vr) HYCI (yr) |2 / d’trVr(tr))
P=3g-2 I=1

(3.58)

where | |2 means left-right product, 7p are the Teichmuller parameters associ-
ated to the Beltrami differentials up(up) and Vr(tr) are the dimension (1,1)
closed superstring vertex operators for the N external states. When g = 1,
the general prescription (3.58) must be modified, as usual, by changing one
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integrated vertex operator with an unintegrated one.

Even though this formalism is quite cumbersome for computing superstring
amplitudes, it makes it easy to prove some general vanishing theorems, as
it is somehow expected because of the great amount of manifest symmetries.
Actually, the general vanishing of certain amplitudes can be deduced by just
counting zero-modes. For instance, S-duality of type IIB superstrings imply
that R?* terms in the low energy effective action do not receive perturbative
corrections above one loop [145]. In RNS formalism, this was checked only up
to two loops in [146]. In the pure spinor formalism for the superstring, instead,
this can be easily proven for general g [31]. Furthermore, it is well-known
that massless N-point superstring g-loop amplitudes vanish for NV < 4. This is
equivalent to perturbative finiteness of the theory, when unphysical divergences
are not present in the interior of moduli space [147]. This was proven in [148]
by an argument that made use of both GS and RNS formalisms. In the pure
spinor formalism this can also be proven by counting zero-modes [31].

3.1.5 What we can (cannot) do with this formalism, up
to now

In this section I would like to summarize the results obtained with the pure
spinor formalism for the superstring.

First of all, I should say that in [140, 141] it was proven that the pure spinor
BRST cohomology reproduces the correct superstring spectrum. Therefore,
the pure spinor formalism describes the same physics as the RNS and the GS
formalisms. In the following I will describe how the pure spinor superstring
proved to be superior to analyze many aspects of string theory.

As discussed in the previous sections, the main motivation to introduce a
superPoincaré covariant formulation for the superstring is the number of diffi-
culties one encounters when trying to compute a general superstring amplitude
in the RNS and GS formalisms. As we have seen in the previous section,
the pure spinor formalism for the superstring in principle allows to compute
arbitrary N-point multiloop amplitudes (even though, in practice, only tree-
level [149] and four-point one-loop [31] amplitudes (that can be computed also
in RNS or GS formalisms) have been explicitly evaluated up to now). Fur-
thermore, we have already stressed that a big advantage of the pure spinor
formulation is the possibility to prove vanishing theorems at arbitrary order in
the perturbative expansion.

When I wrote my paper [32], in collaboration with P.A. Grassi, the prescrip-
tion for computing a general multiloop amplitude was not known. However it
was already clear that the computation of the amplitudes in the pure spinor
formalism is rather involved, even in the tree-level case. One of the biggest
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problems is the complexity of the expression for unintegrated and integrated
vertex operators, due to the manifest symmetries that render the formulation
redundant. As we have seen in section 3.1.3, vertices are written in terms of
superfields satisfying a set of linearized equations of motion, where the physi-
cal fields, such as the graviton, dilaton, R-R field strength and so on, do not
appear explicitly. To write down the component expansion of the vertex, one
has to solve the equations of motion, after having chosen a specific gauge. This
procedure is quite complicated and determining the vertex for a given physi-
cal field is not an easy task. In [32], P.A. Grassi and I described an iterative
procedure to compute type II vertices that eliminates auxiliary fields from the
vertices and allows to determine the whole 8 and § vertex expansion given the

physical fields.

Another serious problem of RNS formalism is the difficulty in dealing with
general R-R background. We have seen that vertices for closed superstring
can be written and that the equations of motion and gauge trasformations for
- the superfields appearing in the vertices are the linearized supergravity equa-
tions and gauge transformations. Moreover, the pure spinor superstring can
be naturally coupled to a general supergravity background. It has been shown
in [150] that nilpotency and holomorphicity of the pure spinor BRST charge
imply the on-shell superspace constraints of the supergravity background. As-
pects of the superstring in specific R-R backgrounds, such as AdSs x S° and
the pp-wave were considered in [93, 151, 152]. Furthermore, as we have seen in
section 1.2.4, non(anti)commutative superspaces were shown to emerge when
open superstrings in the presence of D-branes and R-R backgrounds are con-
sidered. The natural setting for this discussion was the ten-dimensional pure
spinor superstring [29] and its compactification on a CY three-fold (27, 28].

In the open string case, requiring BRST invariance also implies the correct
equations of motion for the background fields. Indeed, in [153] it was shown
that classical BRST invariance of the open pure spinor superstring implies the
supersymmetric Born-Infeld equations that were first determined by Kerstan
by making use of superembedding techniques [154] (for the application of the
superembedding formalism to determine higher-order corrections to the effec-
tive dynamics of string/M theory branes, see also [155]). k-symmetry in the
GS string and superembedding formalism is replaced by BRST symmetry in
the pure spinor formalism.To obtain the supersymmetric Born-Infeld equations
from the pure spinor formalism for the superstring, one requires that the left
and right pure spinor BRST currents are equal on the worldsheet boundary in
the presence of the background.

I would also like to say that the pure spinor formalism has been successfully
used to quantize the d = 10 superparticle [156]. Moreover, by replacing ten-
dimensional pure spinors with eleven-dimensional pure spinors, the formalism
has been extended to the d = 11 superparticie and supermembrane [157]. The
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covariant prescription to compute loop amplitudes in the covariant formalism
for the superstring I briefly discussed in section 3.1.4 has been generalized to
the eleven-dimensional superparticle in [158].

The supermembrane is a quite problematic object in string theory, since
the impossibility of performing a covariant quantization has made it difficult
to study its properties. However, the supermembrane is worth studying, since
it is expected to be related to M-theory, which is the underlying eleven di-
mensional theory from which the nonpertubative symmetries of string theory
are believed to come. In [157] Berkovits “replaced” k-symmetry with BRST
symmetry as he did for the superstring. However, not all the problems of the
supermembrane are solved by moving on to a pure spinor description, since
the pure spinor supermembrane action is not quadratic in a flat background.
In [157] a conjecture is made that supermembrane amplitudes can however
be computed and that they are M-theory scattering amplitudes which, after
a suitable compactification that reduces to ten dimensions, reproduce Type
ITIA superstring scattering amplitudes. These amplitudes would contain non-
perturbative information about the Type IIA superstring which might be useful
for studying M-theory.

Finally, in my paper [32], P. A. Grassi and I discussed an application of
pure spinor techniques to the construction of off-shell vertex operators in the
asymmetric picture, that could be useful to study the coupling of R-R potentials
to D-branes. We also proposed an application to closed string field theory, by
studying antifields in this formalism and constructing a kinetic term for the
closed string field theory action that seems to respect the correct symmetries
and generate the right equations.

To conclude, I would like to stress that, even if the construction of the
pure spinor formalism might seem “ad hoc” and not justified by an underlying
general principle, it is the first successful covariant method to quantize the
superstring. It has already proven to be useful to deal with many aspect of
string theory that were unreachable by the other formalisms. It might be that
in the end a more natural and elegant construction of the covariant superstring
will be found. However, it is now very clear that the pure spinor approach at
least goes in the right direction and is very effective and useful in string theory.

3.2 An iterative procedure to compute the ver-
tex operators

In this section, I will present the general procedure to compute pure spinor
closed string vertex operators I introduced in [32], in collaboration with P.A.
Grassi.

130



3.2.1 Warm up: The open superstring case

Motivated by the increasing interest in the covariant techniques for computa-
tion of the amplitudes in string theory, in [32] P.A. Grassi and I provided a
calculation scheme for superstring vertex operators in pure spinor approach
(30, 139]. Since the amount of symmetries that are manifest in the covariant
formulation increases, also the number of auxiliary fields increases and a useful
technique to compute the basic ingredients is needed. In [32] we provided such
a procedure and some applications (that will be discussed in section 3.3). First
of all I will briefly review the open superstring case, to explain the main idea
that will be applied in the next sections to the more complicated closed string
case.

In the case of the open superstring, we have seen in section 3.1.2 that the
massless sector is described by a vertex operator V(1) = \®* A, at ghost number
one, where A® is a pure spinor satisfying (3.8) and A,(x,8) is the spinorial
component of the superconnection. The superfield A, can be completely ex-
pressed in terms of the gauge field a,,(z) and the gluino ¥*(x), for example
as

Aq(z,0) = %,('Yme)aam (z) + %('ymﬁ)a(’ymO).yqb'Y(:n) + 0(93)- (3.59)

The vertex operator V() belongs to the cohomology of the BRST charge Q =
[ doA®d,q, where dyq is defined in section 3.1.2, if and only if the components
of A, satisfy the linear Maxwell and Dirac equations

8™ (Oman — Onam) =0, YT0my® =0. (3.60)

The contributions @(63) are given in terms of the derivatives of a,,, and v and
are completely fixed by the equations of motion (3.21) given in [159], where
Am is the vectorial part of the superconnection and Dy = 84 + 3 (Y™0)o0m is
the superderivative. The lowest components of A, in (3.59) are eliminated by
a gauge fixing condition.

Even though the computation of all terms in the expansion of A, seems
a straightforward procedure, technically it is rather involved. However, there
exists a powerful technique which simplifies the task. The main idea is to
choose a suitable gauge fixing such as for instance

6%Aq(z,0) =0, (3.61)

which reduces the independent components in the superfield A,. This choice?
fixes part of the super-gauge transformation 04, = D,?, where {2 is a scalar

2The following gauge condition has a counterpart in bosonic string theory: ™ Am(z) = 0.
This fixes the gauge invariance under 6 Am = Omw(x) and it coincides with the Lorentz gauge
in momentum space 8p, Am = 0. The gauge fixing yields the equation (1 + 2"0n)Am =
z" Frnn which can be solved directly by inverting (1+z™8r) and obtaining Am = [* d%6y[(1+
¥P0p) "L (y™ Fmn(y)).
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superfield with ghost number zero. To reach the gauge (3.61), we have to
impose §%(Ay + 6 As) = 0, which implies that 62D, = —0%A,. Expanding
Qas Q= 3 50a..a,0" -..0%, all components with n > 1 are fixed
except the lowest component 2y, which corresponds to the usual bosonic gauge
transformation of Maxwell theory.

Acting with D, on (3.61) and using the equations of motion (3.21), one
gets the recursive relations

(1 + D)Aa = (7m0)aAm
DA, = (ym0),W"?

DFpn = —(Vm0)OnW" (3.62)

where D = 0%0,. So, given the zero-order component of A,,, we can compute
the order-6 component of A,. The same can be done for A,,, the spinorial
field strength W and the bosonic curvature Fp,n, = 9jn Ay) making use of the
other three equations. This renders the task of computing all components of
A, in terms of initial data A, (z) = apm(x) + O(0) and W (z) = ¢¥*(z) + O(6)
a purely algebraic problem ([160] and [161]). Moreover, one is able to compute
all components of the superfields appearing in the (descent) ghost-number-zero

vertex operator vg‘”

VO = 8,0Ay + ™ Ay + dya W + % NTE (3.63)

which satisfies the descent equation [Q, V(SO)] = 0,V1). Here o is the boundary
worldsheet coordinate and N*"* = %—'wa'ym"')\ is the pure spinor part of the
Lorentz current. As we have seen in section 3.1.2, the operators II7' and d,,
are the supersymmetric line element and the fermionic constraint of the Green-
Schwarz superstring (4], respectively.

In my paper [32], we applied the same technique to IIA/IIB supergravity.
Starting from the vertex operators for closed superstrings, we derived the com-
plete set of equations from the BRST cohomology and we defined all curvatures
and gauge transformations. Then, we imposed a set of gauge fixing conditions
to remove the lowest components of the superfields and we derived an iterative
procedure to compute all components. We showed that a further gauge fixing
is needed to fix the reducible gauge symmetries and we showed that all chosen
gauges can indeed be reached.

The procedure for closed strings is original by itself, but, more importantly,
our analysis leads to a generalization of (3.61) to all vertex operators, associated
to both massless and massive states. Indeed, in [32] we showed that the gauge
fixing (3.61) can be writien in terms of a new nilpotent charge K (with negative

ghost number) as follows
K, vy} =o0. (3.64)
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This imitates the Siegel gauge in string field theory. When restricted to massless
states, this generalized gauge fixing condition reduces to the gauge fixing (3.61)
for open superstrings and to the corresponding gauge fixing for closed strings.
When applied to massive states, (3.64) also leads to a suitable gauge fixing. In
our paper, we explicitly derived the gauge conditions for the first massive state
for the open superstring. Again, (3.64) fixes all auxiliary fields in terms of the
physical on-shell data and eliminates the lowest components.

I would like to stress that in [32] we only considered deformations (vertex
operators) at first order in the coupling constant, neglecting the backreaction

of background fields.

3.2.2 Linearized IIA /IIB supergravity equations

In the present section we derive the equations of motion for the massless back-
ground fields in superspace from the BRST cohomology of the superstring. Let
us start from the simplest equations (3.38) for the vertex V{1'1) whose general
expression is |

ASRUEP LY LS (3.65)

The superfield A 5(z,9, 9) satisfies the equations of motion [159)

YomopgPaAgs =0,  YohopaDaAys =0, (3.66)

where ﬁ%m is the antisymmetrized product of five gamma matrices. The

pure spinor conditions imply that only the 5-form parts of the DqAgs and
DsA,; are indeed constrained [30, 134, 162]. By using Bianchi identities, one
can show that they yield the type I1A/IIB supergravity equations of motion at
the linearized level. All auxiliary fields present in the superfield 4 ; are fixed
by egs. (3.66).

As outlined before, one can use different types of vertices to simplify the
computations. Integrated vertices are written in terms of a huge number of
different superfields, whose components are completely fixed by the equations
of motion. As a result, these vertices are quite complicated espressions.

The set of superfields needed to compute V(.0 ... V(1) can be grouped
into the following matrix

— Az Aap Ea[? Qa,pq -
A= |Ams  Amp B Smpg (3.67)
B, E°, P¥ Co
Qs Omnp Cmn® Smnpg




The first components of Amp, E,,?, E*, and PP are identified with the su-
pergravity fields as follows

Amp = gmp + bmp + Tmpd + O(6,6) , (3.68)
E.f =,/ +00,0), E*, = 4%, +0(8,6), (3.60)
peB — goB 1 0(9,0). (3.70)

The fields gmn, bmn» ¢, Y%, ¥.° and fo are the graviton, the NS-NS
two-form, the dilaton, the two gravitinos (the gamma-traceless part of ¥*,,

¥r,”), the two dilatinos (the gamma-trace part of ¥, ¥,,?) and the RR field
strengths. IIA and IIB differ in the chirality of the two spinorial indices «
and &. This changes the type of RR fields present in the spectrum. The first
components of the superfields Q, pq (Qmnp)y Comn® (C%,q) and Spnpe are
identified with the linearized gravitational connection I'%,, the curvature of the
gravitinos and the linearized Riemann tensor, respectively. The remaining su-
perfields are the spinorial partners of the above superfields. Those constraints
are given in terms of the spinorial components A 3, Aap, E,” and Q4 pq. The
structure of superspace formulation of type IIA and I1B supergravity in the

present framework is also discussed in [150].

Given the vectors X, and X; (see (3.42)) we can explicitly write the vertex
operator V{2 = XTAX; as

y(00 aeaAaﬁaé#aeaAapﬂunmA 8,00 +1I™ A, 12
dza E* 5 0509 +dea H"+69°‘E ﬁd_ﬁ+IImEm 1.5

dia PP d 5+ 5 NI Qs 0567 + = > ~ N Qi p 112

1 1 1
5 0:0% Qapg NP + 5 IIT Qunpg NP7+ 5 NI G dp

2 2
1 )
i— NI Smn,pq Ngq (3.71)

+ + + +

5 dza C* o, NP7 +

From equations (3.38), (3.39), (3.41) and (3.43) in the previous section we
derive the complete set of equations for the background fields
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(3:%4,%) DaApsy+ Dphas —VogAms =0 : D&Aﬁﬁ + D5y Apa — ’rar,Aam =0

(%, %, 1) D"Amﬁ - a,,.Ac_ﬁ - ‘rma..,E'Yﬁ =0 D&App - 8,Ag4 — 'y,,d.?E =0

(2:3:1) DaApp+ DpAap = V25Amp =0 - DasA m3 + DgAma + 75 3Amp = 0

(4,4,3) Da Eﬂ - 3(v™)oPQnn, g =0 DsE,Y - i(qm)gnﬁ pqg =0

(3.5,3) DaE, T4+ DpE, T — o™ apEm’ =0 DaE s+ DsEP g — P EP =0

(3,1,1)  DaAmp —OmAap — YmayE", =0 DaAm,-{-B Am&+7p&5E 5 =0

(%’ %’ 1) Da Eﬂ %('7""‘) Qnn =0 DaE 8 + lﬂm pQ('qu)a =0

(3,3,1) DLE,_? = 8mE,? — ymayPP =0 DsEf, - 8,E°, ‘Ypa'?P‘*—'O

(%’ %’ 2) Daﬂﬂ,pq + Dpfda,pg — '7maﬁnm.pq =0 D&Qmﬂ B + Dgﬂmu &+ ‘T nmn,p =0

(3,%,8) DaPP" = 3(1™)aCrn? =0 DaPPY - L (vP9)7CP , = 0

(3,1,2)  Daflm,pg = marpg — YmaryC7py =0  Daflmn,p + 8pQmn, < + 'y 5Cmn? =0

(%, %, 2) Dacﬁpqihm")aﬁsmﬂ.m =0 D¢S=Cmnﬂ + i("’pq) Smnpq =0
(3.72)

where the labels (a, b, c) denote the scaling dimensions of the generators of the

extended super-Poincaré algebra [88, 163] which the equations belong to.
Moreover, one obtains the following eight equations, which do not provide

further information, since they are implied by (3.72) and pure spinor conditions

N™\TD,Q, . 5=0 MDiQy mn N™™ =0
N™ XD Qmnp =0 A D e NP2 =0
N™\'D.C, P =0 NDsce  N™ =0

N™ A Dy SmnpaNP2 =0 N™A DsSmnpaNPP=0  (3.73)

Since we assumed that the superfields Qmn p, Qm,pg» Crnn ?> C% g a0d Smn,pq
correspond to the linearized curvatures of the connections, we can derive new
equations needed for the iterative procedure outlined in the introduction. By
contracting equations (3.72) with respect to the bosonic derivative and anti-
symmetrizing the bosonic indices, one obtains

Dafp = OmWnier B 5 DpQasps = Oppgi5Fa

DoQmnp = 6[m7n]a'7E7 p Dﬁg‘m,m = _'a[_tl")’q]ﬁ"‘yEl'mr)r
DaCrin? = OmtmjarP7®  DaC%pq = O, P

DaSmn,pq - a[m7n]awmpq DBSmn,pq - "'6[p7q]éfycmn v (3'74)

(we define @b = @by — @by ). The identification of the superfields Oy, p,

Qnpgs Crmn Ps C%pq 80d Spp pg With the linearized curvatures is automatically
derived in the formalism [139], and equations (3.74) are the usual Bianchi
identities.

In order to show that the above equations imply the supergrav1ty equations
of motion we proceed as follows. We first consider the third line of (3.74) and

the (3,2, 2) line of (3.72), that we recall for the reader convenience

oy

| ) 1 .
DaP&Y — Z(’Ymn)a 6Cmn7 =0 D&PB'? - Z(,.qu)& 7Cﬁpq =0
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DoCrnp® = Otm Ynjay P " D 8C % pg = C‘)[P')'qlﬁﬁ?Pcm‘sr (3.75)
3.75

Acting with v% 6, on P°P and using the commutation relations of the D’s,
one gets

1 -
Y7 B8 P?? = (Do Dy + Dy Do) PP = 7)o" DoCprs®,
1 9
- —E(Wmn)aa’)’md')’a P "= 270108 Paﬁ (376)

Here we also used the first equation of (3.75) and D, P*? = 0 (which follows
from (3.75)). In the second line we used the first equation in the second line
on (3.75) and the identity (Y™"¥Ym)ag = —9745- By performing the same
manipulations on the hatted quantities we derive the equations

Y™ Opm P8 =9, Y8, P*% = 0. (3.77)

Decomposing PP in terms of Dirac mastrices, it is straightforward to show that
(3.77) implies the equations of motion for the RR fields.
Acting again with v$7 D, on (3.77) and using equations (3.75) one gets

0 = 712" 250m Dy PP = (4™} (17)80mCp # = 0™Crrif . (3.78)

and analogously for C*, . These equations are the Maxwell equations for the
curvature of the gravitinos. They are not enough to describe the dynamic of
gravitinos and we have to invoke new equations coming from the second line

of (3.74) and the (3, £, 1) line of (3.74).
Applying ¥ Om on E, and with 75,0, on E,7, the same algebraic manip-
ulations yield

o OmE%, =0, V2. 0,E7 =0. (3.79)

which are the Dirac equations for the gravitinos. These equations are gauge
invariant under the gauge transformations discussed in the next section since
the gauge parameters have to satisfy a field equation. In addition, as above,
we find the equations

amﬂmn’p - 0 y ame’pq — 0, (3.80)

which are, at the lowest component of the superfield Q,,,, and Q, 4, the
equations of motion of the graviton, the dilaton and the NS-NS form

0" (Omgnip + Ombnlp + Tp[nOm)) = 0,
6% (Bipgimlq) + Olpdimig] + Tum(eOp®) = 0. (3.81)
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Pursuing this line of reasoning, one can derive similar equations for EP &)

E,?, Qmn 5 and Q¢ pq» Which guarantee that the fields are either pure gauge or

auxiliary fields. Finally, by studying the last line of (3.74) and the line (%—, g—, 2)

of (3.72), one derives new equations for C* pg» Cmn 8 and Smn,pq, Which do not
give further information since they are implied by the previous ones.

3.2.3 Gauge transformations and gauge fixing

In order to solve the equations of motion (3.72) and (3.74) it is convenient to
choose a suitable gauge. Indeed, for supersymmetric theories, the large amount
of auxiliary fields can be reduced by choosing the Wess-Zumino gauge. We first
discuss the general structure of the gauge transformations (3.45), we then pro-
vide a gauge fixing and we finally check that this gauge can be reached. In the
present framework, the gauge parameters A1 A1) 700 5pq 7 (00) apicpy
equations (3.47) and (3.48) and they are defined up to the gauge transformation

(3.49). This additional gauge invariance is fixed by a further gauge fixing.

The general structure of the gauge parameters A1) A0 {00 4pq +{0:0)

is given by

AL = yeg, AOL = G 0% (3.82)
and
1
700 = 9,098, + 1T T + d3a®® + S NI U
A An A A A a oA 1 A -

Tz(_O,O) = H40z0% + Epsz-) + ®%dzs + E\prqNgq : (3.83)
where O,, . .., U, are superfields in the variables z™, 8%, and 6%. In terms of
these superfields, eq. (3.47) gives

(,.ymnpqr)aﬁ D ﬁea =0 (,YmnPQT)dﬁﬁﬁé& =0, (3.84)
while eq. (3.48) gives
Oq +24=0 eréafoA X
1 A 25 1 3
D" — Z('ym"’)a AW, =0 Ds®” + 1 (’qu)aﬂ Vg
N™X'D U, =0 M Db, NP =0, (3.85)

These equations look like the superspace field equations for superMaxwell the-
ory (3.21), however the superfields 84, ¥,, 2 and ¥,,,, and the corresponding
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hatted quantities depend on z™, 8 and 6%. Therefore, the egs. (3.85) are not
sufficient to determine completely the components of those superfields. The
free independent components are indeed the gauge parameters. We also note
that the last pair of equations is trivial when the previous equations and the
pure spinor conditions are imposed. Finally, because of the similarity with
SYM case, it is quite natural to impose the condition that ¥,,, and ¥,, are

the linearized curvatures of ¥,, and f)p. Again, this assumption is automatic
in [139]. The gauge transformations of the superfields in vgg"’) are given by

(3:3) 940p = DoZ3+ D80 .

(1, 1) dAmp - amEp - 6p2m A R

(3.3) o0E%;= ~D;%" aEaff = Daci:»f*

(5%-, 1) 0E®, = —8p<13°‘ OE, P = 3,,1@3

(5’ 2) JQC",PQ = DQ\I:PQ 6an,[§ = 5\Ilmn

(1,2) 082m,pg = Om¥pq 0mnp = —0p¥mn

(3.3) apeb o

(5,:2) dC%p =0 0Cmn? =0

(2,2) 0Smnpe =0.

(3.86)

From these equations, we easily see that the superfields P“B, C%s00 Crmn 8 and

Smn,pq are indeed gauge invariant, as expected, being linearized field strengths.
At zero order in 6 and € eq. (3.86) gives the gauge transformations of super-
gravity fields. For example, the first components of 53,, = +&+0(6,0) and

Yo = Cm — Em + O(6, 5) are to be identified with the parameters of diffeomor-
phisms dgmp = Om&p + Opém and with the gauge transformations of the NS-NS
form 0bpyy = Om(p — Op{m. So, the zero-order terms of the gauge parameter
superfields ©,, X, ®* and of the corresponding hatted quantities are

8, = O(8,6); 3; = 0(6,6)

L =(m—Em+0(0,0);  Tp={+&+0O6,0)
&> = > + 0(6,0); & = ¢P + 0(8,9)

(3.87)

Furthermore, the large amount of gauge parameters allows us to choose the
gauge

0°A,3=0 A 6°=0
0% Aap = A,50°=0
6°E,’=0  E*;6°=0
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68 =0. (3.88)

mn,3

0% Qo pg = 2

Indeed, we have at our disposal the parameters O, X,,, ¢ and ¥,,,, and the
corresponding hatted quantities to impose the gauge (3.88). Before showing
that the gauge can be reached we have to notice that the transformations (3.86)
and the equations (3.84) are invariant under the residual gauge transformations

(3.49)

~

86, = D, S = 1‘)39

55 =
08m = —0mQ 68, = —8,0

§9* =0 58P =0

§Umn =0 §0p =0, (3.89)

depending on the scalar superfield Y09 = T©0 = Q. This requires an
additional gauge fixing )
600, + 0°E; =0. (3.90)

To show that the gauge choice (3.88) can be reached by the gauge transfor-
mations (3.86), we have to solve, for instance, the equations

6%(A,z +04,5) =0, (A, +8A,5)0° =0, (3.91)

and analogously for all other gauge conditions (3.88). By using the properties
of the superderivative, gauge fixing (3.90), consistency conditions (3.85), and
by defining the operators

s, a

D=0"Do=0"5=, D=6D;=0°

8
—, 3.92

we get the following recursive equations

(14D +D)0 = —A4,36f — (Y"0)aZm (1+D+D)6; =04, — (+79);5p
(D +D)Zm = A, 368 + (ym8)s®? (D +D)Ep = -09Aap — (1p0)5 &

(D + D)®* = E° 3@@ — 1(y™"6) Uy, (D + D)8 = —92E, P + 1(~*16)P ¥,
(D +D)¥mn = Q,,, 508 — (YmO)y0n®" (D + D)¥pg = —89Qa pq + (Yp0)50q 7

(3.93)

The operator (D + D) acts on homogeneous polynomials in 6% and 6% by
multiplication by the degree of homogeneity and it does not change its degree.
Therefore, the relations (3.93) are recursive in powers of 8 and 8. They can
be solved algebraically given A 3,...,S%,pq order by order in ¢ and f and
this proves that the gauge can indeed be imposed. Of course, to reconstruct
the gauge-parameter superfields by means of the recursive equations (3.93), we
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also need lowest order data for them.

These are the zero order supergravity

gauge parameters (3.87). To obtain the last couple of equations we used the
additional condition that ¥,, and ¥,, are the linearized curvatures of ¥,, and

3.2.4 Recursive equations and explicit solution (up to or-

der 6262)

The next step is the derivation of the recursion equations for supergravity

superfields. Acting with D, and 155. 0
using the definition (3.92), it is straigh
from eq. (3.72)

n the gauge fixing conditions (3.88), and
tforward to derive the recursion relations

(1+D)A;=(Y"0)ad,; (1+D)A,;5= (’r"é)BAap
DA, ; (vma)qE’* D Aap = (1,0)5 B,
DEaB — ( mng)agmn’ﬁ DEQ B — _Z(’)’pio)ﬂga’pq
Dan,ﬁ — (’Y[mo)’T n]E’Yﬁ DS pg = _(W[PB)'?BQ]EG’Y
(3.94)
(14+D)Asp = (Y"0)aAmp (1 +D)A,_; (7”9) Amp
DAmp = ("/me)ﬁEﬁp DAmyp = _('Ype)g m’
DEap ~% (’Ymne)aﬂmn,p f)E = 3 (’)’pqe)ﬁﬂm Pq
DQmnp = (7[m ) Bn]E“fp D, (’Yb,e) 6q]E
(3.95)
(1+D)E,” = (v"0)aEn’ (1+D)E*; = (y76)5E°,
DE,.” = (Yym0)P"? DE° (’Yp A) Pt
pDpef = _1 1(ymme)eC,, f)PO‘ (7”‘10)50"
DC,.,, ? = —(Ymb)y n]P”‘B DC?, _(7[190) q]Pa"’
(3.96)
(1+D)R%pg = (1"0)almpg (1 + ) mn,B — ~(9? 9) mn,p
D pg = (1m8)sC? DQpn,p = —(19)5C ﬁ
DC%pq = _%(ang)asmn,pq ]?Cm f =4 (’qug) Smn Pq
ADSmn,pq = _('7[m6)*76n C7pq’ DSmn g = (7[199)'7 q]Cmn
(3.97)
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A given superfield appears in two groups of equations in order that both its 6
and @ components are fixed. Inside each group there is an iterative structure
(see [160] and [161]) which allows us to solve those equations recursively given
the initial conditions and there is a hierarchical structure among the different
groups of equations which allows us to solve them subsequently. To provide
the initial data, we identify the lowest-components of the matrix superfield A
in (3.67) with supergravity fields

0 0 0 0
0 gmp + bmp + 77mp¢ "nbmﬂ Wm,pq 7
A= ; ! 6 :
0 | +O@8, (399
_0 Wmn,p Cmn - 8mn,pq

where the linearized gravitational connection and curvatures are given by

Wim,pg = (Opgmg — OgGmp) + (Opbmg — Bgbmyp) + (MmqeOp — NMmp0y) ¢ ,

Cmnﬁ = (am¢n B anwmﬁ) )
Smn,pg = (amwn,pq anwm,PQ) ) (3'99)

and, analogously, for wmyn,p and ¢*,,.
In the following we give the component-expansion for the physmal super-

fields Amp, E,,,P, E*, and P*3 up to second order in both 6 and . The
corresponding curvatures can be easily computed from the defining equations
(3.99).

Amp = (g+b+M8)mp+ ()’ = (0) 5" + (103 (1:0)5 f*7
1 1, g
—=(Ym8)s(7""0)Pwnsp — ) (70) (7770 )6wm,qr

i

r ) y 1 7 e
+5(m0)s(r"" 0 (1p0)s¢nr” = 5 (MmO (%0)5(170)°

1 A A s
+27 (Tm0)s (17 0)° (16)5 (Y°0) Vg + - (3.100)

. 1 .
E,° = 14(’mﬂ + (Ym8)~ fw + (’YWG)ﬁWm,pq — = (Ym8)(7796)Pc”

4
_—_(7"‘0)7(7”0)7%1“6"' ('7pq9)ﬂ(’)’p9)'r Og %,
('fma)q("ynrﬂ)"'('ymﬂ) Snrppg + 7 (7m0)'¥(7pq6) (719 ) 0 f "

—3—2- (Ym8)y (Y7 8)? (’que)ﬁ(')’pg)'?aqcnrq +... (3.101)

o o 1 A A 1 a A 3
E P =9 P Z('Ymne)awmn,p + (7?0)’?.7(.&7 + Z(7mn9) (7?9)ﬁcmnﬁ
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1 L6 5)3
+Z(’Ymn0)a('7m6)7an¢vp - g('Tpe)'?('que)'Yca qr

+ (™0 () (198) 300172 + 35 (7™60)° ()3 (176) 50
4o (™ 0) () () (147 6)PBnC g+ ... (3.102)
pob — faﬁ‘ - i_(,ymng)a mnfv’ - l(qué)ﬁ apq 116( O (y pqé)‘ésmn,pq
+-}1-( ™0)* (ym)Baf ™ + 7 (1P8)P (1,6)3001
= (™) () (1 Pqe)ﬁa € g = 757" 0) (P40 (10)300Crnsd
. 116( ™) (1) (1790)° (30)30n00 S + .. (3.103)

In the following we list the solution up to second order in both 6% and 6% for
the auxiliary superfields A 3, Aap, 4,3, E_ # and Ea

1, . .
Agpg = —700"0)a(170)5(9 + b+ 1¢)mp

+-%—(vme)a(vme)7(wpé),;wp + 2 Om0)a(1#0)(10) 50"
+5 0" 0)a(1m0)s(178) 5(10)5 /77 + ...
1

1 5 m 1, .. . ) _
Aap = '2'967&1(9 + b+ 1P)mp — ‘2'(7 9)a(7p9)'?¢m7 + §('7 e)a(')’me)ﬂwﬂp
1 A . 1 A A\
+—(7m9)a(7m9)ﬂ(7p9)'?f67 — '1'"6'('Ymg)a("fpa)’?(’yqre)‘ywm,qr
1 . A
24( Y™ 0)a (Ym0 )7('7p9),é('7qr9)ﬁ07 gr t oo (3.104)
L5 ! PN oo e 2 ( AP (D) mts T
AmB = "50 'Yp (g+b+n)mp + (7m9)'r(7 9)3'¢ g( 9)5(’7p9)"7¢m
1
+'i‘6(7m9) (v nr9)7(7p9)ﬁwnr,p + 3 ('Yme)ﬁ(')’ 9) (10)55°7
1
—ﬂ(*ymﬁ),,('ym'ﬁ)"('ypﬁ) 5(1p0 ):,c.m. +... (3.105)
. 1 s 1 R
E,? = '2'97’)’7a¢ B4 g( 7"0)a (’qu9)ﬂwm pg + 5(7m9) (Ym8)~ 7

(»xme) (1m8)y (YP26)PCY g + 2 L (Y™0)a (1796) (7,058t
(’Yme) (’Yme)'r(’que)ﬁ('Ypa)'v f'w'*' (3-106)
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B ]. pagy ]. ~ 1 A A -
Euﬁ‘ = '2"9 ,?B"!" p T g(,ymno)a(,ype)awmn’p + _(7p9)3(7p9)'7fa7
A 1
"“(’Ymne)a(?’mo)'rhpg)aan'w - 12( mne)a(’Tpe)g(’Ype)?cmn

112( ™"0)* () (170)3 (1) 00 S +. (8.107)

It is easy to verify that this expansion satisfies the gauge conditions (3.88)
and that all auxiliary fields have been eliminated and reexpressed in terms of
derivatives of physical supergravity fields.

- The next step is to insert the expansion (3.101) into the definition of the
vertex operator (3.71) and recombine the worldsheet one-forms X, and X; in
order to get a more manageable expression. However, it makes sense to provide
such expression for an interesting example in section 3.3.

We have to notice that the vertex operator V{1:1) contains only the superfield
A, 5 which encodes all the needed information regarding the supergravity fields,

which however appear at higher orders in 6’s and @’s. This is sufficient for
amplitudes computations, even though the measure factor on zero modes in
the correlation functions has to soak up plenty of 8’s and 6’s ([30, 142, 164]).

3.2.5 Gauge fixing for massive states

In the previous sections, we explored the gauge fixing for the massless sector
of open and closed string theory. However, the spectrum of string theory
contains infinitely many massive states defined, in the closed string case, by
the equations

[QL,vS*”] =0, [QR,V,(,W] =0, [LO,L+L0,R—TL,V,£1’1)] =0, (3.108)

where Loy = §dz z T,, and Log = $dZ 2 [;;. The index n denotes the
mass of the state. Even if these equations can be solved by expanding the
vertex operators V) in terms of the building-blocks 86, 56&, II™, II™ ..

is convenient to fix a gauge as in the massless case and then solve the equatlons
by an iterative construction as shown in the previous section. However, since we
cannot explore the complete set of vertices and provide a gauge fixing for each
of them, we propose a definition of gauge fixing based on new anticommuting
and nilpotent charges to be imposed on the physical states. This resembles
the Siegel gauge (where the corresponding charges are b o = $dzzb,, and

bro = § dZZbsz where b, and b;; are the left- and right-moving antighosts)
used in string ﬁeld theory to elumnate all auxiliary fields and to define the
propagator for the string field.

We introduce the following charges “dual” to the BRST operators

Kr = fdz@“'wa , Kgr= fdiéétbé. (3.109)

143



They are nilpotent and anti-commute. They are not supersymmetry invariant
as can be directly seen by the presence of 8 and 6°. This in fact implies that
we are choosing a non symmetric gauge which can be viewed as a generalization
of the Wess-Zumino gauge condition in 10 dimensions. It eliminates the lowest
non physical component of the superfields and it fixes the auxiliary fields —
appearing at higher order in the superspace expansion — in terms of the physical
fields and their derivatives. In addition, KL /g are not invariant under the gauge
transformations (3.26) , but their gauge variations are BRST invariant because
of the pure spinor conditions

{Qr,ALKL} =0, {Qr,ArKgr}=0, (3.110)

Moreover, Kr /g have the following commutation relations with the BRST op-
erators

{QL)EL} =DA+JL: {QR:KL} "-:'0)

{Qr,Kr}=D+Jr, {Qr,Kr}=0, (3.111)
where
szdzzé""da:, JL-—-fdz:/\“wa:
D= fd%’ : 0%y, ¢, Jr = fd;z' : A%, (3.112)

Acting on superfields F(z, 9, é), we have that {D, F'} = DF and {ﬁ, F} = DF.
The ordering of fields in the operators D, D, J;, and Jg is needed to define
the corresponding currents. The operators are gauge invariant under (3.26)
because of (3.110). The main difference with respect to Siegel gauge fixing
in string field theory is that in that case b,, and bs; are holomorphic and
antiholomorphic anticommuting currents of spin 2.

In the case of the open superstring, denoting by 2 and by K the BRST and
gauge fixing operators, the gauge condition on the massless vertex operator
V) = \*A,, is given by

(K, V} = f dw (6%wa ) (w) (X Aa(z,0)) () = %4 =0.  (3.113)

We notice that the field 8% in K is harmless for massless vertices, but it will
give a nontrivial contribution in the massive case. In the latter case one has to
add a compensating non-gauge invariant contribution on the r.h.s. of (3.113)
in order to compensate the fact that X is not gauge invariant under (3.26).
Applying @ on the left hand side of (3.113) applying K on the equation
{Q,VV} = \y™A\A,,.(x,0) = 0 and using the commutation relations (3.111),
we obtain
(D + 1)V = \y™0A4,, . (3.114)
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Eliminating the ghost A%, we end up with equation (3.62) for the superfields A,
and A,,. This procedure can be clearly generalized to massive states. First, we
discuss the closed string case, then we show an example for the first massive
state for open superstrings and, finally, we show that the zero momentum
cohomology satisfies the same equations generalized to zero modes.

For closed strings, we reproduce the gauge fixing (3.88) by the following
conditions

{KL, Y3V} =0, {KgV®P}=0 (3.115)

" and, for the gauge parameters A9 and A®D in eq. (3.82), by the gauge
condition
(KL, AL} 4 {Kg,AOV} = 0. (3.116)

which coincides with (3.90). Applying the BRST charge on the left hand sides
of (3.115), acting with Xz and g on equations (3.38), and finally using the
commutation relations (3.111), we derive the conditions for the iterative equa-
tions given in the previous section.

Let us show that the gauge fixing (3.113) also fixes the gauge transforma-

tions in a suitable way for the first massive state of the open superstring V{l),
leading to a recursive procedure to compute the vertex operator in term of the
- initial data, a multiplet of on-shell fields containing a massive spin 2 field [4].

A general decomposition of V( ) in terms of fundamental building-blocks is
given in (3.18) and its gauge transformatlon is generated by

sv® = [Q,Q(O)] (3.117)
with
QY = 00905+ : ™Dy : + :dgQP i + : N™ : Qi+ :wph? : Q. (3.118)

The decompositions are based on the requirement that the vertex operator
should be invariant under the gauge transformation A given in (3.26). A further

gauge transformation of ng) would be a variation of a negative ghost number
field. The only one is the antighost w,, but there is no gauge invariant operator
only with w, without A*. Notice that we have to add a (BRST-invariant)
compensating term of the form w+y™"P9A in order to reabsorb the non-invariance

of K.
Imposing (3.113), we get

Ag + 96_5'&, =0, 6®Huym=0, 6°Cs=0,
gﬁFﬂm‘n + = 1440 [('7mn)a - ('Ymn)a,ye‘TEa] = 0,
5('7"‘"9)5F3mn ~C%, +20°E, =0. (3.119)
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This gauge fixing can be reached by adjusting the parameters 4, Q. , 2%, Qmn
and 2. Using equations (3.119) and applying the operator D, we obtain the
iterative relations to compute the vertex. The gauge fixing (3.119) fixes only
the supergauge part of the gauge transformation. This gauge does not fix the
physical gauge transformation of the massive spin 2 system [165].

Finally, we show that the measure for zero modes satisfies the gauge fix-
ing proposed above. In fact, by restricting the attention to zero momentum
cohomology, we supersede X with the differential

Ko = oga_ig (3.120)

which acting on V&) = (Ao Y™00) (Ao7™00)(A0¥P60) (60 Ymnpbo), yields
KoV =0. (3.121)

Similarly, for the closed superstring, the ghost number (3,3) cohomology rep-
resentative satisfies the corresponding gauge fixing.

Even if the gauge fixing is not manifestly supersymmetric, the supersym-
metry of the target space theory is still a symmetry. As usual, in the Wess-
Zumino gauge, a supersymmetry transformation must be accompanied by a
gauge transformation to bring the vertex to the original gauge. This means
that

8, V] + [K,6V] =0 (3.122)

where §V = [Q, ], 6V = [€*Qn, V] and Q, = § dz g, (the supersymmetry
generator ¢, is given in (3.30)). As an example, we show that €2, can be
indeed found for the massless sector of the open superstring and the extension
is similar for the other cases. Equation (3.122) reduces to

€*Aq + 0°PQpAq + 0Dy = 0, (3.123)

which yields
DQ. =0. (3.124)

Again, this equation can be solved iteratively in powers of §’s and it follows
that Q = Qo(z). (3.124) can be checked explicitly on the solutions (3.101).

3.3 An example: Linearly z-dependent Ramond-
Ramond field strength and possible Lie-al-
gebraic superspace deformations

In this section I will discuss in detail one application of the iterative procedure I
presented in the previous section. The unintegrated and integrated vertices for
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a particular nonconstant R-R field-strength will be computed, that are expected
to be related to a nonconstant deformation of ten-dimensional superspace. At
the end of the section, other two applications will be briefly described. No
details will be given for these two, since they are not related to noncommutative
geometry, which is the main subject of this thesis. However, the interested
reader can refer to my work [32], where the three applications are discussed.

3.3.1 DMotivation: Nonconstant superspace deformations

In section 1.2.4, we have seen how non(anti)commutative superspaces, first
studied in [52] and in my paper [26], arise in the context of superstring theory,
when open superstrings in the presence of R-R backgrounds and D-branes are
considered. Up to now, only supergeometries with constant fermion-fermion an-
ticommutators have been derived, associated to a constant R-R background, for
the superstring compactified on a CY three-fold [27, 28] and for the uncompact-
ified ten-dimensional superstring [29]. In both cases the covariant formulation
for the superstring has been used.

In section 1.3 we have discussed how, in the bosonic case, nonconstant
deformations of the coordinate algebra are related to the presence of a gen-
eral curved NS-NS background. Therefore, it is natural to expect that more
general, nonconstant R-R backgrounds can lead to nonconstant superspace de-
formations. In particular, in [29] it was conjectured that from non-constant RR
field strengths one can derive new equal-time commutation relations between
coordinates ™ and 08¢ living on the boundaries such as

{6,6°} = ypPz™, (3.125)

generalizing the construction of Lie-algebraic non-commutative geometries to
supermanifolds [33] (for a different example of a Lie-algebraic geometry in
superspace see [50]).

The vertex operator for non-constant R-R fields strengths is the basic in-
gredient of this kind of analysis.

3.3.2 The ansatz for the RR field strength

Applying the iterative method I introduced in the previous section, I will show
how to compute the vertex for linearly z-dependent RR field strengths. This
is the most simple z-dependent background one can consider. Moreover, it is
interesting since it is supposed to be related to the nonconstant deformation
(3.125).

-'We will consider the following ansatz for the R-R field strength

pof = gob 4 ¢, aBgm (3.126)
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where Acmaﬁ is constant. P8 must satisfy equations (3.77), which become
YrCEY = 72‘36'75‘ = 0 for the specific ansatz (3.126). Equations (3.77) can

be rewritten in terms of forms by decomposing P*? according to Dirac equa-
tions. For example, for type IIB we have the l-form Py, the 3-form Py
and the 5-form Fn,npqr. Solving the Bianchi identities we get P, = O A4,
Pimnp] = OpmAnp)>-- and the field equations are ™ P, = §%A = 0, 0™ Pyppp) =
O™ Ol Anp)s--- These can be solved in terms of quadratic polynomials A(x) =
(10a(mn) = & Mmn)Z™T™, Aimn) = (10 0jmn),rs) — a[,,,lfﬂ lt]17.,.5.):z:’”:z:*‘,... where
A(mn)s G[mn],(rs),-- are constant background fields.

In the constant field strength case, our iterative procedure can be applied
to compute the integrated and unintegrated vertex operators. One obtains

VPO = 4af*4s, (3.127)

where ¢, and G are the supersymmetry currents given in (3.30). So it is easy
to see that equation (3.43) is verified with

YD =y, fofy . (3.128)

which is clearly BRST invariant (see (3.31) and (3.32)).
Since in the 6 and 6 expansions of the physical and auxiliary superfields
A,y PP (see eqs. (3.101 and (3.107)) the number of bosonic derivatives

acting on physical zero-order components grows with growing order in § and 4,
it is clear that the ansatz (3.126) will correspond to only a few non-zero terms
in the expansion. Actually, the highest-order contributions are 6442 and 626*
terms. Here we give the explicit expressions

Awp = -1-(7'“9) (s (178) 5 ()3 (£ + C, 1)
+ o (" Dalrmr(P0)3(0)5 (17 8) (0);C, 7
b s (7 0)a(m)s (70 (10, (0)(170)5C, ™, (3,129
Aoy = (™ 0)alimb)s(10)5(f%7 +C, P2
+ 316< ™0)a (1) (198)5(170)2 (re)5C,
+ a0 0)amO)s(r 0P (mO)y (1) 50, P (3.130)
Ay = 30mB)s(r6)5(10)5(f*7 +C, Pz
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3.3.3 The vertex for linearly z-dependent RR field strength

To obtain the vertices V(1) and v,f.‘;:o) for the linearly z-dependent RR field
strength we have to insert (3.129) and (3.137) back into (3.65) and (3.71).
For the unintegrated vertex operator we find

VD =y, %5 1 1
+xa | (278388 + (0P (adlat + (0 (1n0)8E ) | 25
(3.138)
while for the integrated vertex operator v§2’°) we obtain
Vie? = 4af*qs

;1 5 1, erg .

o o [25388 + 100" )8+ 0P (0,00455] €, 0
1
10

. . 1 -
b 0, P0)s |50 +

1 3

+ [—--6-(61:"‘ + —07™00)(0ymY"°6) — N”'] (70)aC, "‘Bqé
1 5~ —n . a . .
Eowam (v 0) — N ”] (3.139)

Unfortunately, the complicated structure of vg‘;f"’ prevents from a simple
analysis of superspace deformations as in [29]. In the future it would be nice to
find a way to study superspace deformations deriving from nonconstant R-R
backgrounds. The computation of this vertex is a first step, but it is clear that
plenty of work is needed to understand how to use it to compute the way it
deforms the supergeometry.

3.4 Other applications
3.4.1 Vertex operators with R-R gauge potentials

In the presence of D-branes, one can ask which states couple to them and
which vertex operators describe such interaction. As it was discussed in [166]
in the framework of RNS formalism, one has to construct the vertex operators
for R-R fields in the asymmetric picture. In addition, a propagating closed
string (i.e. with non vanishing momentum) emitted from a disk or a D-brane,
has to be off-shell. Therefore, one needs to break the BRST invariance by
allowing a non vanishing commutator with @z 0 + Qr,0 where Qr /g are the
picture conserving parts of BRST charges in the RNS formalism. In particular
in [167] the authors construct a solution of [Qr 1 + @r,1, W] = 0, where W is
the vertex operator in the asymmetric picture. The off-shell vertex operators
directly couple the R-R potentials to the worldvolume of the D-brane.
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In [32], we constructed analogous vertices for closed superstrings which do
not satisfy the classical supergravity equations of motion, but modified super-
field constraints. They allow for a description of the R-R gauge potentials, in
contradistinction to the on-shell formalism case, where only the field strengths

PP appear. First of all, there are some important differences. The two BRST
charges )7, and Qg contain a single term and therefore the decomposition used
in [167] is not viable. In addition, there are no different pictures (in the usual
sense) for a given vertex since there are no superghosts associated to local
worldsheet supersymmetry. There is, however, the possibility of constructing
two operators which resemble the picture lowering and raising operator [31], as
we briefly discussed in section 3.1.4, but the implications of this new idea in
the present context have not been explored yet.

Nevertheless we can construct an off-shell formalism by considering the
following combination of vertices with different ghost numbers:

V@) = P20 4 Pt.1) 4 P(0,2) (3.140)

where the notation V(#?) stands for vertex operators with the left ghost number
a and with the right ghost number b. The ghost number of the l.h.s. is just
the sum of the ghost numbers. By expanding this in terms of the pure spinor
ghost and by applying the modified condition

QL +QRr, V2] =0 (3.141)

instead of the usual two conditions for the left and right sectors, we showed that
this leads to equations of motion that are deformations of the usual supergravity
constraints. The way constraints are relaxed to go off-shell follows very closely
the case of N = 1 super-Yang-Mills presented in [168]. By following a procedure
analogous to the one described in section 3.2.4, a suitable gauge-fixing can be
applied to eliminate auxiliary fields. The superfields can then be expanded
in 8 and 8 and one finds that R-R gauge-potentials explicitly appear. The
construction of vertices with R-R potentials in covariant formulation has been
also discussed in [92]. There the authors considered only the constant case.

3.4.2 Antifields and the kinetic terms for closed super-
string field theory

The linearized form of supergravity equations written in terms of the BRST
charges of the pure spinor sigma model gives us the framework to analyze some
aspects of closed string field theory action. As it is well-known, the action
for closed string field theory has to take into account the presence of selfdual
forms (for example the five form in type IIB supergravity). This can be done
either by breaking explicitly the Lorentz invariance, or by admitting an infinite
number of fields in the action [169].
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In [32] we showed that this action can be indeed constructed by mimicking
the bosonic closed string field theory action discussed in [170] (and in references
therein).

To this purpose, we derived the set of antifields for the massless sector of
closed string theory, we discussed the coupling of the fields to the antifields
for a closed string field theory action and we finally proposed a kinetic term
which leads to the correct equations of motion. We showed that we could easily
account for new fields which nevertheless do not propagate and we checked that
the action had the correct symmetries leading to the complete BV action for
type ITA/IIB supergravity.

Since in [32] we only dealt with linearized supergravity equations, we did not
discuss generalizations of Witten string field «-product for the open superstring.
Similarly, it was outside the scope of [32] to construct a full-fledged closed string
field theory.
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Chapter 4
Conclusions and outlook

In this thesis I have presented my papers [26, 36, 37, 32], where I investigated
aspects of noncommutative geometry and superstring theory.

When [ started my research activity, it was already known that field the-
ories defined on a noncommutative space arise as a low energy description
of D-brane dynamics in the presence of a constant NS-NS background. This
had been proven for the bosonic string, the RNS superstring and the N = 2
string. Moreover, it had been shown that extending this discussion to su-
perstring theory in GS formalism, where spacetime fermions are present, the
(anti)commutation relations involving the fermions are not modified by the con-
stant NS-NS background. These string theory results had already induced a
growing interest in noncommutative field theory and many results had been ob-
tained. For instance, it was already known that noncommutative field theories
with time-space noncommutativity display awkward features, such as acausal-
ity and nonunitarity, and that these ill-defined theories cannot be obtained as
a low energy limit of string theory. Moreover, the behavior of noncommutative
field theory with respect to Poincaré symmetry was well-known. Moyal non-
commutative deformation breaks Lorentz-invariance but preserves translation
invariance. The generalization of the string results concerning D-branes in a
constant NS-NS background had been generalized to nonconstant backgrounds
afterwards, to show that a Kontsevich-like product replaces Moyal product in
this case. The deformation is associative when the background is a closed two-
form and nonassociative otherwise. All these results are reviewed in the first
chapter of my thesis, so that my work can be put into context.

In modern physics symmetries have such an importance that a theory is
actually defined in terms of its symmetries and its field content. If a classical
theory constructed out of the chosen fields does not contain all the interactions
that are allowed by its symmetry structure, the missing terms will be generated
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at the quantum level when the theory is renormalized.

A unifying aspect of my contributions to the field of noncommutative ge-
ometry is the way symmetries can be implemented in noncommutative general-
izations of known ordinary theories. Since the noncommutative generalization
of a given theory is not unique, preserving its symmetries (or at least some of
them) in its noncommutative generalization is the first criterium one should
take into account in the evaluation of the various possibilities, given the im-
portance symmetries have in the physics of our world.

In my paper [26], written in collaboration with D. Klemm and S. Penati, I
have considered the very special symmetry, known as supersymmetry, relating
bosonic and fermionic degrees of freedom in a theory. This symmetry has
not been observed in nature yet, however there are hopes that it will make
itself manifest at higher energies. For people who believe that the ultimate,
fundamental theory of reality is string theory, supersymmetry is expected to
be one of the characteristics of nature at sufficiently high energy, since string
theory requires it for consistency.

Supersymmetric theones ore hetter studied in a formalism known as su-

perspace. Superspace is an extension of spacetime where vooonic coordinat:es
are accompanied by fermionic ones. There supersymmetry is realized in tne
form of generalized translations. The geometry of superspace is not flat, since
a nonvanishing torsion is present.

In [26] we studied the way supersymmetric theories can be deformed by
implementing a non(anti)commutative geometry, without supersymmetry to
be lost. We first considered four-dimensional superspace with a Minkowski
metric. We wrote down the most general algebra for bosonic and fermionic
coordinates of superspace and then required covariance with respect to super-
traslations and associativity. We also required the reality properties of the
spinors in (anti)commutative superspace to be still valid in the deformed su-
perspace. This was the crucial difference with respect to the previous work [52].
We found that nontrivial coordinate algebras are allowed that involve fermionic
coordinates. We also noted that, for consistency with respect to supersymme-
try, turning on the anticommutators between the fermions implies that also
terms depending on the fermionic coordinates appear in the fermion-boson and
boson-boson commutators. The “trivial” superspace deformation where only
bosonic coordinates are rendered noncommutative with a constant commuta-
tor is found as a special case. However, in Minkowski signature deformations
involving nonzero fermion-fermion anticommutators are ruled out because of
spinor reality conditions together with associativity requirements. Therefore,
it is clear that more general deformations are allowed if spinor conjugation
relations can be relaxed. In [26] we noted that this is possible when moving
to a four-dimensional superspace with Euclidean signature, that can only be
defined when extended supersymmetry is present. By applying our procedure
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to Euclidean N = 2 superspace, we found that deformations with constant
fermion-fermion anticommutators are allowed.

In [26] we also discussed how to construct a non(anti)commutative x product
between superfields. Since our supergeometries involve coordinate-dependent
terms in the coordinate algebra, a Moyal-like product is not associative, because
of the superspace nontrivial torsion. However, we suggested that a Kontsevich-
like product can be constructed, with the property of being associative if and
- only if the supercoordinate algebra is also associative. We gave the formula for
the product up to second order in the deformation parameter and argued that
there was no objection of principle to extending Kontsevich procedure to all
orders. This was done later in [55]. |

In [26] we also noted that when superspace is rendered non(anti)commutative
the supersymmetry algebra is deformed by terms quadratic in bosonic deriva-
tives. These terms do not affect the coordinate algebra, but modify the su-
persymmetry transformation of a general superfield. Finally, we made some
speculations on how the deformed superspaces we found could emerge from
string theory, formulated in a manifestly target-space supersymmetric way (i.e.
in Green-Schwarz [4] or Berkovits formalisms [30}).

Indeed, it was found that deformed superspaces similar to the ones I stud-
ied in [26] naturally arise when the open superstring in the manifestly super-
Poincaré covariant formalism introduced by Berkovits [30] is compactified on
a CY three-fold in the presence of D-branes and a constant R-R background
(27, 28]. The nonanticommutative superspace found there is related to the
one I studied in the N = 2 euclidean case by a change of variables and a re-
duction to N = 1 by identification of the two fermionic coordinates on the
boundary of the string worldsheet. Since in this superspace only one of the
two Weyl spinor supersymmetry charges are deformed by quadratic terms in
bosonic derivatives, Seiberg called it N = superspace The constant R-R
background considered in [27, 28] is allowed only in an euclidean signature.
This is the stringy counterpart of the algebraic discussion in my paper [26],
justifying by a geometrical argument why superspace deformations involving
nonzero fermion-fermion anticommutators can only appear in an Euclidean sig-
nature. Deformed superspaces were also found to emerge in the uncompactified
ten dimensional superstring when a constant R-R background and D-branes are
present [29]. However, since this background is not an exact solutions to the
string equations, but only to the linearized equations, it is not obvious that this
deformation survives the zero-slope limit necessary to obtain the low energy
D-brane dynamics.

After the discovery that non(anti)commutative superspaces can be obtained
from the superstring, a lot of efforts in the study of non(anti)commutative field
theories have been done and many interesting properties of N = 3 Wess-
Zumino model and super-Yang-Mills theory have been elucidated. Different
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deformations of theories with extended supersymmetry have been considered.
The connection between deformed superspaces and supersymmetric matrix
models has been elucidated.

Up to now only constant R-R backgrounds have been considered. It would
be interesting to study what happens in the more general, nonconstant case.
A first step in this direction has been taken in my paper [32], written in col-
laboration with P.A. Grassi, where superstring vertex operators for linearly z-
dependent R-R field strength have been computed. These objects are the main
ingredient to generalize the string analysis presented in [29] to the nonconstant
case. Linearly z-dependent R-R backgrounds are expected to be related to a
special kind of superspace deformation, with a Lie algebraic structure where the
anticommutator between two fermions gives the bosonic coordinate. This can
be interpreted by saying that spacetime bosonic coordinates have a fermionic
substructure. In these terms, this issue was investigated in [33].

Now I would like to go back to the main theme unifying my work, the
implementation and implications of symmetries in noncommutative theories.
Up to know I have discussed how I approached the problem of deformation of
supersymmetric theories and the developments that followed my work, in both
field and string theory.

In two papers of mine [36, 37], I considered instead the problem of construct-
ing the noncommutative generalization of field theories possessing an infinite
number of conserved local symmetry charges, i.e classically integrable. As it
is well-known, in the commutative case the underlying symmetry structure of
these theories has strong implications on their dynamics. In particular, two
dimensional integrable theories have a factorized S-matrix and particle pro-
duction does not occur. Most ordinary integrable theories in two and three
dimensions have been shown to be related to a four dimensional theory, self-
dual Yang-Mills, from which they can be obtained by dimensional reduction.
The S-matrix of selfdual Yang-Mills also aisplays a peculiar property, all tree-
level amplitudes beyond three-point being vanisizing. This property has been
used as a definition of integrability in four dimensions. Selfdual Yang-Mills is
related to the N = 2 string, characterized by an N = 2 worldsheet supersym-
metry. It has been proven that tree-level N = 2 string dynamics ccincides with
selfdual Yang-Mills theory.

The N = 2 string can be coupled to a constant NS-NS background. Iii
the presence of D-branes it has been shown that the low energy limit of the
brane dynamics can be described by noncommutative selfdual Yang-Mills the-
ory. Therefore, given an ordinary integrable two-dimensional field theory, one
can first try to construct a noncommutative deformation that preserves clas-
sical integrability, in the sense of having an infinite number of conserved local
charges (local in the sense that they are not written in terms of integrals).
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Then one can check if the usual S-matrix properties are still valid after the de-
formation. This is not obvious, since noncommutativity introduces nonlocality
in the theory and, in the two-dimensional case, this necessarily affects the time
coordinate, causing in general an acausal behavior and the breakdown of uni-
tarity. Furthermore, one can investigate whether the theory can be obtained by
reduction from noncommutative selfdual Yang-Mills, or even use this method
to construct the two-dimensional theory in the first place.

Another interesting issue is the study of solitons solutions. Commutative
integrable theories usually display this kind of solutions. Noncommutative the-
ories have new soliton solutions disappearing in the commutative limit, that
exist thanks to the nonlocality introduced by Moyal product. Therefore, non-
commutative integrable theories are an interesting setting to study both kinds
of solitons. Noncommutative solitons are a field theory realization of the D-
branes that are present in the string theory from which they have emerged in
the low energy limit, thus the study of noncommutative solitons can give clues
on D-brane dynamics.

In [36, 37], all these issues have been studied in the special case of the sine-
Gordon model. This is an integrable two-dimensional field theory, describing
the dynamics of a scalar field selfinteracting through an oscillating potential.
Apart from the many general nice properties related to its integrability, the
sine-Gordon model also exhibits very nice renormalization properties. More-
over, the ordinary sine-Gordon model is related to the Thirring model through
bosonization. The relation between these two theories is a simple example of
duality relating the weak coupling limit of a theory with the strong-coupling
limit of the other. Bosonization has been studied in noncommutative geometry
and it has been shown that the ordinary abelian U(1) case is modified in the
noncommutative setting so that a free fermion is not related to a free scalar,
but to a scalar governed by a U (1) WZW model.

In [34], M.T. Grisaru and S. Penati have shown that an integrable non-
commutative version of the sine-Gordon model can be constructed, where two
equations govern the dynamics of a scalar (and generically complex) field. One
equation reduces to the sine-Gordon equation in the commutative limit, the
other vanishes in the commutative limit, has the form of a conservation law
and in fact gives the first of the infinite conserved currents. This system does
not seem to be overconstrained, since the class of its localized solutions is at
least as large as the one in ordinary sine-Gordon. The doubling of the equations
of motion is related to the fact that the U(1) factor in the noncommutative
group U(n) does not decouple, in contradistinction to the ordinary case. Since
commutative sine-Gordon theory is obtained from zero curvature conditions for
gauge connections in SU(2) group, in the noncommutative case this has to be
enlarged to U(2), which causes an additional equation of motion to appear.

In my paper [36], written in collaboration with M.T. Grisaru, L. Mazzanti
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and S. Penati, we showed that the equations describing this noncommutative
version of the sine-Gordon model can be obtained by dimensional reduction
from noncommutative selfdual Yang-Mills in Yang formulation. Unfortunately,
an action cannot be obtained by an analogous reduction procedure. However,
in [36], we found an action that gives the correct equations of motion. We then
studied tree-level scattering amplitudes and found that acausality is present
and the S-matrix is not factorized. Therefore, it seems that in general the
presence of an infinite number of conserved currents is not sufficient for the
S-maftrix to be factorized in noncommutative case. We finally discussed the
relation of our model with the noncommutative U (1) Thirring model. The fact
that dimensional reduction does not work at the level of action, but only at
the level of the equations of motion, is a sign that the parametrization of the
degrees of freedom we considered in [36] is not the correct one.

In [37], in collaboration with O. Lechtenfeld, L. Mazzanti, S. Penati and
A.D. Popov, we considered a different noncommutative generalization of the
sine-Gordon model, that is also obtained by dimensional reduction from non-
commutative selfdual Yang-Mills, by considering the U(1) x U(1) subgroup of
U(2). While in our first attempt to construct a noncommutative integrable
sine-Gordon model we had modified the kinetic term of the ordinary theory
to a U(1) WZW-like term, while maintaining the usual cosine structure of
the interaction term, in this new noncommutative theory we modified also the
interaction term structure, in a way that two real scalars parametrizing the
U(1) x U(1) subgroup of U(2) are coupled by a nontrivial term. Again, the
theory is described by two equations of motion. One of the two becomes trivial
in the commutative limit, while the other one gives the ordinary sine-Gordon
equation.

Solitons solutions of this model have been studied by making use of the
dressing method. Moreover, tree-level scattering amplitudes have been com-
puted and proven to be factorized and causal, in spite of the presence of time-
space noncommutativity. Therefore this second noncommutative version of the
sine-Gordon model has inherited the nice classical properties of its ordinary
counterpart. It would be interesting to move on to a quantum description of
the model to study its renormalizability properties and to investigate whether
integrability survives at the quantum level.

A quite striking feature of the noncommutative sine-Gordon system we
constructed is that its tree-level amplitudes are completely independent of the
noncommutativity parameter. It would be interesting to understand why this
happens, for instance if this is a general feature of noncommutative integrable
systems or a peculiar property of the sine-Gordon model. Another aspect that
still needs to be investigated is the relation of this U(1) x U(1) theory with
noncommutative fermions models. Somehow it would be more natural to see
what happens in the bosonization of U/ (2) fermion models and then consider a
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reduction to U(1) x U(1). Another possible development would be the study
of other kinds of duality in this system, for instance T-duality.

As I anticipated when discussing the superstring theory origin of the de-
formed superspaces I introduced in [26], the covariant formulation for the su-
perstring has been proven to be superior in dealing with many string issues
that were not treatable with the other known formalisms. In particular this
was true for deformed superspaces, that were shown to arise in the presence of
R-R backgrounds. These cannot be dealt with when using the RNS formalism,
while they can be treated with the GS formalism, that however is quite clumsy
because of the lack of manifest Lorentz covariance. Because of this connection
with the work I did in the field of noncommutative geometry, I started to study
this formalism. As I previously said, to generalize the results of [27, 28, 29]
to a more general, nonconstant background one needs to determine the cor-
responding vertex operator first. This is not an easy task in the covariant
formulation, since the great amount of manifest symmetry makes the formal-
ism redundant. The vertices are written in terms of superfields that have to
satisfy the linearized supergravity equations of motion.

In my paper (32|, written in collaboration with P.A. Grassi, we described
an iterative procedure to compute the vertex operators in terms of the physical
fields only. To do this a suitable gauge fixing must be imposed that removes
the auxiliary fields from the vertices. We used this technique to compute the
vertices for linearly z-dependent R-R field strength that may be related to a
Lie-algebraic deformation of superspace, as I already said, but we also dis-
cussed other two applications of our analysis that are a little bit out of the
path, having no direct connection to noncommutative geometry. We showed
how an off-shell formulation of the superstring vertices can be constructed, how
the corresponding equations of motion are a deformation of the usual super-
field constraints and how the gauge fixing necessary to implement our iterative
procedure can be applied to this case. The motivation for this discussion relies
in the fact that a propagating closed string emitted from a D-brane has to be
off-shell. The off-shell vertex operators couple the R-R potential (and not the
field strength) to the worldvolume of the brane. In our discussion, we showed
that the vertices we obtain explicitly contain the R-R potential. Therefore our
analysis could be useful in the study of D-brane dynamics in the covariant for-
malism. Finally, we used our framework to determine the antifield equations of
motion and to make a proposal for the kinetic term of closed superstring field
theory. Since this kinetic term is written in superspace formulation, the first
thing one should now do to make nontrivial checks about its properties is to
rewrite it in component formulation.

To conclude, in my work I have mostly investigated the way one can im-
plement noncommutativity in theories with a special symmetry structure, such

159



as supersymmetric and classically integrable theories. Requiring the symme-
tries to be preserved in the noncommutative deformation is a strong constraint
that allows to make a selection between the many possibile noncommutative
versions of the same theory.

In the case of integrable theories, I explicitly discussed the case of the sine-
Gordon theory and eventually found its noncommutative generalization that
has infinite conserved currents and also displays all the nice features that in
ordinary theories are implied by the symmetry structure, such as factorization
of the S-matrix. However, many issues still have to be investigated, such as for
instance the connection between the noncommutative sine-Gordon system and
U(2) fermion models and the reason for the complete absence of a dependence
on the noncommutativity parameter in the tree-level amplitudes.

In the case of supersymmetric theories, I constructed superspace deforma-
tions that preserve supersymmetry, are associative and respect the usual spinor
reality properties. The connection between the deformations I found and su-
perstring theory in the presence of R-R backgrounds, described in the covariant
formalism, has led me to deepen my knowledge of this formulation of super-
string theory. Even if this might seem constructed “ad hoc”, without a strong
underlying principle, it is the first superPoincaré covariant formulation of the
superstring that works and it has already proven to very suitable to handle R-
R backgrounds and to prove general theorems about superstring amplitudes.
Since the computation of superstring vertex operators is not an easy task in the
covariant formalism, I provided a recursive technique to compute the vertices
in terms of physical fields only. This analysis of vertex operators has many pos-
sible applications. I discussed applications to the computation of superspace
deformations in the presence of nonconstant R-R backgrounds, to the compu-
tation of vertices in the off-shell formulation, that are useful in the study of
D-brane dynamics, and to the construction of kinetic terms for a closed super-
string field theory. Since the covariant superstring in the presence of NS-NS
backgrounds has not been studied in detail yet, it would be very interesting to
perform an analysis of the string origin of noncommutative geometry in this
formalism. Indeed, since NS-NS and R-R backgrounds are treated in a very
“symmetric” way in this formulation of the superstring, this setting should be
very useful to study S-duality.
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Appendix A

Conventions

A.1 Superspace conventions in d = 4

In four dimensions, N = 1 Minkowski superspace is described by a set of
coordinates Z4 = (2%,0%,6%), where * = 7% are the four bosonic real
coordinates, while 6 (and ¢ = (6*)!) are complex two—component Weyl
fermions. We use conventions of Superspace [24], with (¥*)t = 9%, (o)t =
2%

The supersymmetry algebra

{Qaa Qa} = Pag
{Qaa QB} — {QOHQﬁ} =0
[Pa, Ps] =0 (A.1)

with Q4 = Q1 , is realized by

?

Qo =1 (aa — '2'0 aad)

Y
Qa =1 (ad — 50 aaa)
Pag = B0 (A.2)

Under supersymmetry transformations a generic superfield V' transforms ac-
cording to §V = —i (e*Qq + €Qqs) V. In particular, the action on the super-
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space coordinates defines supertranslations

622 = —i (2Qq + Q) 12 -—-;— (eﬁéé + 5303)

§0° = —i (e*Qq +EQ4) 0° = ¢°

508 = —; (*Qu +EQ4) 98 = & (A3)
Covariant derivatives with respect to (A.3) are D4 = (Dy, Dy, 0aa) Where

D, =8, + %édaad Dy = 8+ %oaaad

Oas = "‘i{Dde} (A'4)

Moreover, they satisfy {Dq, Dg} = {Da,Dg} = 0 and anticommute with the
generators of supersymmetry transformations.
We can define left and right grassmannian derivatives according to the fol-

lowing rules
5.6° = 5F . (8L)ab” = 640° 5@?

Bﬁga = -—5aﬁ ' (ER)déB = éﬁgd = —-56? (A.5)

(81)ab”
| (BR)agﬁ

Their action on a generic superfield is defined as
— —
oLV = 0V : OrV = VO (A.6)

Notice that these definitions hold independently of the nature of the superfield
V. In particular, in the case of a spinorial superfield V3 we have (Or)aV3 =

Vg%— A- As a consequence of the general definitions (A.5, A.6) we immediately
obtain 01V = OrV for any tensorial superfield, whereas 0 Vs = —0OrVj for
any spinorial superfield.

From the identities

(‘é*aaﬁ)* 5, | (é‘»'d,@'f?)T - —6°%,

("é’aoﬁ)T = P5e | (z‘ifkésﬂf")’r — §85° (A.7)

the hermitian conjugation rules for left and right derivatives follow

((B)a)t = -0Br)a , () = (Br)® (A.8)

We can also introduce left and right bosonic derivatives which are simply
given by

(BL)adxﬁB = admﬁﬁ = ‘Saﬂédﬁ ’ (aR)ac'thﬁ = 2 0as = 5a65dﬁ
(A.9)

162



Their action on a superfield V is defined as 9,V = BV and OrV = Ve,
Therefore, from (A.9), it easily follows that (01)qaV = (Or)aaV for any su-
perfield.

As a consequence of the previous identities, left and right covariant dorio_

s e vy ot N

tives can be equally defined. Left covariant derivgiives act on a generic super-
field from the left as

(DL)aV =DV, (Dp)aV =DsV (A.10)

where D,, and Dy are explicitly given in (A.4). Right covariant derivatives are
defined as acting from the right

(DR)aV

VD, — v(5a+ ad,aa)

— — — 7 —
VDs, =V (Da = 66‘ -+ 'é- 6ad9a) (A].].)

i
2
(DRr)sV

It is easy to check that DV = DgrV on any tensorial superfield, whereas
D1Vs = —DgrVy. Moreover, left and right derivatives are related by hermitian
conjugation ((Dr)a)! = —(Dr)s and ((Dr)®)t = (Dgr)%.

Defining the right momentum operator as (Pr)asaV = —-iV%_ad, it is easy
to show that the algebra of right derivatives is the standard one { Dg, Dr} =
{DR, DR} = 0 and {(DR)Q, (DR)C',} = (PR)ad- Moreover

D, Df] = 0 = (D5, 4]

[ ==L

D3, Dg|V = (PR)aaV

[~ __R"

Dg,Dg|V = (Pr)aaV (A.12)

for any tensor superfield. When the commutators are applied to a spinor V3, a
minus sign appears on the r.h.s. of the last two identities due to the anticom-
mutation of the spinorial derivatives with V.

Following the same procedure one can equally define left and right super-
symmetry generators as (Qr)aV = Q4V and

I ) —
I 2

id

2

+::_ ™ +: .4_ N
VQs =V —i(ad-— Bade"") (A.13)

.(QR)aV = Vaa

(Qr)aV

The algebra of right generators is again given by (A.1). The algebra of the
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commutators on a tensor superfield is
i —R —L
Q8,Qf) =0 = [0, Q3]
i —L]
LQc}xz’Qc:'u V = (PL)OtC'!V

V

T
QLQL|V = (Pr)asV (A.14)

Instead, when the commutators act on spinor objects we get a change of sign
on the r.h.s. of the last two equalities.

In euclidean signature a reality condition on spinors is applicable only in the
presence of extended supersymmetry. In the simplest case, N = 2 euclidean
superspace, the two—component Weyl spinors satisfy a symplectic Majorana
condition

(09) = 6 = C96°Cpa , (6%) = B4y = P79 Cy,Cji (A.15)

with C'2 = —(C}5 = i. The choice of covariant derivatives and supersymmetry
charges is the obvious generalization of the NV = 1 Minkowski case.

A.2 Superspace conventions in d = 10

We describe Minkowski ten dimensional N = 2 superspace by the coordinates
(™, o<, 64). Depending whether one is in type IIA or IIB case, the spinors

and 6° have opposite or same chirality.

In ten dimensions with Minkowski signature one can use Dirac matrices
m={IQ (irg),0* ® 1, X ® 71}, where m = 0,...,9and = 1,...,8. T,
= 1,2,3 are the Pauli matrices, o# are eight real symmetric 16 x 16 off-

diagonal Dirac matrices in d = 8 with euclidean signature, while x is the real
16 x 16 diagonal chirality matrix in d = 8. The chirality matrix in d = 10
with Minkowski signature is then I ® 3 and the charge conjugation matrix C,
satisfying CT'™ = —(I'™)T'C, is numerically equal to I'°.

If one uses spinors Y7 = (o, Br) with spinor indices a$ and Br 3, the

index structure of the Dirac matrices and the charge conjugation matrix is

o E
rm = ( (a'"?)B (o o) ﬁ), C = (cg C% ) (A.16)

8 Y

where o™ = {I,0",x} and ™ = {—I,0*,x}. The matrices c,? and cB are
numerically equal to I16x16 and —Ii6x16, respectlvely The matrices Y™ used

in the text are given by y™8 = & (am)ﬁﬂ and vy = ¢ _B(5™) g5~ From now
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on and in the text dots are omitted. The spinors oy, and B form inequivalent
representations of SO(9,1). Spin indices cannot be raised or lowered with the

charge conjugation matrix, but a$c,?3 r,p 1s Lorentz invariant.
One finds that the 16 x 16 symmetric matrices 7, and 7™ satisfy

VI By + Yagy ™Y = 298 (A.17)

and
'7m(aﬁ'7$5 =0 (A.18)

which makes Fierz rearrangements very easy.
Our conventions for d = 10 N = 2 superspace covariant derivatives and
supersymmetry charges are

1 1
Da — aa + '2"(7m9)a6m y Qa - 60: - 5(7m9)aam y
Ds =05+ %(’Ymé)aam , Qa=0s— %(7’"9)&8",, (A.19)

which satisfy
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